# JEE Advanced (2023) 

## PAPER

1

## Chemistry

## General Instructions:

## SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $:+4$ ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : + 2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY(A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option (i.e. the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -2 marks.
Q.1. The correct statement(s) related to processes involved in the extraction of metals is(are)
(A) Roasting of Malachite produces Cuprite.
(B) Calcination of Calamine produces Zincite.
(C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron.
(D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal.
Q. 2. In the following reactions, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and $\mathbf{S}$ are the major products.

The correct statement(s) about P, Q, R, and S is(are)




The correct statement(s) about $\mathbf{P}, \mathbf{Q}, \mathrm{R}$, and S is(are)
(A) Both $\mathbf{P}$ and $\mathbf{Q}$ have asymmetric carbon(s).
(B) Both $\mathbf{Q}$ and $\mathbf{R}$ have asymmetric carbon(s).
(C) Both $\mathbf{P}$ and $\mathbf{R}$ have asymmetric carbon(s).
(D) $\mathbf{P}$ has asymmetric carbon(s), S does not have any asymmetric carbon.
Q.3. Consider the following reaction scheme and choose the correct option(s) for the major products Q , $R$ and $S$.
Styrene $\xrightarrow[\text { (ii) } \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{B}_{2} \mathrm{H}_{6}} \mathbf{P} \xrightarrow[\substack{\text { (ii) } \mathrm{Cl}_{2}, \mathrm{CrO}_{2}, \text { Red phosphorus } \\ \text { (iii) } \mathrm{H}_{2} \mathrm{O}}]{\text { (i) } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{Q}$ $\mathrm{P} \xrightarrow[\substack{\text { (ii) NaCN } \\ \text { (iii) } \mathrm{H}_{2} \mathrm{O}^{+}, \Delta}]{\text { (i) } \mathrm{SOCl}_{2}} \mathrm{R} \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{~S}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}, \Delta$

(A) Q
(C)

$\qquad$

Q
 근
(B)
(D) $Q$



R


R

S


## General Instructions:

## SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 4. In the scheme given below, X and Y , respectively, are

(A) $\mathrm{CrO}_{4}^{2-}$ and $\mathrm{Br}_{2}$
(C) $\mathrm{MnO}_{4}^{-}$and $\mathrm{Cl}_{2}$
Q.5. Plotting $1 / \Lambda_{\mathrm{m}}$ against $\mathrm{c} \Lambda_{\mathrm{m}}$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with $y$-axis intercept of P and slope of S . The ratio $\mathrm{P} / \mathrm{S}$ is [ $\Lambda_{\mathrm{m}}=$ molar conductivity
$\Lambda_{\mathrm{m}}^{\circ}=$ limiting molar conductivity
$\mathrm{c}=$ molar concentration
$\mathrm{K}_{\mathrm{a}}=$ dissociation constant of HX]
(A) $\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}$
(B) $\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ} / 2$
(C) $2 \mathrm{~K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}$
(D) $1 /\left(\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}\right)$
Q.6. On decreasing the pH from 7 to 2 , the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from $10^{-4}$ mol $\mathrm{L}^{-1}$ to $10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$. The $p \mathrm{~K}_{\mathrm{a}}$ of HX is
(B) $\mathrm{MnO}_{4}^{2-}$ and $\mathrm{Cl}_{2}$
(D) $\mathrm{MnSO}_{4}$ and HOCl

Q. 7. In the given reaction scheme, $\mathbf{P}$ is a phenyl alkyl ether, $\mathbf{Q}$ is an aromatic compound; $\mathbf{R}$ and $\mathbf{S}$ are the major products.

(A) It primarily inhibits noradrenaline degrading enzymes.
(B) It inhibits the synthesis of prostaglandin.
(C) It is a narcotic drug.
(D) It is ortho-acetylbenzoic acid.

