JEE Advanced (2023)

PAPER

Chemistry

General Instructions:

SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme:</u>

Full Marks	: +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks	: +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks	: +2 If three or more options are correct but ONLY two options are chosen, both of
	which are correct;
Partial Marks	: +1 If two or more options are correct but ONLY one option is chosen and it is a

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

- choosing ONLY (A) and (D) will get +2 marks;
- choosing ONLY (B) and (D) will get +2 marks;
- choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

- **Q.1.** The correct statement(s) related to processes involved in the extraction of metals is(are)
 - (A) Roasting of Malachite produces Cuprite.
 - (B) Calcination of Calamine produces Zincite.
- **(C)** Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
- (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.

Q. 2. In the following reactions, **P**, **Q**, **R**, and **S** are the major products. The correct statement(s) about P, Q, R, and S is(are)

$$CH_{3}CH_{2}CH(CH_{3})CH_{2}CN \xrightarrow{(i) PhMgBr, then H_{3}O^{\oplus}}_{(ii) PhMgBr, then H_{2}O} P$$

$$O$$

$$Ph-H + CH_{3}CCI \xrightarrow{(i) anhyd.AlCl_{3}}_{(ii) PhMgBr, then H_{2}O} Q$$

$$O$$

$$CH_{3}CH_{2}CCI \xrightarrow{(i) \frac{1}{2}(PhCH_{2})_{2}Cd}_{(ii) PhMgBr, then H_{2}O} R$$

$$PhCH_{2}CHO \xrightarrow{(i) PhMgBr, then H_{4}O}_{(ii) PhMgBr, then H_{4}O} S$$
The correct statement(s) about P, Q, R, and S is(are)

(A) Both **P** and **Q** have asymmetric carbon(s).

- **(B)** Both **Q** and **R** have asymmetric carbon(s).
- (C) Both **P** and **R** have asymmetric carbon(s).
- (D) P has asymmetric carbon(s), S does not have any asymmetric carbon.
- **Q.3.** Consider the following reaction scheme and choose the correct option(s) for the major products Q, R and S.

General Instructions:

SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme:</u>

Full Marks	:	+3 If ONLY the correct option is chosen;
Zero Marks	:	0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	:	-1 In all other cases.

(A) CrO_4^{2-} and Br_2

Q. 4. In the scheme given below, X and Y, respectively, are

$$\begin{array}{ccc} de & & \stackrel{\text{aq. NaOH}}{\longrightarrow} \\ P & \stackrel{\text{aq. H}_2SO_4, PbO_2 (excess)}{\text{heat}} \\ Q & \stackrel{\text{Mn(OH)}_2, \text{Conc. H}_2SO_4}{\text{warm}} \end{array}$$

White precipitate (\mathbf{P}) + Filtrate (\mathbf{Q})

→ X (a coloured species in solution)

Y (gives blue-coloration with Kl-starch paper)

Q. 7. In the given reaction scheme, **P** is a phenyl

(B) MnO_4^{2-} and Cl_2 (D) $MnSO_4$ and HOCl

(A) 3

(C) 5

(C) MnO_4^- and Cl_2

Metal hali

- **Q.5.** Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is $[\Lambda_m = molar \text{ conductivity}]$
 - $\Lambda_{\rm m}^{\circ}$ = limiting molar conductivity
 - c = molar concentration
 - $K_a = dissociation constant of HX$]

(A) $K_a \Lambda_m^\circ$ (B) $K_a \Lambda_m^\circ/2$

(C)
$$2 K_a \Lambda_m^\circ$$
 (D) $1 / (K_a \Lambda_m^\circ)$

- **Q.6.** On decreasing the *p*H from 7 to 2, the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from 10^{-4} mol L^{-1} to 10^{-3} mol L^{-1} . The *p*K_a of HX is
- The correct statement about S is

and S are the major products.

(A) It primarily inhibits noradrenaline degrading enzymes.

(B) 4

(D) 2

 $\xrightarrow{(i)(CH_3CO)_2O} S$

alkyl ether, Q is an aromatic compound; R

- (B) It inhibits the synthesis of prostaglandin.
- (C) It is a narcotic drug.
- (D) It is ortho-acetylbenzoic acid.

General Instructions:

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme:</u>

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks

0 In all other cases.

- **Q. 8.** The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product X in 75% yield. The weight (in g) of X obtained is _____. [Use, molar mass (g mol⁻¹): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5]
- **Q. 9.** A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure *x* atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be *y* dm³ mol⁻¹. The value of x/y is ____. [Use: Gas constant, R = 8 × 10⁻² L atm K⁻¹ mol⁻¹]
- **Q.** 10. The plot of log k_f versus 1/T for a reversible reaction A (g) \rightleftharpoons P (g) is shown.

