# JEE Advanced (2023)

# PAPER

## Mathematics

#### General Instructions:

SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

|   | Full Marks        | :     | +4 ONLY if (all) the correct option(s) is(are) chosen;                                                 |
|---|-------------------|-------|--------------------------------------------------------------------------------------------------------|
|   | Partial Marks     | :     | +3 If all the four options are correct but ONLY three options are chosen;                              |
|   | Partial Marks     | :     | +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;    |
|   | Partial Marks     | :     | +1 If two or more options are correct but <b>ONLY</b> one option is chosen and it is a correct option; |
|   | Zero Marks        | :     | 0 If none of the options is chosen (i.e., the question is unanswered);                                 |
|   | Negative Marks    | :     | -2 In all other cases.                                                                                 |
| • | For example, in a | que   | stion, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then           |
|   | choosing ONLY (   | A), ( | B) and (D) will get +4 marks;                                                                          |
|   | choosing ONLY (   | A) a  | nd (B) will get +2 marks;                                                                              |
|   | choosing ONLY (   | A) a  | nd (D) will get +2 marks;                                                                              |
|   | choosing ONLY (   | B) ai | nd (D) will get +2 marks;                                                                              |
|   | choosing ONLY (   | A) w  | rill get +1 mark;                                                                                      |
|   | choosing ONLY (   | B) w  | rill get +1 mark;                                                                                      |
|   | choosing ONLY (   | D) v  | vill get +1 mark;                                                                                      |
|   | 1                 | 1.    |                                                                                                        |

choosing no option (i.e., the question is unanswered) will get 0 marks; and

choosing any other combination of options will get –2 marks.

- Q. 1. Let  $S = (0, 1) \cup (1, 2) \cup (3, 4)$  and  $T = \{0, 1, 2, 3\}$ . Then which of the following statements is (are) true?
  - (A) There are infinitely many functions from *S* to *T*.
  - (B) There are infinitely many strictly increasing functions from *S* to *T*.
  - (C) The number of continuous functions from *S* to *T* is at most 120.
  - **(D)** Every continuous function from *S* to *T* is differentiable.
- **Q.2.** Let  $T_1$  and  $T_2$  be two distinct common tangents to the ellipse  $E: \frac{x^2}{6} + \frac{y^2}{3} = 1$  and the parabola P: $y^2 = 12x$ . Suppose that the tangent  $T_1$  touches Pand E at the points  $A_1$  and  $A_2$ , respectively and the tangent  $T_2$  touches P and E at the points  $A_4$ and  $A_3$ , respectively. Then which of the following statements is (are) true?
  - (A) The area of the quadrilateral  $A_1 A_2 A_3 A_4$  is 35 square units.
  - **(B)** The area of the quadrilateral  $A_1 A_2 A_3 A_4$  is 36 square units.

- (C) The tangents  $T_1$  and  $T_2$  meet the *x*-axis at the points (-3, 0).
- **(D)** The tangents  $T_1$  and  $T_2$  meet the *x*-axis at the points (-6, 0).
- **Q.3.** Let  $f : [0, 1] \rightarrow [0, 1]$  be the function defined by f(x)  $= \frac{x^3}{3} - x^2 + \frac{5}{9}x + \frac{17}{36}.$  Consider the square region  $S = [0, 1] \times [0, 1].$  Let  $G = \{(x, y) \in S : y > f(x)\}$  be called the green region and  $R = \{(x, y) \in S : y < f(x)\}$  be called the red region. Let  $L_h = \{(x, h) \in S : x \in [0, 1]\}$ be the horizontal line drawn at a height  $h \in [0, 1].$ Then which of the following statements is (are) true?
  - (A) There exists an  $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$  such that the area of the green region above the line  $L_h$  equals the area of the green region below the line  $L_h$ .
  - (B) There exists an  $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$  such that the area of the red region above the line  $L_h$  equals the area of the red region below the line  $L_h$ .

- (C) There exists an  $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$  such that the area of the green region above the line  $L_h$  equals the area of the red region below the line  $L_h$ .
- **(D)** There exists an  $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$  such that the area of the red region above the line  $L_h$  equals the area of the green region below the line  $L_h$ .

### General Instructions:

# SECTION 2 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

| Full Marks     | : | +3 If ONLY the correct option is ch <mark>osen;</mark>                 |
|----------------|---|------------------------------------------------------------------------|
| Zero Marks     | : | 0 If none of the options is chosen (i.e., the question is unanswered); |
| Negative Marks | : | -1 In all other cases.                                                 |

is

**Q.4.** Let  $f : (0, 1) \to \mathbb{R}$  be the function defined as  $f(x) = \sqrt{n} \text{ if } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$  where  $n \in \mathbb{N}$ . Let g : (0, 1)

$$\rightarrow \mathbb{R}$$
 be a function such that  $\int_{a}^{a} \sqrt{\frac{1-t}{t}} dt < g(x) < 2\sqrt{x}$ 

