# JEE Advanced (2023) 

## Physics

## General Instructions:

## SECTION 1 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks $:+3$ If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Mark : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks: - 2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option (i.e. the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -2 marks.
Q.1. A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height 3 h from the ground, as shown in the figure. A spherical ball of mass $m$ is released on the slide from rest at a height $h$ from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_{0}=u_{0} \hat{x}$ and falls on the ground at a distance $d$ from the building making an angle $\theta$ with the horizontal. It bounces off with a velocity $\vec{v}$ and reaches a maximum height $h_{1}$. The acceleration due to gravity is $g$ and the coefficient of restitution of the ground is $1 / \sqrt{3}$. Which of the following statement(s) is(are) correct?

(A) $\vec{u}_{0}=\sqrt{2 g h} \hat{x}$
(B) $\vec{v}=\sqrt{2 g h}(\hat{x}-\hat{z})$
(C) $\theta=60^{\circ}$
(D) $d / h_{1}=2 \sqrt{3}$
Q. 2. A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta=60^{\circ}$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{\text {min }}=30^{\circ}$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct?


Figure-1


Figure-2
(A) The blue light is polarized in the plane of incidence.
(B) The angle of the prism is $45^{\circ}$.
(C) The refractive index of the material of the prism for red light is $\sqrt{2}$.
(D) The angle of refraction for blue light in air at the exit plane of the prism is $60^{\circ}$.
Q.3. In a circuit shown in the figure, the capacitor $C$ is initially uncharged and the key K is open. In this condition, a current of 1 A flows through the $1 \Omega$ resistor. The key is closed at time $t=t_{0}$. Which of the following statement(s) is(are) correct?
[Given: $\left.e^{-1}=0.36\right]$


## General Instructions:

SECTION 2 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 1 In all other cases.
Q.4. A bar of mass $M=1.00 \mathrm{~kg}$ and length $L=0.20 \mathrm{~m}$ is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass $m=0.10 \mathrm{~kg}$ is moving on the same horizontal surface with $5.00 \mathrm{~m} \mathrm{~s}^{-1}$ speed on a path perpendicular to the bar. It hits the bar at a distance $L / 2$ from the pivoted end and returns back on the same path with speed $v$. After this elastic collision, the barrotates with an angular velocity $\omega$. Which of the following statement is correct?
(A) $\omega=6.98 \mathrm{rad} \mathrm{s}^{-1}$ and $v=4.30 \mathrm{~m} \mathrm{~s}^{-1}$
(B) $\omega=3.75 \mathrm{rad} \mathrm{s}^{-1}$ and $v=4.30 \mathrm{~m} \mathrm{~s}^{-1}$
(C) $\omega=3.75 \mathrm{rad} \mathrm{s}^{-1}$ and $v=10.0 \mathrm{~m} \mathrm{~s}^{-1}$
(D) $\omega=6.80 \mathrm{rad} \mathrm{s}^{-1}$ and $v=4.10 \mathrm{~m} \mathrm{~s}^{-1}$
Q. 5. A container has a base of $50 \mathrm{~cm} \times 5 \mathrm{~cm}$ and height 50 cm , as shown in the figure. It has two parallel electrically conducting walls each of area $50 \mathrm{~cm} \times$ 50 cm . The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of $250 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. What is the value of the capacitance of the container after 10 seconds?
[Given: Permittivity of free space $\varepsilon_{0}=9 \times 10^{-12}$ $\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