## General Instructions:

$$
\text { SECTION } 3 \text { (Maximum Marks: 24) }
$$

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks
0 In all other cases.
Q.8. The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product $X$ in $75 \%$ yield. The weight (in g) of $X$ obtained is $\qquad$ . [Use, molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right): \mathrm{H}=1, \mathrm{C}=12$, $\mathrm{O}=16, \mathrm{Si}=28, \mathrm{Cl}=35.5]$
Q.9. A gas has a compressibility factor of 0.5 and a molar volume of $0.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at a temperature of 800 K and pressure $x$ atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be $y \mathrm{dm}^{3} \mathrm{~mol}^{-1}$. The value of $x / y$ is $\qquad$ -
[Use: Gas constant, $\mathrm{R}=8 \times 10^{-2} \mathrm{~L}$ atm $\mathrm{K}^{-1}$ $\mathrm{mol}^{-1}$ ]
Q. 10. The plot of $\log k_{f}$ versus $1 / \mathrm{T}$ for a reversible reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$ is shown.


Pre-exponential factors for the forward and backward reactions are $10^{15} \mathrm{~s}^{-1}$ and
$10^{11} \mathrm{~s}^{-1}$, respectively. If the value of $\log \mathrm{K}$ for the reaction at 500 K is 6 , the value of $\left|\log k_{b}\right|$ at 250 K is $\qquad$ _.
[ $K=$ equilibrium constant of the reaction
$k_{f}=$ rate constant of forward reaction
$k_{b}=$ rate constant of backward reaction]
Q.11. One mole of an ideal monoatomic gas undergoes two reversible processes $(\mathrm{A} \rightarrow \mathrm{B}$ and $B \rightarrow C$ ) as shown in the given figure:

$A \rightarrow B$ is an adiabatic process. If the total heat absorbed in the entire process $(\mathrm{A} \rightarrow \mathrm{B}$ and $B \rightarrow C$ ) is
$\mathrm{RT}_{2} \ln 10$, the value of $2 \log \mathrm{~V}_{3}$ is [Use, molar heat capacity of the gas at constant pressure, $\mathrm{C}_{\mathrm{p}, \mathrm{m}}=\frac{5}{2}$ R]
Q. 12. In a one-litre flask, 6 moles of A undergoes the reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$. The progress of product formation at two temperatures (in Kelvin), $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$, is shown in the figure:

Q. 13. The total number of $s p^{2}$ hybridised carbon atoms in the major product $P$ (a nonheterocyclic compound) of the following reaction is $\qquad$ $-$


## General Instructions:

- This section contains FOUR (04) Matching List Sets.
- Each sethas ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
Q. 14. Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option.

| List-I | List-II |
| :--- | :--- |
| (P) $\mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow$ | (1) $\mathrm{P}(\mathrm{O})\left(\mathrm{OCH}_{3}\right) \mathrm{Cl}_{2}$ |
| (Q) $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow$ | (2) $\mathrm{H}_{3} \mathrm{PO}_{3}$ |
| (R) $\mathrm{PCl}_{5}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow$ | (3) $\mathrm{PH}_{3}$ |
| $(\mathrm{~S}) \mathrm{H}_{3} \mathrm{PO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{AgNO}_{3} \rightarrow$ | (4) $\mathrm{POCl}_{3}$ |
|  | (5) $\mathrm{H}_{3} \mathrm{PO}_{4}$ |

(A) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 5$
(B) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 5 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(D) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 5$
Q. 15. Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option.
[Atomic Number: $\mathrm{Fe}=26, \mathrm{Mn}=25, \mathrm{Co}=27$ ]

| List-I | List-II |
| :--- | :--- |
| (P) $t_{2 g}^{6} e_{g}^{0}$ | (1) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ |
| (Q) $t_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{2}$ | (2) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ |
| (R) $\mathrm{e}^{2} \mathrm{t}_{2}^{3}$ | (3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ |
| (S) $\mathrm{t}_{2}^{4} \mathrm{e}_{\mathrm{g}}^{2}$ | (4) $\left[\mathrm{FeCl} \mathrm{H}_{4}\right]^{-}$ |
|  | (5) $\left[\mathrm{CoCl}_{4}\right]^{2-}$ |