for all  $x \in (0, 1)$ . Then  $\lim_{x \to 0} f(x)g(x)$ 

- (A) does NOT exists(B) is equal to 1(C) is equal to 2(D) is equal to 3
- **Q. 5.** Let *Q* be the cube with the set of vertices  $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1, x_2, x_3 \in \{0, 1\}\}$ . Let *F* be the set of all twelve lines containing the diagonals of the six faces of the cube *Q*. Let *S* be the set of all four lines containing the main diagonals of the cube *Q*; for instance, the line passing through the vertices (0, 0, 0) and (1, 1, 1) is in *S*. For lines  $l_1$  and  $l_2$ , let  $d(l_1, l_2)$  denote the shortest distance between them. Then the maximum value of  $d(l_1, l_2)$ , as  $l_1$  varies over *F* and  $l_2$  varies over *S*, is



General Instructions:

#### SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme: *Full Marks*: +4 If ONLY the correct integer is entered; *Zero Marks*: 0 In all other cases.

**Q.8.** Let  $\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ , for  $x \in \mathbb{R}$ . Then the number of real solutions of the equation

$$\sqrt{1+\cos(2x)} = \sqrt{2} \tan^{-1}(\tan x)$$
 in the set  $\left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$  is equal to

**Q. 6.** Let  $X = \left((x, y) \in \mathbb{Z} \times \mathbb{Z} : \frac{x^2}{8} + \frac{y^2}{20} < 1 \text{ and } y^2 < 5x\right)$ . Three distinct points *P*, *Q* and *R* are randomly chosen from *X*. Then the probability that *P*, *Q* and

R from a triangle whose area is a positive integer,

(D)  $\frac{1}{\sqrt{12}}$ 

| (A) $\frac{71}{220}$ | (B) $\frac{73}{220}$ |
|----------------------|----------------------|
| (C) $\frac{79}{220}$ | (D) $\frac{83}{220}$ |

**Q.7.** Let *P* be a point on the parabola  $y^2=4ax$ , where a>0. The normal to the parabola at *P* meets the *x*-axis at a point *Q*. The area of the triangle *PFQ*, where *F* is the focus of the parabola, is 120. If the slope *m* of the normal and *a* are both positive integers, then the pair (*a*, *m*) is

| (A) | (2, 3) | <b>(B)</b> (1, 3) |
|-----|--------|-------------------|
| (C) | (2, 4) | <b>(D)</b> (3, 4) |

**Q.9.** Let  $n \ge 2$  be a natural number and  $f : [0, 1] \rightarrow \mathbb{R}$  be the function defined by

$$f(x) = \begin{cases} n(1-2nx) & \text{if } 0 \le x \le \frac{1}{2n} \\ 2n(2nx-1) & \text{if } \frac{1}{2n} \le x \le \frac{3}{4n} \\ 4n(1-nx) & \text{if } \frac{3}{4n} \le x \le \frac{1}{n} \\ \frac{n}{n-1}(nx-1) & \text{if } \frac{1}{n} \le x \le 1 \end{cases}$$

If n is such that the area of the region bounded by the curves x = 0, x = 1, y = 0 and y = f(x) is 4, then the maximum value of the function *f* is

**Q. 10.** Let  $75 \cdots 57$  denote the (r + 2) digit number where

the first and the last digits are 7 and the remaining *r* digits are 5. Consider the sum S = 77 + 757 + 7557

+...+ 
$$75...57$$
. If  $S = \frac{75...57}{n}$ , where *m* and *m*

are natural numbers less than 3000, then the value of m + n is

### General Instructions:

Full Marks Zero Marks SECTION 4 (Maximum Marks : 12)

- This section contains FOUR (04) Matching List Sets •
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II. List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

+3 ONLY if the option corresponding to the correct combination is chosen;

0 If none none of the options is chosen (i.e., the question is unanswered);

Negative Marks -1 In all other cases.

**Q. 14.** Let  $\alpha$ ,  $\beta$  and  $\gamma$  be real numbers. Consider the following system of linear equations

x + 2y + z = 7

$$x + \alpha z = 11$$

$$2x - 3y + \beta z =$$

Match each entry in List-I to the correct entries in List-II.

List-I

(P) If  $\beta = \frac{1}{2}(7\alpha - 3)$  and (1) a unique solution

 $\gamma = 28$ , then the system

has

(Q) If 
$$\beta = \frac{1}{2}(7\alpha - 3)$$
 (2) no solution

and  $\gamma \neq 28$ , then the system has

(R) If  $\beta \neq \frac{1}{2}(7\alpha - 3)$  where (3) infinitely many solution  $\alpha = 1$  and  $\gamma \neq 28$ , then the system has

**Q. 11.** Let  $A = \left\{ \frac{1967 + 1686i\sin\theta}{7 - 3i\cos\theta} : \theta \in \mathbb{R} \right\}$ . If A contains

**Q. 12.** Let *P* be the plane  $\sqrt{3x} + 2y + 3z = 16$  and let

Then the value of  $\frac{80}{\sqrt{3}}V$  is

distance of  $(\alpha, \beta, \gamma)$  from the plane *P* is  $\frac{7}{2}$  }.