(A) 27 pF
(B) 63 pF
(C) 81 pF
(D) 135 pF
Q.6. One mole of an ideal gas expands adiabatically from an initial state $\left(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{0}\right)$ to final state $\left(\mathrm{T}_{\mathrm{f}}, 5 \mathrm{~V}_{0}\right)$. Another mole of the same gas expands isothermally from a different initial state $\left(\mathrm{T}_{\mathrm{B}}, \mathrm{V}_{0}\right)$ to the same final state $\left(T_{f}, 5 V_{0}\right)$. The ratio of the specific heats at constant pressure and constant volume of this ideal gas is $\gamma$. What is the ratio $T_{A} / T_{B}$ ?
(A) $5^{\gamma-1}$
(B) $5^{1-\gamma}$
(C) $5^{\gamma}$
(D) $5^{1+\gamma}$
Q.7. Two satellites $P$ and $Q$ are moving in different circular orbits around the Earth (radius R). The heights of P and Q from the Earth surface are $h_{P}$ and $h_{Q}$, respectively, where $h_{P}=\mathrm{R} / 3$. The accelerations of P and Q due to Earth's gravity are $g_{P}$ and $g_{Q}$, respectively. If $g_{P} / g_{Q}=36 / 25$, what is the value of $h_{Q}$ ?
(A) $3 R / 5$
(B) $R / 6$
(C) $6 R / 5$
(D) $5 R / 6$

## General Instructions:

## SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
Q.8. A Hydrogen-like atom has atomic number $Z$. Photons emitted in the electronic transitions from level $n=4$ to level $n=3$ in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1.95 e V . If the photoelectric threshold wavelength for the target metal is 310 nm , the value of $Z$ is $\qquad$ -.
[Given: $h c=1240$ e V-n m and $R h c=13.6$ e V, where R is the Rydberg constant, $h$ is the Planck's constant and $c$ is the speed of light in vacuum]
Q.9. An optical arrangement consists of two concave mirrors $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$, and a convex lens L with a common principal axis, as shown in the figure. The focal length of $L$ is 10 cm . The radii of curvature of $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ are 20 cm and 24 cm , respectively. The distance between $L$ and $M_{2}$ is 20 cm . A point object $S$ is placed at the mid-point between $L$ and $M_{2}$ on the axis. When the distance between L and $\mathrm{M}_{1}$ is $n / 7$ cm , one of the images coincides with $S$. The value of $n$ is $\qquad$ -.

Q. 10. In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is $10 \pm 0.1 \mathrm{~cm}$ and the distance of its real image from the lens is $20 \pm 0.2 \mathrm{~cm}$. The error in the determination of focal length of the lens is $n \%$. The value of $n$ is $\qquad$ -.
Q. 11. A closed container contains a homogeneous mixture of two moles of an ideal monoatomic gas ( $\gamma=5 / 3$ ) and one mole of an ideal diatomic gas $(\gamma=7 / 5)$. Here, $\gamma$ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure. The change in its internal energy is Joule.
Q. 12. A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is $60 \mathrm{~cm} \mathrm{~s}^{-1}$, the speed of the tip of the person's shadow on the ground with respect to the person is $\qquad$ $\mathrm{cm} \mathrm{s}^{-1}$.
Q. 13. Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm . This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass, as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is $1.2 \times 10^{-8} \mathrm{~N} \mathrm{~m}$ $\mathrm{rad}^{-1}$. The angular frequency of the oscillations is $n \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$. The value of $n$ is $\qquad$ _.


## General Instructions:

## SECTION 4 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 1 In all other cases.
Q. 14. List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option.

## List-I

(P) ${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{91}^{234} \mathrm{~Pa}$
(Q) ${ }_{82}^{214} \mathrm{~Pb} \rightarrow{ }_{82}^{210} \mathrm{~Pb}$
(R) ${ }_{81}^{210} \mathrm{Tl} \rightarrow{ }_{82}^{206} \mathrm{~Pb}$
(S) ${ }_{91}^{228} \mathrm{~Pa} \rightarrow{ }_{88}^{224} \mathrm{Ra}$