(A) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5$; $\mathrm{S} \rightarrow 1$
(D) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1$
Q. 16. Match the reactions in List-I with the features of their products in List-II and choose the correct option.
[Atomic Number: $\mathrm{Fe}=26, \mathrm{Mn}=25, \mathrm{Co}=27$ ]

| List-I | List-II |
| :---: | :---: |
| (P) $\underset{\substack{\text { (single enantiomer) }}}{(-)-\text {-Bromo-2-ethylpentane } \xrightarrow[S_{N} \text { reaction }]{\text { aq. } \mathrm{NaOH}} \text {. }}$ | (1) Inversion of configuration |
| $\underset{\substack{\text { (single enantiomer) }}}{\text { (Q) }} \xrightarrow[S_{\mathrm{N}}{ }^{(-)-2 \text { reaction }}]{\text { aq. } \mathrm{NaOH}}$ | (2) Retention of configuration |
| (R) $\underset{\substack{-)-3 \text {-Bromo-3-methylhexane } \\ \text { (single enantiomer) }}}{\text { aq. NaOH }}$ | (3) Mixture of enantiomers |
| (S) $\underset{\begin{array}{l}\mathrm{Me} \\ \text { (single enantiomer) }\end{array}}{\text { aq. } \mathrm{NaOH}} \xrightarrow[\mathrm{S}_{\mathrm{N}} \text { reaction }]{\text { Me }}$ | (4) Mixture of structural isomers |
|  | (5) Mixture of diastereomers |

(A) $\mathrm{P} \rightarrow 1$; $\mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5$; $\mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 5$
Q. 17. The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-I with List-II and choose the correct option.


## Answer Key

| Q.No. | Answer key | Topic's name | Chapter's name |
| :---: | :---: | :---: | :---: |
| Section -I |  |  |  |
| 1 | (B, C, D) | Extraction of Metal | General Principles and Processes of Isolation of Elements |
| 2 | (C, D) | Nucleophillic Reaction of Aldehyde And Ketone | Aldehyde Ketone and Carboxylic Acid |
| 3 | (B) | Oxidation of Alcohol | Alcohol Phenol Ether |
| Section -II |  |  |  |
| 4 | (C) | Reaction of D Block | D Block And F Block |
| 5 | (A) | Limiting Molar Conductivity | Electrochemistry |
| 6 | (B) | pH | Ionic Equilibrium |
| 7 | (B) | Cleavage of Ether | Alcohol Phenol Ether |
| Section -III |  |  |  |
| 8 | 222 | Limiting Reagent | Mole Concept |
| 9 | 100 | Compressibility Factor | States of Matter |
| 10 | 5 | Equilibrium Constant | Chemical Equilibrium |
| 11 | 7 | Adiabatic Process | Thermodynamics |
| 12 | 8 | Gibbs Free Energy | Thermodynamics |
| 13 | 28 | Reduction of Nitrile | Nitrogen Containing Compound |
| Section-IV |  |  |  |
| 14 | (D) | Inorganic Reaction | P Block |
| 15 | (D) | Tetrahedral And Octahedral Complexes | Coordination Compound |
| 16 | (B) | Sn 1 and Sn2 | Alkyl Halide and Aryl Halide |
| 17 | (D) | Organic Name Reaction | Aldehyde Ketone and Carboxylic Acid |


2. Correct options are (C and D).

(P)

(S) does not have any asymmetric carbon atom.
3. Correct option is (B).

4. Correct option is (C).
(P)
$\mathrm{MnCl}_{2} \xrightarrow{\mathrm{NaOH}(\mathrm{aq})} \mathrm{Mn}\left(\mathrm{OH}_{2}\right)+\mathrm{NaCl}$
$\mathrm{Mn}(\mathrm{OH})_{2} \xrightarrow[\mathrm{PbO}_{2} \text { (excess) }]{\text { aq. } \mathrm{H}_{2} \mathrm{~S}_{4}} \mathrm{MnO}_{4}^{-}+\mathrm{Pb}^{2+}$

$$
\mathrm{NaCl} \xrightarrow[\text { conc. } \mathrm{H}_{2} \mathrm{SO} \mathrm{O}_{4} \text { warm }]{\mathrm{MnO}(\mathrm{OH})_{2}} \underset{(\mathrm{Y})}{\mathrm{Cl}_{2}}
$$