exactly one positive integer *n*, then the value of *n* is

 $S = \{\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} : \alpha^2 + \beta^2 + \gamma^2 = 1 \text{ and the}$ 

Let  $\vec{u}, \vec{v}$  and  $\vec{w}$  be three distinct vectors in *S* such that  $|\vec{u} - \vec{v}| = |\vec{v} - \vec{w}| = |\vec{w} - \vec{u}|$ . Let *V* be the volume of the

parallelepiped determined by vectors  $\vec{u}, \vec{v}$  and  $\vec{w}$ .

coefficient of  $x^5$  in the expansion of  $\left(ax^2 + \frac{70}{27bx}\right)^2$ 

is equal to the coefficient of  $x^{-5}$  in the expansion of

Q. 13. Let a and b be two non-zero real numbers. If the

 $\left[ax - \frac{1}{bx^2}\right]$ , then the value of 2*b* is

(S) If  $\beta \neq \frac{1}{2}(7\alpha - 3)$  where (4) x = 11, y = -2 $\alpha = 1$  and  $\gamma = 28$ , then the system has

a solution (5) x = -15, y = 4

and z = 0 as

and z = 0 as a solution

The correct option is:

| $(\mathbf{A}) \ (\mathbf{P}) \to (3)$ | $(Q) \rightarrow (2)$  | $(R) \rightarrow (1)$          | $(S) \rightarrow (4)$  |
|---------------------------------------|------------------------|--------------------------------|------------------------|
| $(\mathbf{B})  (\mathbf{P}) \to (3)$  | $(Q) \rightarrow (2)$  | $(R) \rightarrow (5)$          | $(\mathrm{S}) \to (4)$ |
| (C) (P) $\rightarrow$ (2)             | $(\mathbf{Q}) \to (1)$ | $(R) \rightarrow (4)$          | $(S) \rightarrow (5)$  |
| (D) (P) $\rightarrow$ (2)             | $(Q) \rightarrow (1)$  | $(\mathbf{R}) \rightarrow (1)$ | $(S) \rightarrow (3)$  |

- Q. 15. Consider the given data with frequency distribution
  - $x_i$  3 8 11 10 5 4
  - $f_i$  5 2 3 2 4 4

Match each entry in **List-I** to the correct entries in **List-II**.

|     | List-I                                                          | List-II               |
|-----|-----------------------------------------------------------------|-----------------------|
| (P) | The mean of the above data is                                   | (1) 2.5               |
| (Q) | The median of the above data is                                 | (2) 5                 |
| (R) | The mean deviation about the mean of the above data is          | (3) 6                 |
| (S) | The mean deviation about the median of the above data is        | (4) 2.7               |
|     |                                                                 | (5) 2.4               |
| The | correct option is:                                              |                       |
| (A) | $(P) \rightarrow (3)  (O) \rightarrow (2)  (R) \rightarrow (4)$ | $(S) \rightarrow (S)$ |

| (A)        | $(P) \rightarrow (3)$ | $(Q) \rightarrow (2)$ | $(\mathbf{K}) \rightarrow (4)$ | $(5) \rightarrow (5)$ |
|------------|-----------------------|-----------------------|--------------------------------|-----------------------|
| <b>(B)</b> | $(P) \rightarrow (3)$ | $(Q) \rightarrow (2)$ | $(\mathbf{R}) \rightarrow (1)$ | $(S) \rightarrow (5)$ |
| (C)        | $(P) \rightarrow (2)$ | $(Q) \rightarrow (3)$ | $(R) \rightarrow (4)$          | $(S) \rightarrow (1)$ |
| (D)        | $(P) \rightarrow (3)$ | $(Q) \rightarrow (3)$ | $(R) \rightarrow (5)$          | $(S) \rightarrow (5)$ |

**Q. 16.** Let  $l_1$  and  $l_2$  be the lines  $\vec{r}_1 = \lambda(\hat{i} + \hat{j} + \hat{k})$  and  $\vec{r}_2 = (\hat{j} - \hat{k}) + \mu(\vec{i} + \hat{k})$ , respectively. Let *X* be the set of all the planes *H* that contain the line  $l_1$ . For a plane *H*, let d(H) denote the smallest possible distance between the points of  $l_2$  and *H*. Let  $H_0$  be a plane in *X* for which  $d(H_0)$  is the maximum value of d(H) as *H* varies over all planes in *X*.

Match each entry in List-I to the correct entries in List-II.