## List-II

(1) one $\alpha$ particle and one $\beta^{+}$ particle
(2) three $\beta^{-}$particles and one $\alpha$ particle
(3) two $\beta^{-}$particles and one $\alpha$ particle
(4) one $\alpha$ particle and one $\beta^{-}$ particle
(5) one $\alpha$ particle and two $\beta^{+}$ particles
(A) $\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 3, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 1$
(B) $\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 1, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 5, \mathrm{Q} \rightarrow 3, \mathrm{R} \rightarrow 1, \mathrm{~S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 5, \mathrm{Q} \rightarrow 1, \mathrm{R} \rightarrow 3, \mathrm{~S} \rightarrow 2$
Q.15. Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.
[Given: Wien's constant as $2.9 \times 10^{-3} \mathrm{~m}-\mathrm{K}$ and $\frac{h \mathrm{c}}{\mathrm{e}}$ $\left.=1.24 \times 10^{-6} \mathrm{~V}-\mathrm{m}\right]$
List-I List-II
(P) 2000 K (1) The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV .
(Q) 3000 K
(2) The radiation at peak wavelength is visible to human eye.
(R) $5000 \mathrm{~K} \quad$ (3) The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction.
(S) 10000 K (4) The power emitted per unit area is 1/16 of that emitted by a blackbody at temperature 6000 K .
(5) The radiation at peak emission wavelength can be used to image human bones.
(A) $\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 5, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 2, \mathrm{R} \rightarrow 4, \mathrm{~S} \rightarrow 1$
(C) $\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 4, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 1$
(D) $\mathrm{P} \rightarrow 1, \mathrm{Q} \rightarrow 2, \mathrm{R} \rightarrow 5, \mathrm{~S} \rightarrow 3$
Q.16. A series LCR circuit is connected to a $45 \sin (\omega t)$ Volt source. The resonant angular frequency of the circuit is $10^{5} \mathrm{rad} \mathrm{s}^{-1}$ and current amplitude at resonance is $I_{0}$. When the angular frequency of the source is $\omega=8 \times 10^{4} \mathrm{rad} \mathrm{s}^{-1}$, the current amplitude in the circuit is $0.05 I_{0}$. If $L=50 \mathrm{mH}$, match each entry in List-I with an appropriate value from List-II and choose the correct option.

## List-I

(P) $\mathrm{I}_{0}$ in mA
(Q) The quality factor of the circuit
(R) The bandwidth of the circuit in $\mathrm{rad} \mathrm{s}^{-1}$
(S) The peak power dissipated at resonance in Watt
(4) 2250
(5) 500
(A) $\mathrm{P} \rightarrow 2, \mathrm{Q} \rightarrow 3, \mathrm{R} \rightarrow 5, \mathrm{~S} \rightarrow 1$
(B) $\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 1, \mathrm{R} \rightarrow 4, \mathrm{~S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 5, \mathrm{R} \rightarrow 3, \mathrm{~S} \rightarrow 1$
(D) $\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 2, \mathrm{R} \rightarrow 1, \mathrm{~S} \rightarrow 5$
Q. 17. A thin conducting rod MN of mass 20 gm , length 25 cm and resistance $10 \Omega$ is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $B_{0}=4$ $T$ directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time $t=0$ and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option.
โGiven: The acceleration due to gravity $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and $\left.e^{-1}=0.4\right]$


## List-I

(P) At $t=0.2 \mathrm{~s}$, the magnitude of

List-II
(1) 0.07 the induced emf in Volt
(Q) At $t=0.2 \mathrm{~s}$, the magnitude of
(2) 0.14 the magnetic force in Newton
(R) At $t=0.2 \mathrm{~s}$, the power dissipated (3) 1.20 as heat in Watt
(S) The magnitude of terminal
(4) 0.12 velocity of the rod in $\mathrm{m} \mathrm{s}^{-1}$

$$
\text { (5) } 2.00
$$

(A) $\mathrm{P} \rightarrow 5, \mathrm{Q} \rightarrow 2, \mathrm{R} \rightarrow 3, \mathrm{~S} \rightarrow 1$
(B) $\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 1, \mathrm{R} \rightarrow 4, \mathrm{~S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 3, \mathrm{R} \rightarrow 1, \mathrm{~S} \rightarrow 2$
(D) $\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 4, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 5$