5. Correct option is (A).

$$
\begin{aligned}
& \alpha=\frac{\lambda_{\mathrm{m}}^{c}}{\lambda_{\mathrm{m}}^{\infty}} \\
& \mathrm{K}_{a}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}=\frac{\mathrm{C}\left(\lambda_{\mathrm{m}} / \lambda_{\mathrm{m}}^{\infty}\right)^{2}}{1-\left(\lambda_{\mathrm{m}} / \lambda_{\mathrm{m}}^{\infty}\right)} \\
& 1-\left(\frac{\lambda_{\mathrm{m}}}{\lambda_{\mathrm{m}}^{\infty}}\right) \mathrm{K}_{a}=\mathrm{C}\left(\frac{\lambda_{\mathrm{m}}}{\lambda_{\mathrm{m}}^{\infty}}\right)^{2} \\
& \frac{1}{\lambda_{\mathrm{m}}}-\frac{1}{\lambda_{\mathrm{m}}^{\infty}}=\frac{\mathrm{C}}{\mathrm{~K}_{a}} \cdot \frac{\lambda_{\mathrm{m}}}{\left(\lambda_{\mathrm{m}}^{\infty}\right)^{2}} \quad \text { Here } \lambda_{\mathrm{m}}^{\infty}=\lambda_{\mathrm{m}}^{0} \\
& \frac{1}{\lambda_{\mathrm{m}}}=\frac{1}{\lambda_{\mathrm{m}}^{0}}+\frac{1}{\mathrm{~K}_{\mathrm{a}}\left(\lambda_{\mathrm{m}}^{0}\right)^{2}} \mathrm{C} \lambda_{\mathrm{m}} \\
& \uparrow=\uparrow \\
& \mathrm{y}=\mathrm{P} \quad \mathrm{~S} \\
& \text { Intercept } \quad \text { Slope }
\end{aligned}
$$

$$
\frac{P}{S}=\frac{1 /\left(\lambda_{\mathrm{m}}^{0}\right)}{1 /\left[\mathrm{K}_{\mathrm{a}}\left(\lambda_{\mathrm{m}}^{0}\right)^{2}\right]}=\frac{1}{\lambda_{\mathrm{m}}^{0}} \times \mathrm{K}_{\mathrm{a}}\left(\lambda_{\mathrm{m}}^{0}\right)^{2}=\mathrm{K}_{\mathrm{a}} \lambda_{\mathrm{m}}^{0}
$$

6. Correct option is (B).

Relationship between solubility, $\mathrm{H}^{+}$and $\mathrm{K}_{\mathrm{a}}$ is given by

$$
\begin{align*}
\mathrm{S} & =\sqrt{\frac{\left(\mathrm{K}_{\mathrm{SP}}\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a}}\right)}{\mathrm{K}_{\mathrm{a}}}} \\
\text { If } \quad \mathrm{pH}=7 & \Rightarrow\left(\mathrm{H}^{+}\right)=10^{-7} \\
\mathrm{~S} & =10^{-4} \mathrm{~mol} / \mathrm{L} \\
\Rightarrow \quad 10^{-4} & =\sqrt{\frac{\mathrm{K}_{\mathrm{SP}}\left(10^{-7}+\mathrm{K}_{\mathrm{a}}\right)}{\mathrm{K}_{\mathrm{a}}}}  \tag{i}\\
10^{-3} & =\sqrt{\frac{\mathrm{K}_{\mathrm{SP}}\left(10^{-2}+\mathrm{K}_{\mathrm{a}}\right)}{\mathrm{K}_{\mathrm{a}}}} \tag{ii}
\end{align*}
$$

Dividing and squaring equation (i) by equation (ii)

$$
\begin{aligned}
& \frac{\left(10^{-4}\right)^{2}}{\left(10^{-3}\right)^{2}}=\frac{K_{S P}\left(10^{-7}+K_{a}\right)}{K_{a}} \times \frac{K_{a}}{K_{S P}\left(10^{-2}+K_{a}\right)} \\
& 10^{-2}=\frac{10^{-7}+K_{a}}{10^{-2}+K_{a}} \\
& 10^{-4}+10^{-2} \cdot K_{a}=10^{-7}+K_{a} \\
& \therefore \quad K_{a} \simeq 10^{-4} \\
& \mathrm{pK}
\end{aligned}
$$

## 7. Correct option is (B).


(iii) $\mathrm{H}_{3} \mathrm{O} \quad$ (i)
$\underset{\text { (ii) } \mathrm{CO}_{2}}{ }$ Reimer-Tiemann reaction
(ii) $\mathrm{CO}_{2}$


It inhibit synthesis of noradrenaline degrading enzymes.
8. Correct answer is [222].