List-II

List-I

- (P) The value of  $d(H_0)$  is (1)  $\sqrt{3}$
- (Q) The distance of the point (0, 1, 2) (2)  $\frac{1}{\sqrt{3}}$  from  $H_0$  is

(R) The distance of origin from  $H_0$  is (3) 0 (S) The distance of origin from the (4)  $\sqrt{2}$ point of intersection of planes (5)  $\frac{1}{\sqrt{2}}$ y = z, x = 1 and  $H_0$  is The correct option is : (A) (P)  $\rightarrow$  (2)  $(Q) \rightarrow (4) \quad (R) \rightarrow (5)$  $(S) \rightarrow (1)$ **(B)**  $(P) \rightarrow (5)$  $(Q) \rightarrow (4)$  $(R) \rightarrow (3)$  $(S) \rightarrow (1)$ (C) (P)  $\rightarrow$  (2)  $(\mathbf{Q}) \rightarrow (1)$  $(R) \rightarrow (3)$  $(S) \rightarrow (2)$ (D)  $(P) \rightarrow (5)$  $(\mathbf{Q}) \rightarrow (1) \quad (\mathbf{R}) \rightarrow (4)$  $(S) \rightarrow (2)$ 

**Q. 17.** Let z be a complex number satisfying  $|z|^3 + 2z^2 + 4\overline{z} - 8 = 0$ , where  $\overline{z}$  denotes the complex conjugate of z. Let the imaginary part of z be non-zero.

Match each entry in List-I to the correct entries in List-II.

| List-I                               |                               | List-II |
|--------------------------------------|-------------------------------|---------|
| (P) $ z ^2$ is equal                 | l to                          | (1) 12  |
| (Q) $ z-\overline{z} ^2$ is equation | qual to                       | (2) 4   |
| (R) $ z ^2 +  z + z$                 | $\overline{z} ^2$ is equal to | (3) 8   |
| (S) $ z+1 ^2$ is e                   | qual to                       | (4) 10  |
|                                      |                               | (5) 7   |

# The correct option is:

| (A)         | $(\mathbf{P}) \to (1)$ | $(Q) \rightarrow (3)$ | $(R) \rightarrow (5)$          | $(S) \rightarrow (4)$ |
|-------------|------------------------|-----------------------|--------------------------------|-----------------------|
| <b>(</b> B) | $(P) \rightarrow (2)$  | $(Q) \rightarrow (1)$ | $(R) \rightarrow (3)$          | $(S) \rightarrow (5)$ |
| (C)         | $(P) \rightarrow (2)$  | $(Q) \rightarrow (4)$ | $(\mathbb{R}) \rightarrow (5)$ | $(S) \rightarrow (1)$ |
| (D)         | $(P) \rightarrow (2)$  | $(Q) \rightarrow (3)$ | $(\mathbb{R}) \rightarrow (5)$ | $(S) \rightarrow (4)$ |

# ANSWER KEY

| Q.No.       | Answer key | Topic's name                                          | Chapter's na <b>me</b>                     |  |  |
|-------------|------------|-------------------------------------------------------|--------------------------------------------|--|--|
| Section-I   |            |                                                       |                                            |  |  |
| 1           | (A, C, D)  | Number of Functions                                   | Function, Continuity and Differentiability |  |  |
| 2           | (A, C)     | Parabola and Ellipse                                  | Ellipse                                    |  |  |
| 3           | (B, C, D)  | Area under two curves                                 | Area under curves                          |  |  |
| 4           | (C)        | Sandwich Theorem                                      | Limits and Definite Integral               |  |  |
|             |            | Section-II                                            |                                            |  |  |
| 5           | (A)        | Shortest distance between two line                    | Three Dimensional                          |  |  |
| 6           | (B)        | Probability based on geometrical problem              | Probability, Parabola, Ellipse             |  |  |
| 7           | (A)        | Normal of parabola                                    | Parabola                                   |  |  |
|             |            | Section-III                                           |                                            |  |  |
| 8           | 3          | Number of solution of equation                        | Inverse Trigonometric Functions            |  |  |
| 9           | 8          | Area under simple curves                              | Area under the curves                      |  |  |
| 10          | 1219       | Geometric Progression                                 | Sequence and Series                        |  |  |
| 11          | 281        | Components of a complex number                        | Complex Number                             |  |  |
| 12          | 45         | 45 Volume of Parallelpipped Vector, Three Dimensional |                                            |  |  |
| 13 3 Genera |            | General term                                          | Binomial Theorem                           |  |  |
|             |            | Section-IV                                            |                                            |  |  |
| 14          | (A)        | System of Linear Equations                            | Determinants                               |  |  |
| 15          | (A)        | Mean, Median, Mean Deviation, Variance                | Statistics                                 |  |  |
| 16          | (B)        | Point, Line and Plane                                 | Three Dimensional                          |  |  |
| 17          | (B)        | Modulus of complex number                             | Complex Number                             |  |  |
|             | $\bigcirc$ |                                                       |                                            |  |  |
|             |            |                                                       |                                            |  |  |
|             |            |                                                       |                                            |  |  |
|             |            |                                                       |                                            |  |  |
|             |            |                                                       |                                            |  |  |

# JEE Advanced (2023)

# PAPER



$$y = mx + \frac{\pi}{m}$$

$$\Rightarrow \qquad y = mx + \frac{3}{m} \qquad \dots (2$$

2)