## ANSWER KEY

| Q.No. | Answer key | Topic's name | Chapter's name |
| :---: | :---: | :---: | :---: |
| Section -I |  |  |  |
| 1 | (A, C, D) | Collision | Center of Mass |
| 2 | (A, C, D) | Deviation and Dispersion from Prism | Geometric Optics |
| 3 | (A, B, C, D) | Kirchhoff's law and Combination of batteries | Current Electricity |
| Section -II |  |  |  |
| 4 | (A) | Collision of Point mass with Rigid bodies | System of Particles and Rotational Motion |
| 5 | (B) | Polarisation and Dielectric | Electrostatics and Capacitors |
| 6 | (A) | Thermodynamic process | Kinematic Theory of Gases and Thermodynamics |
| 7 | (A) | Acceleration due to gravity | Gravitation |
| Section -III |  |  |  |
| 8 | 3 | Photoelectric Effect | Dual Nature of Matter and Radiation |
| 9 | 150 | Lens and Mirror combination | Geometric Optics |
| 10 | 1 | Refraction through lens | Geometric Optics |
| 11 | 121 | Thermodynamic process | Kinematic Theory of Gases and Thermodynamics |
| 12 | 40 | Miscellaneous | Geometric Optics |
| 13 | 10 | Torsionai Pendulum | Simple Harmonic Motion |
|  |  | Section -IV |  |
| 14 |  | Radioactive Decay | Nuclear Physics |
| 15 | (C) | Black body Radiation | Thermal Properties of Matter |
| 16 | (B) | LCR Circuit | Electromagnetic Effect and Alternating Current |
| 17 | (D) | Motional Electromagnetic Effect | Electromagnetic Effect and Alternating Current |

# JEE Advanced (2023) 

ANSWERS WITH EXPLANAHIONS

1. Correct options are (A, C and D).


From energy conservation between $P$ and $Q$

$$
\begin{aligned}
\downarrow P E & =\uparrow K E \\
m g h & =\frac{1}{2} m u_{0}^{2} \\
\Rightarrow \quad u_{0} & =\sqrt{2 g h} \\
\bar{u}_{0} & =\sqrt{2 g h} \hat{x}
\end{aligned}
$$

(A) is correct.

At R
Before impact

Between $P$ and $R$
$\downarrow \mathrm{PE}=\uparrow \mathrm{KE}$
$m g(4 h)=\frac{1}{2} m v_{1}^{2}$

$$
v_{1}=\sqrt{8 g h}
$$

Also

$$
v_{1 x}=u_{0}
$$

[ $\because$ Horizontal velocity doesn't change in projectile motion.]

Again

$$
d=u_{0} t=u_{0} \times \sqrt{\frac{2 \times 3 h}{g}}=\sqrt{2 g h} \cdot \sqrt{\frac{6 h}{g}}
$$

$$
=\sqrt{12} h=2 \sqrt{3} h
$$

$$
v_{1}^{2}=v_{1 x}^{2}+v_{1 z}^{2}
$$

$$
=u_{0}^{2}+v_{1 z}^{2}
$$

$$
8 g h=2 g h+v_{1 z}^{2}
$$

$$
\Rightarrow \quad v_{1 z}=\sqrt{6 g h}
$$

$$
\tan \theta=\frac{v_{1 z}}{v_{1 x}}=\frac{\sqrt{6 g h}}{\sqrt{2 g h}}=\sqrt{3}
$$



Velocity of separation $=e \times$ velocity of approach.

$$
\begin{aligned}
v_{y} & =e \times v_{1 y} \\
& =\frac{1}{\sqrt{3}} \times \sqrt{6 g h}=\sqrt{2 g h} \\
h_{1} & =\frac{v_{y}^{2}}{2 g} \\
& =\frac{2 g h}{2 g}=h \\
\frac{d}{h} & =\frac{2 \sqrt{3} h}{h}=2 \sqrt{3}
\end{aligned}
$$

(D) is correct.

$$
\begin{aligned}
\vec{v}_{x} & =v_{x} \hat{x}+v_{3} \hat{z} \\
& =\sqrt{2 g h}(\hat{x}+\hat{z})
\end{aligned}
$$

(B) is not correct.
2. Correct options are (A, C and D).

If a light is incident on a surface then for Brewster's angle light is polarised in direction perpendicular to plane of incidence.
$\therefore \quad$ No reflection for blue light is seen.
$\Rightarrow$ It must be polarised in plane of incidence.