No. of moles $=\frac{\text { Given mass }}{\text { Molar mass }}=\frac{516}{129}=4$


Cyclic tetramer
Molar Man $=296$
$\therefore$ Percentage yield $=\frac{75}{100}=0.75$
$\therefore$ Mole formed of cyclic tetramer $=0.75$
$\therefore \quad$ Weight $=0.75 \times 296=222 \mathrm{~g}$
9. Correct answer is [100].

$$
\begin{aligned}
\Rightarrow \quad \mathrm{PV} & =\mathrm{RT} \\
80 \times y & =\mathrm{RT} \\
y & =\frac{\mathrm{RT}}{80} \\
\frac{x}{y} & =\frac{5 \mathrm{RT}}{4} \times \frac{80}{\mathrm{RT}} \\
\frac{x}{y} & =100
\end{aligned}
$$

10. Correct answer is [5].

Given that $\log \mathrm{K}=6$ (at 500 K )

$$
\begin{array}{rlrl}
\mathrm{K} & =\operatorname{Antilog}(6) \\
\Rightarrow \quad & & \mathrm{K} & =\frac{\mathrm{K}_{f}}{\mathrm{~K}_{b}}=10^{6} \\
\therefore \quad \mathrm{~K}_{f} & =10^{9}, \mathrm{~K}_{b}=10^{3} \\
\frac{1}{\mathrm{~T}} & =0.002, \mathrm{~K}_{b}=10^{3} \\
\log \mathrm{~K}_{b} & =\log \mathrm{A}-\frac{\mathrm{E}_{a b}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}}\right) \\
3 & =11-\frac{\mathrm{E}_{a b}}{2.303 \mathrm{R}}(0.002) \\
& & \frac{\mathrm{E}_{a b}}{2.303 \mathrm{R}} & =\frac{8}{0.002}=4 \times 10^{3}
\end{array}
$$

At 250 K

$$
\begin{aligned}
\log \mathrm{K}_{b} & =\log \mathrm{A}_{\mathrm{b}}-\frac{\mathrm{E}_{a b}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}}\right) \\
\log \mathrm{K}_{b} & =11-4 \times 10^{-3}(0.004) \\
& =-5 \\
\left|\log \mathrm{~K}_{b}\right| & =5
\end{aligned}
$$

11. Correct answer is [7].

Since AB is Adiabatic process

$$
\begin{align*}
\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right) & =\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\mathrm{V}-1} \\
\mathrm{~T}_{1} \mathrm{~V}_{1}^{\gamma-1} & =\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1} \\
600(10)^{2 / 3} & =60\left(\mathrm{~V}_{2}\right)^{2 / 3} \\
\left(\mathrm{~V}_{2}\right)^{2 / 3} & =(10)^{5 / 3} \\
V_{2} & =(10)^{5 / 2} \\
\mathrm{Q}_{\mathrm{AB}} & =0 \\
Q_{\mathrm{AC}} & =\operatorname{nRT}_{2} \ln \left(\frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}}\right) \\
& =\mathrm{RT}_{2} \ln \left(\frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}}\right) \tag{i}
\end{align*}
$$

Total heat absorbed $=\mathrm{RT}_{2} \ln \left(\frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}}\right)$

$$
\begin{equation*}
=\mathrm{RT}_{2} \ln (10) \tag{ii}
\end{equation*}
$$

Equating equation (i) and equation (ii)

$$
\begin{aligned}
\mathrm{RX}_{2}^{\prime} \ln \left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}\right) & =\mathrm{RX}_{2} \ln (10) \\
\ln \left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}\right) & =\ln (10)
\end{aligned}
$$

$$
\mathrm{V}_{3}=10 \mathrm{~V}_{2}
$$

Substitute value of $\mathrm{V}_{2}$

$$
\begin{aligned}
& =10(10)^{5 / 2}=(10)^{7 / 2} \\
V_{3} & =(10)^{7 / 2}
\end{aligned}
$$

Taking log on both side, we get


At temperature $\mathrm{T}_{2}$

$$
\begin{array}{cc}
\mathrm{A}(\mathrm{~g}) \rightleftharpoons \mathrm{P}(\mathrm{~g}) \\
6 & 0 \\
6-2=4 & 2
\end{array}
$$