 $f'(x) = \frac{3x^2}{3} - 2x + \frac{5}{9}$ 

$$f'(x) = 0$$
  

$$9x^{2} - 18x + 5 = 0$$
  

$$\Rightarrow 9x^{2} - 15x - 3x + 5 = 0$$
  

$$\Rightarrow 3x(3x - 5) - 1(3x - 5) = 0$$
  

$$\Rightarrow (3x - 5) (3x - 1) = 0$$
  

$$\Rightarrow \qquad x = \frac{1}{3} \text{ or } \frac{5}{3}$$
  

$$f''(x) = 2x - 2$$
  

$$f''\left(\frac{1}{3}\right) = \frac{2}{3} - 2 < 0 \text{ point of maxima}$$

Graph of f(x)





$$\therefore \lim_{n \to \infty} \frac{2(n-1)^2}{n^2} - \frac{4(n-1)^2}{n^3} \sqrt{n^2 - 1} = 2$$
  
$$\therefore \lim_{n \to \infty} f\left(\frac{1}{n}\right) g\left(\frac{1}{n}\right) = 2 \text{ (Using Sandwich Theorem)}$$

#### 5. Correct option is (A).



Equation of line OG

$$\Rightarrow \qquad \frac{x}{1} = \frac{y}{1} = \frac{z}{1}$$

Equation of line AC

$$\Rightarrow \frac{x-1}{-1} = \frac{y}{1} = \frac{z}{0}$$
  
S.D. 
$$= \frac{\left| (\overline{a_2} - \overline{a_1}) \cdot (\overline{b_1} \times \overline{b_2}) \right|}{\left| \overline{b_1} \times \overline{b_2} \right|}$$
  
$$\overline{a_2} - \overline{a_1} = -\hat{i}$$
  
$$\overline{b_1} \times \overline{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 - 1 \\ -1 & 1 & 0 \end{vmatrix}$$
  
$$= \hat{i}(-1) - \hat{j}(+1) + \hat{k}(1+1)$$
  
$$= -\hat{i} - \hat{j} + 2\hat{k}$$
  
S.D. 
$$= \frac{\left| (-\hat{i}) \cdot (-\hat{i} - \hat{j} + 2\hat{k}) \right|}{\left| -\hat{i} \right| \left| -\hat{i} - \hat{j} + 2\hat{k} \right|}$$
  
$$= \frac{1}{1\sqrt{1+1+4}} = \frac{1}{\sqrt{6}}$$

6. Correct option is (B).

$$\frac{x^2}{8} + \frac{y^2}{20} < 1 \text{ and } y^2 < 5x$$

Let

and

 $y^2 = 5x$ 

On solving (1) and (2), we get

 $\frac{x^2}{8} + \frac{y^2}{20} = 1$ 

$$\frac{x^2}{8} + \frac{5x}{20} = 1$$
$$\frac{x^2}{8} + \frac{x}{4} = 1$$



and Point Q (2a + am<sup>2</sup>, 0)  
Area of 
$$\Delta PFQ = \frac{1}{2} \times |a + am^2| |-2am|$$
  
 $120 = a^2(1 + m^2)m$  ...(1)

$$a = 2, m = 3$$

Satisfies the equation (1), hence (2, 3) will be the correct answer.

## 8. Correct answer is [3].

...(1)

...(2)

 $\sqrt{1 + \cos 2x} = \sqrt{2} \tan^{-1} (\tan x)$ 

9.

$$\Rightarrow \sqrt{2\cos^{2} x} = \sqrt{2} \tan^{-1} \tan x$$
  

$$\Rightarrow \sqrt{2} |\cos x| = \sqrt{2} \tan^{-1} \tan x$$
  

$$\Rightarrow |\cos x| = \tan^{-1} \tan x$$
  

$$x = 1 + \frac{1}{2} + \frac{1$$

$$\left| \left(\frac{1}{2n}\right)^{0} \left(\frac{1}{n}\right)^{0} \right|^{\frac{1}{n}} \right|^{\frac{1}{n}}$$
Area =  $\frac{1}{2} \times \frac{1}{2n} \times n + \frac{1}{2} \times \frac{1}{2n} \times n + \frac{1}{2} \times \left(1 - \frac{1}{n}\right) \times n$ 

$$4 = \frac{1}{4} + \frac{1}{4} + \frac{n-1}{2}$$

$$4 = \frac{1}{2} + \frac{n-1}{2}$$

$$4 = \frac{n}{2}$$

$$n = 8$$

(1, 0)

10. Correct answer is [1219].

$$S = 77 + 757 + 7557 + \dots \frac{98 \text{ times}}{755 \dots 57}$$

$$S = 70 + 700 + 7000 + \dots \frac{99 \text{ times}}{70000 \dots 00}$$

$$+ (50 + 550 + 5550 + \dots)$$
98 times

Let  $T_r$  be the general term.