Pre-exponential factors for the forward and backward reactions are 10^{15} s^{-1} and

 10^{11} s^{-1} , respectively. If the value of log K for the reaction at 500 K is 6, the value of $|\log k_b|$ at 250 K is ____.

- [K = equilibrium constant of the reaction]
- k_f = rate constant of forward reaction
- k_b = rate constant of backward reaction]
- **Q. 11.** One mole of an ideal monoatomic gas undergoes two reversible processes $(A \rightarrow B and B \rightarrow C)$ as shown in the given figure:

 $A \rightarrow B$ is an adiabatic process. If the total heat absorbed in the entire process ($A \rightarrow B$ and $B \rightarrow C$) is

 $RT_2 \ln 10$, the value of $2 \log V_3$ is _

[Use, molar heat capacity of the gas at

constant pressure, $C_{p,m} = -$

General Instructions:

SECTION 4 (Maximum Marks: 12)

NC

NC

CN

CN

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks +3 **ONLY** if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Q. 12. In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T₁ and T₂, is shown in the figure:

If $T_1 = 2T_2$ and $(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}) = RT_2 \ln x$, then the value of *x* is _____.

 $\begin{bmatrix} \Delta G_1^{\Theta} & \text{and} & \Delta G_2^{\Theta} & \text{are standard Gibb's} \\ \text{free energy change for the reaction at} \\ \text{temperatures } T_1 \text{ and } T_2, \text{ respectively.} \end{bmatrix}$

Q. 13. The total number of sp^2 hybridised carbon atoms in the major product P (a nonheterocyclic compound) of the following reaction is _____.

$$\xrightarrow{(i) \text{ LiAlH}_4 \text{ (excess), then H}_2O}_{(ii) \text{ Acetophenone (excess)}} \rightarrow$$

Р

Q. 14. Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

List-I	List-II
$(P) P_2O_3 + 3H_2O \rightarrow$	(1) P(O)(OCH ₃)Cl ₂
$(Q) P_4 + 3NaOH + 3H_2O \rightarrow$	(2) H ₃ PO ₃
(R) $PCl_5 + CH_3COOH \rightarrow$	(3) PH ₃
$(S) H_3PO_2 + 2H_2O + 4AgNO_3 \rightarrow$	(4) POCl ₃
	(5) H ₃ PO ₄
(A) $P \rightarrow 2; Q \rightarrow 3; R \rightarrow 1; S \rightarrow 5$	(B) $P \rightarrow 3; Q \rightarrow 5; R \rightarrow 4; S \rightarrow 2$
(C) $P \rightarrow 5$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$	(D) $P \rightarrow 2; Q \rightarrow 3; R \rightarrow 4; S \rightarrow 5$

Q. 15. Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.

[Atomic Number: Fe = 26, Mn = 25, Co = 2	27]
List-I	List-II
(P) $t_{2g}^{6} e_{g}^{0}$	(1) $[Fe(H_2O)_6]^{2+}$
(Q) $t_{2g}^3 e_g^2$	(2) $[Mn(H_2O)_6]^{2+}$
(R) $e^2 t_2^3$	(3) $[Co(NH_3)_6]^{3+}$
(S) $t_2^4 e_g^2$	(4) [FeCl ₄] ⁻
	(5) [CoCl ₄] ²⁻
(A) $P \rightarrow 1; Q \rightarrow 4; R \rightarrow 2; S \rightarrow 3$	(B) $P \rightarrow 1; Q \rightarrow 2; R \rightarrow 4; S \rightarrow 5$
(C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 1$	(D) $P \rightarrow 3; Q \rightarrow 2; R \rightarrow 4; S \rightarrow 1$

Q. 16. Match the reactions in List-I with the features of their products in List-II and choose the correct option.

[Atomic Number	: Fe =	26,	Mn =	25,	Co =	27]
----------------	--------	-----	------	-----	------	-----