$\mathrm{K}\left(\right.$ at temperature $\left.\mathrm{T}_{2}\right)=\frac{2}{4}=\frac{1}{2}$
Since $\quad \Delta \mathrm{G}_{1}^{0}=-\mathrm{RT}_{1} \ln \mathrm{KT}_{1}$
$\Delta \mathrm{G}_{2}^{0}-\Delta \mathrm{G}_{1}^{0}=-\mathrm{RT}_{2} \ln \mathrm{KT}_{2}+\mathrm{RT}_{1} \ln \mathrm{KT}_{1}$
$=-\mathrm{RT}_{2} \ln \frac{1}{2}+\mathrm{RT}_{1} \ln 2$
$=-\mathrm{RT}_{2} \ln \frac{1}{2}+\mathrm{R}\left(2 \mathrm{~T}_{2}\right) \ln 2$
$=\mathrm{RT}_{2} \ln 2+2 \mathrm{RT}_{2} \ln 2$
$=\mathrm{RT}_{2} \ln 2+2 \mathrm{RT}_{2} \ln 2$

$$
\begin{array}{rlrc}
\Delta \mathrm{G}_{2}^{0}-\Delta \mathrm{G}_{1}^{0} & =3 \mathrm{RT}_{2} \ln 2 & \therefore & \mathrm{RT} \ln x \\
& =\mathrm{RT}_{2} \ln 8 \\
& =\mathrm{RT}_{2}\left(\ln 2^{3}\right) & & \therefore
\end{array}
$$

$$
=\mathrm{RT}_{2} \ln 8
$$

## 13. Correct answer is [28].



14. Correct option is (D).
$\mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{P} \longrightarrow 2$
$\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PH}_{3}+\mathrm{NaH}_{2} \mathrm{PO}_{2} \quad \mathrm{Q} \rightarrow 3$
$\mathrm{PCl}_{5}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{POCl}_{3} \quad \mathrm{R} \rightarrow 4$
$\mathrm{H}_{3} \mathrm{PO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{ClAgNO}_{3} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Ag}+\mathrm{HNO}_{3} \mathrm{~S} \rightarrow 5$
15. Correct option is (D).

1. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{Fe}(26) \longrightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
$\mathrm{Fe}^{2+} \longrightarrow 3 \mathrm{~d}^{6}, \mathrm{H}_{2} \mathrm{O}$ is a weak field ligand.
So, the pairing does not take place.


| $\uparrow \downarrow$ | $\uparrow$ | $\uparrow$ |
| :--- | :--- | :--- |$\quad t_{2 g} \longrightarrow \quad t_{2 g}^{4} e_{g}^{2}$

$$
\mathrm{S} \rightarrow 1
$$

2. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{Mn}(25) \longrightarrow 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$

So, there is no pairing.
$\square$

$$
t_{2 g} \longrightarrow \quad \mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{2}
$$

3. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
$\mathrm{CO}^{3+} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
$\mathrm{NH}_{3}$ is a strong field ligand.
So, the pairing takes place.
$t_{2 g}^{6} \mathrm{e}_{\mathrm{g}}^{0}$

$$
\mathrm{P} \rightarrow 3
$$

$\mathrm{Mn}^{2+} \longrightarrow 3 \mathrm{~d}^{5}, \mathrm{H}_{2} \mathrm{O}$ is a weak field ligand.

$$
x-1
$$

4. $\left[\mathrm{FeCl}_{4}\right]^{-}$

$$
\begin{aligned}
& x+4(-1)=-1 \\
& x=+3 \\
& \mathrm{Fe}(26) \longrightarrow 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2} \\
& \mathrm{Fe}^{+3} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}
\end{aligned}
$$

$\mathrm{FeCl}_{4}$ is tetrahedral complex.

| $\uparrow$ | $\uparrow$ | $\uparrow$ |
| :--- | :--- | :--- |


| $\uparrow \downarrow$ | $\uparrow$ |
| :--- | :--- |

## 16. Correct option is (B).





$\xrightarrow[\mathrm{SN}^{1}]{\mathrm{NaOH}(\mathrm{aq})}$


Mixture of enantiomers

().
17. Correct option is (D).
1.

$\therefore$ Toleuence is used as reactant in Etard reaction.
2.

3.


Benzene is used as reactant in Gatterman Koch reaction.
4.



It is used as reactant in Rosenmund reaction.