$$\begin{split} T_r &= 7 \times 10^{r-1} + 5(10 + 100 + \dots 10^{r-2}) + 7 \ r \ge 2 \\ &= 7 \times 10^{r-1} + 5 \left[ \frac{10(1 - 10^{r-2})}{1 - 10} \right] + 7 \end{split}$$

$$= 7 \times 10^{r-1} + \frac{50}{9} (10^{r-2} - 1) + 7$$
  

$$= 7 \times 10^{r-1} + \frac{50}{9} (10^{r-2}) - \frac{50}{9} + 7$$
  

$$= 7 \times 10^{r-1} + \frac{50}{9} 10^{r-2} + \frac{13}{9}$$
  

$$S = \sum_{r=2}^{100} T_r = \sum_{r=2}^{100} 7 \times 10^{r-1} + \frac{50}{90} \times 10^{r-2} + \frac{13}{9}$$
  

$$= \frac{70}{9} (10^{99} - 1) + \frac{50}{81} (10^{99} - 1) \times 13 \times 11$$
  
RHS =  $\frac{7555 \dots 57 + m}{n}$   

$$7 \times 10^{100} + \frac{50}{9} (10^{99}) + \frac{13}{9} + m$$
  
Now,  
 $\frac{70}{9} (10^{99} - 1) + \frac{50}{81} (10^{99} - 1) 13 \times 11$   

$$= \frac{\frac{70}{9} 10^{100} + \frac{50}{9} \times 10^{99} + \frac{13}{9} + m}{n}$$
  

$$= \frac{7}{n} + 10100 + \frac{50}{9n} 1099 + \frac{13}{9n} + \frac{m}{n}$$
  
By Comparison,

$$9 = n \text{ or } 81 = 9n \implies n = 9$$
  

$$\therefore \quad \text{Put } n = 9$$
  

$$13 \times 11 \times 9^2 - 50 = 13 + 9m$$
  

$$m = 1210$$
  

$$\therefore \qquad m + n = 1219$$

11. Correct answer is [281].

$$A = \left\{ \frac{1967 + 1686i\sin\theta}{7 - 3i\cos\theta}, \theta \in R \right\}$$

∴ A contains exactly one positive integer *n*. Now simplifying

$$Z = \frac{1967 + 4686i \cos\theta}{7 - 3i \cos\theta}$$
$$= 281 \frac{(7 + 6i \sin\theta)}{7 - 3i \cos\theta} \times \frac{7 + 3i \cos\theta}{7 + 3i \cos\theta}$$
$$= 281 \frac{(49 - 9 \sin 2\theta)}{49 + 9 \cos^2 \theta} + \frac{281 (3)(2 \sin\theta + \cos\theta)}{49 + 9 \cos^2 \theta} i$$
$$= 281 \left(\frac{49 - 9 \sin 2\theta}{49 + 9 \cos^2 \theta}\right) + 562 \left(\frac{2 \sin\theta + \cos\theta}{49 + 9 \cos^2 \theta}\right) i$$

For positive integer Im(z) = 0We get,  $2\sin\theta + \cos\theta = 0$ 

$$\tan \theta = \frac{-1}{2}$$

$$\Rightarrow \qquad \cos^2\theta = \frac{4}{5}$$

$$\Rightarrow \qquad \sin 2\theta = \frac{2 + \tan \theta}{1 + \tan^2 \theta}$$

$$= \frac{-1}{1 + \frac{1}{4}} = \frac{-4}{5}$$
  
$$\therefore \qquad Z = 281 \frac{\left(49 - 9\left(\frac{-4}{5}\right)\right)}{49 + 9\left(\frac{4}{5}\right)}$$
$$= 281$$
  
$$\therefore \quad n = 281$$

#### 12. Correct answer is [45].

 $P: \sqrt{3}x + 2y + 3z = 16$ 

$$S = \left\{ \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} : \alpha^2 + \beta^2 + \gamma^2 \right\} = 1$$

 $:: |\vec{u} - \vec{v}| = |\vec{v} - \vec{w}| = |\vec{w} - \vec{u}|$ 

 $\vec{u}, \vec{v}, \vec{w}$  are elements of set *S* and in set *S* magnitude of vector is 1

 $\therefore$   $\vec{u}, \vec{v}, \vec{w}$  are unit vectors and by equation (1) we can system  $\vec{u}, \vec{v}, \vec{w}$  are equally inclined and vertices of equilateral triangle also lying on a circle which is intersection of sphere  $|\vec{r}| = 1$ 

Distance from origin to *P*,

$$d = \frac{|-16|}{\sqrt{3+4+9}} = \frac{16}{4} = 4$$

 $\therefore$  Plane containing  $\hat{u}, \hat{v}, \hat{w}$  are at a distance  $4 - \frac{7}{2} = \frac{1}{2}$  from origin and Parallel to  $\sqrt{3x} + 2y + 3z$ = 16. -

$$\sqrt{3x} + 2y + 3z = \gamma$$
  
$$\therefore \qquad \frac{1}{2} = \left|\frac{\gamma}{4}\right|$$

$$\frac{1}{2} = \left| \frac{\gamma}{4} \right|$$

$$\Rightarrow \qquad \gamma = \pm 2$$
$$\sqrt{3x} + 2y + 3z = 2$$

Equation of sphere  $x^2 + y^2 + z^2 = 1$ 



$$r = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$$
  
then 
$$\frac{a}{2} = \frac{\sqrt{3}}{2} \cos 30^{\circ}$$

$$a = \sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{3}{2}$$
A (ī)
  