List-I	List-II		
(P) (-)-1-Bromo-2-ethylpentane $\xrightarrow{aq.NaOH} S_N^2 reaction}$ (single enantiomer)	(1) Inversion of configuration		
(Q) (-)-2-Bromopentane $\xrightarrow{aq.NaOH} S_N^2 reaction$	(2) Retention of configuration		
(R) (-)-3-Bromo-3-methylhexane $\xrightarrow{aq. NaOH}_{S_N 1 \text{ reaction}}$ (single enantiomer)	(3) Mixture of enantiomers		
(S) $Me H Me Br \xrightarrow{aq. NaOH} S_N 1 reaction$ (single enantiomer)	(4) Mixture of structural isomers		
	(5) Mixture of diastereomers		
A) $P \rightarrow 1; Q \rightarrow 2; R \rightarrow 5; S \rightarrow 3$ (B)	$P \rightarrow 2; Q \rightarrow 1; R \rightarrow 3; S \rightarrow 5$		
(C) $P \rightarrow 1; Q \rightarrow 2; R \rightarrow 5; S \rightarrow 4$ (D)	$P \rightarrow 2; Q \rightarrow 4; R \rightarrow 3; S \rightarrow 5$		

Q. 17. The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.

List-II
(1) Acetophenone $\xrightarrow{Zn-Hg, HCl}$
(2) Toluene $\xrightarrow{(i) \text{KMnO}_4, \text{KOH}, \Delta}$ (ii) SOCI_2
(3) Benzene $\xrightarrow{CH_3Cl}_{anhyd. AlCl_3}$
(4) Aniline $\xrightarrow{\text{NaNO}_2/\text{HCI}}_{273-278 \text{ K}}$
(5) Phenol $\xrightarrow{Zn,\Delta}$
$P \rightarrow 1; Q \rightarrow 3; R \rightarrow 5; S \rightarrow 2$ $P \rightarrow 3; Q \rightarrow 4; R \rightarrow 5; S \rightarrow 2$

Q.No.	Answer key	Topic's name	Chapter's name		
	1	Section -I			
1	(B, C, D)	Extraction of Metal	General Principles and Processes of Isolation of Elements		
2	(C, D)	Nucleophillic Reaction of Aldehyc And Ketone	le Aldehyde Ketone and Carboxylic Acid		
3	(B)	Oxidation of Alcohol	Alcohol Phenol Ether		
		Section -II			
4	(C)	Reaction of D Block	D Block And F Block		
5	(A)	Limiting Molar Conductivity	Electrochemistry		
6	(B)	pH	Ionic Equilibrium		
7	(B)	Cleavage of Ether	Alcohol Phenol Ether		
		Section -III			
8	222	Limiting Reagent	Mole Concept		
9	100	Compressibility Factor	States of Matter		
10	5	Equilibrium Constant	Chemical Equilibrium		
11	7	Adiabatic Process	Thermodynamics		
12	8	Gibbs Free Energy	Thermodynamics		
13	28	Reduction of Nitrile	Nitrogen Containing Compound		
		Section -IV			
14	(D)	Inorganic Reaction	P Block		
15	(D)	Tetrahedral And Octahedral Complexes	Coordination Compound		
16	(B)	Sn1 and Sn2	Alkyl Halide and Aryl Halide		
	(D)	Organic Name Reaction	Aldehyde Ketone and Carboxylic Acid		

Answer Key

JEE Advanced (2023)

PAPER

+ 4KOH

Chemistry 1. Correct options are (B, C and D). :. Statement is true. (C) $CuFeS_2 + O_2 \xrightarrow{\Delta} Cu_2S + FeO + SO_2$ (A) Roasting of malachite $CuCO_3 Cu(OH)_2 \xrightarrow{A} CuO + H_2O + CO_2$ $FeO + SiO_2 \longrightarrow FeSiO_2$:. Statement is true. Roasting means that heating of substance **(D)** Ag + KCN + O_2 + 2H₂O \longrightarrow 4K [Ag(CN)₂] + 4KOH in excess of oxygen. So cuprite Cu₂O is not produced. Hence, this statement is not correct. $2K[Ag(CN)_2] + Zn \longrightarrow K_2 [Zn(N)_4] + 2Ag$ (B) Calcination means heating in absence of air Silver is obtained by reaction with Zinc $ZnCO_3 \xrightarrow{\Delta} ZnO + CO_2$

ANSWERS WITH EXPLANATIONS

Calamine Zincite So, the above statement is true.
2. Correct options are (C and D).

$$CH_{3}CH_{2} - \begin{pmatrix} C \\ - \\ CH_{3} \end{pmatrix} + \begin{pmatrix} \delta \\ - \\ C$$

(S) does not have any asymmetric carbon atom.

3. Correct option is (B).

7. Correct option is (B).

 $= \mathrm{RT}_2 \ln 2 + 2\mathrm{RT}_2 \ln 2$

 $Mn^{2+} \longrightarrow 3d^5$, H_2O is a weak field ligand.

It is used as reactant in Rosenmund reaction.