B (v)
  
9/2
  
A (v)
  
9/2
  
C(v)
  
A rea or triangle

$$=$$
  $\frac{1}{2}a = \frac{1}{2} \times \frac{1}{4} =$ 

 $\sqrt{3}$ 9

9√3

16

Velocity of Parallelepiped

$$= 2 \times \frac{1}{2} \times \frac{9\sqrt{3}}{16}$$
$$V = \frac{9\sqrt{3}}{16}$$
$$\frac{80V}{\sqrt{3}} = \frac{80}{\sqrt{3}} \times \frac{9\sqrt{3}}{16} = 45$$

13. Correct answer is [3].

(1)

General term of 
$$\left(ax^2 + \frac{70}{27bx}\right)^4$$

$$T_{r+1} = {}^{4}C_r (ax^2)^{4-r} \left(\frac{70}{27bx}\right)^r$$

$$= {}^{4}C_{r} a^{4-r} \frac{70'}{(27b)^{r}} (x^{8-3r})$$

For Coefficient of x<sup>5</sup>

$$8 - 3r = 5$$
$$r = 1$$

$$\therefore \quad \text{Coefficient} = {}^{4}C_{1} a^{3} \cdot \frac{70}{27b}$$

$$=\frac{280}{27}\frac{a^3}{2}$$

General term of  $\left(ax - \frac{1}{bx^2}\right)^7$  is

$$T_{r+1} = {^7C_r} (ax)^{7-r} \left(\frac{-1}{bx^2}\right)^r$$
$$= {^7C_r} a^{7-r} \left(-\frac{1}{b}\right)^r x^{7-3a}$$

For Coefficient of  $x^{-5}$ 7 - 3r = -5r = 4 $\therefore \text{ Coefficient} = {^7\text{C}_4} a^3 \times \frac{1}{b^4}$  $\therefore$  According to the question,  $\frac{280}{27} \frac{a^3}{b} = \frac{35 \times a^3}{b^4}$  $b^3 = \frac{27}{8}$  $\Rightarrow$  $b = \frac{3}{2}$ 

$$\therefore 2b = 3^2$$

 $\Rightarrow$ 

14. Correct option is (A).

Given x + 2y + z = 7 $x + \alpha z = 11$  $2x - 3y + \beta z = \gamma$ Using Cramer's rule

$$\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 0 & \alpha \\ 2 & -3 & \beta \end{vmatrix}$$
  
= 1(3\alpha) - 2(\beta - 2\alpha) + 1(-3)  
= 3\alpha - 2\beta + 4\alpha - 3  
= 7\alpha - 2\beta - 3  
= 7\alpha - 2\beta - 3  
$$\Delta_x = \begin{vmatrix} 7 & 2 & 1 \\ 11 & 0 & \alpha \\ \gamma & -3 & \beta \end{vmatrix}$$
  
= 7(3\alpha) - 2(11\beta - \gamma\alpha) + 1(-33)  
= 21\alpha - 22\beta + 22\gamma - 33  
= 21\alpha - \gamma - 7\beta + 14\alpha + \gamma - 22  
= 14\alpha + 4\beta + \gamma - \gamma - 22  
= 14\alpha + 4\beta + \gamma - \gamma - \gamma + 14\alpha + \gamma - 22  
= 14\alpha + 4\beta + \gamma - \gamma - \gamma + 14\alpha + \gamma - 22  
= 14\alpha + 4\beta + \gamma - \gamma - \gamma + 14\alpha + \gamma - 22  
= 14\alpha + 4\beta + \gamma - \gamma - \gamma + 14\alpha + \gamma - 22  
= 14\alpha + 4\beta + \gamma - \gamma - \gamma + 14\alpha + \gamma - 22  
= 14\alpha - 2(\gamma - 22) + 7(-3)  
= 33 - 2\gamma + 44 - 21  
= -2\gamma + 56  
For unique solution \Delta \neq 0

For infinite solution

$$\Delta = \Delta x = \Delta y = \Delta z = 0$$

For no solution  $\Delta = 0$  and atleast one in  $\Delta x$ ,  $\Delta y$ ,  $\Delta z$  is non zero.

$$\Delta = 0$$

$$\Rightarrow \qquad \beta = \frac{1}{2}(7\alpha - 3)$$
(P) 
$$\beta = \frac{1}{2}(7\alpha - 3) \text{ and } \gamma = 28$$
then 
$$\Delta = 0, \Delta x = \Delta y = \Delta z = 0$$

$$\therefore \quad \text{Infinite solution}$$
(Q) 
$$\beta = \frac{1}{2}(7\alpha - 3) \text{ and } \gamma \neq 28$$

$$\therefore \quad \Delta = 0 \text{ and } \Delta_2 \neq 0$$

$$\Rightarrow \quad \text{No solution}$$
(R) 
$$\beta \neq \frac{1}{2}(7\alpha - 3), \alpha = 1, \gamma \neq 28$$

$$\Rightarrow \quad \Delta \neq 0 = \text{ unique solution}$$
(S) 
$$\beta \neq \frac{1}{2}(7\alpha - 3), \alpha = 1, \gamma = 28$$

$$\therefore \quad \Delta \neq 0, \quad \Delta = 4 - 2\beta$$

$$\Delta x = 44 - 22\beta$$

$$\Delta y = 4\beta - 8$$

$$\Delta z = 0$$

$$\therefore \quad x = 11, y = -2, z = 0 \text{ is the solution.}$$

15. Correct option is (A).

| $x_1$ | $f_i$             | $f_i x_i$              | $f_i  x_i - \overline{x} $ | $f_i  x_i - N $ |
|-------|-------------------|------------------------|----------------------------|-----------------|
| 3     | 5                 | 15                     | 15                         | 10              |
| 4     | 4                 | 16                     | 8                          | 4               |
| 5     | 4                 | 20                     | 4                          | 0               |
| 8     | 2                 | 16                     | 4                          | 6               |
| 10    | 2                 | 20                     | 8                          | 10              |
| 11    | 3                 | 33                     | 15                         | 18              |
|       | $\Sigma f_i = 20$ | $\Sigma f_i x_i = 120$ | sum = 54                   | sum = 48        |

(P) Mean = 
$$\frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{120}{20} = 6$$

(Q) Median = 
$$\frac{(10^{\text{th}} + 11^{\text{th}})\text{observation}}{2}$$

$$=\frac{5+5}{2}=5$$

(both observation are same)

=

$$= \frac{\Sigma f_i \mid x_i - \overline{x} \mid}{\Sigma f_i} = \frac{54}{20}$$

(S) Mean deviation about median

$$= \frac{\Sigma f_i \mid x_i - \mathbf{M} \mid}{\Sigma f_i} = \frac{48}{20}$$
$$= 2.4$$

16. Correct option is (B).

$$l_1: \qquad \vec{r} = \lambda(\hat{i} + \hat{j} + \hat{k})$$
$$l_2: \qquad \vec{r} = \hat{j} - \hat{k} + \mu(\hat{i} + \hat{k})$$



d(H) = Smallest possible distance between the points of  $l_2$  and Plane.

$$d(H_0) =$$
 Maximum value of  $d(H)$ 

For  $d(H_0)$ 



 $l_2$  is Parallel to plane containing  $l_1$ 

### **Equation of plane**

$$a(x) + by + cz = 0$$

$$\therefore \quad a+b+c=0$$
$$a+c=0$$

By (1) and (2) a = -c, b = 0

$$\therefore$$
 Equation of plane  $x - z = 0$ 

(P) 
$$d(H_0) = PM = \left| \frac{0 - (-1)}{\sqrt{1 + 1}} \right|$$

(R) Distance from origin (0, 0, 0)

$$= \left| \frac{0}{\sqrt{2}} \right| = 0$$
(S) Point of Intersection,  
 $x - z = 0$  ...(1)  
and  $x = 1, y = z$  ...(2)

...(1)

.(2)

 $\therefore$  x = 1 = z = y

 $\therefore$  Point of intersection (1, 1, 1)

Distance from origin

$$= \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

17. Correct option is (B).  $|Z|^{3} + 2Z^{2} + 4\overline{Z} - 8 = 0$ let Z = x + iy $|Z| = \sqrt{x^2 + y^2}$  $\overline{Z} = x - iy$  $Z^2 = x^2 - y^2 + 2ixy$  $\therefore |Z|^3 + 2Z^2 + 4Z - 8 = 0$  $(x^{2} + y^{2})^{3/2} + 2(x^{2} - y^{2}) + 4ixy + 4x - 4iy - 8 = 0$  $(x^{2} + y^{2})^{3/2} + 2(x^{2} - y^{2}) + 4x - 8 = 0$ ...(1) 2xy - 4y = 0and  $\Rightarrow$ y = 0 or xAt x = 1+4-8=0 $(1 + y^2)^{3/2} + 2 - 2y^2$  $\Rightarrow (1 + y^2)^{3/2} - 2y^2$  $-2(1 + v^2) = 0$  $(1+y^2)(\sqrt{1+y^2-2})=0$  $1 + y^2 = 0$  (wich is not possible) then  $1 + u^2 = 4$ or  $y^2 = 3$ x = 1 and  $y^2 = 3$  $|Z|^2 = x^2 + y^2 = 1 + 3 = 4$ (P)  $|Z - \overline{Z}|^2 = |2Im(z)|^2$ (Q)  $= (2y)^2 = 4y^2 = 12$ (R)  $|Z|^2 + |Z + \overline{Z}|^2 = 4 + |2x|^2$ = 4 + 4(1) = 8 $|Z + 1|^2 = |x + iy + 1|^2$ (S)  $= (x + 1)^2 + y^2$ = 4 + 3 = 7.