$\tan \underline{i}=\mu$
[for incidence at Brewster's angle]
For red,

$$
\begin{aligned}
\mu & =\frac{\sin \left(\frac{\delta_{m}+A}{2}\right)}{\sin \frac{A}{2}} \\
& =\frac{\sin \left(\frac{30+60}{2}\right)}{\sin \frac{60}{2}}=\frac{\sin 45}{\sin 30}=\frac{1 / \sqrt{2}}{1 / 2} \\
\mu_{\text {red }} & =\sqrt{2}
\end{aligned}
$$

(A), (C), (D) are correct.
3. Correct options are ( $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ).


$$
\begin{aligned}
& \tan i=\sqrt{3} \\
& i=60^{\circ} \\
& \delta=i+e-A \\
& 60=60+e-A \\
& \Rightarrow \quad A=e \\
& \frac{\sin i}{\sin r_{1}}=\sqrt{3} \\
& \Rightarrow \quad \frac{\sin 60}{\sin r_{1}}=\sqrt{3} \quad \Rightarrow \quad r_{1}=30^{\circ} \\
& r_{2}=A-r_{1} \\
& \mu \sin \left(A-r_{1}\right)=\sin e \\
& \Rightarrow \quad \sqrt{3} \sin (A-30)=\sin A \\
& r_{3}\left[\sin A \cos 30^{\circ}-\cos A \sin 30\right]=\sin A \\
& \Rightarrow \quad \frac{\sqrt{3}}{2}(\sqrt{3}-\cot A)=1 \\
& \Rightarrow \quad 2 \quad \cot A=\sqrt{3}-\frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \quad \cot A=\frac{1}{\sqrt{3}} \\
& \Rightarrow \quad A=60^{\circ} \\
& \text { So, } \quad e=60^{\circ} \text { (for blue) }
\end{aligned}
$$


(B) is correct.


$$
\begin{aligned}
\frac{\varepsilon}{r} & =\frac{15}{3}+\frac{5}{1}+\frac{0}{3} \\
\frac{1}{r} & =\frac{1}{3}+\frac{1}{1}+\frac{1}{3}=\frac{5}{3} \\
\varepsilon & =10 \times \frac{3}{5} \Rightarrow 6 \mathrm{~V}
\end{aligned}
$$

At $t \rightarrow \infty$

$$
\begin{aligned}
q & =C \varepsilon \\
& =2 \times 10^{-6} \times 6=12 \mu \mathrm{C}
\end{aligned}
$$

Time constant $\tau=R C$

$$
\begin{aligned}
& =(r+3) 2 \mu \mathrm{C} \\
& =\left(\frac{3}{5}+3\right) \times 12=7.2 \mu \mathrm{~s} \\
i & =i . e^{-t / \tau} \\
i_{0} & =\frac{\varepsilon}{r+3}=\frac{6}{\left(3+\frac{3}{5}\right)} \\
\Rightarrow \quad i & =\frac{6}{\frac{18}{5}} \times e^{-7.2 / 1.2} \\
& =\frac{5}{3} \times 0.36=0.6 \mathrm{~A}
\end{aligned}
$$

All options are correct.
4. Correct option is (A).


About hinge $\rightarrow$ angular momentum is conserved.

$$
\begin{align*}
L_{\text {before }} & =L_{\text {after }} \\
m v_{0} \frac{L}{2} & =I w-m v \frac{L}{2} \\
\Rightarrow 0.1 \times 5 \times \frac{0.2}{2} & =\frac{1}{3} \times 1 \times 0.2^{2} \omega-0.1 \times v \times \frac{0.2}{2} \\
\Rightarrow \quad \frac{4 \omega}{3} & =5+v \tag{1}
\end{align*}
$$

## For Elastic collision

At point of impact,
velocity of separation $=$ velocity of approach

$$
\begin{aligned}
\frac{\omega L}{2}-(-v) & =5 \\
\Rightarrow \quad \frac{\omega \times 0.2}{2}+v & =5 \\
\frac{\omega}{10} & =5-v
\end{aligned}
$$

From (1) and (2),

$$
\begin{aligned}
& \omega & =\frac{300}{43} \mathrm{rad} \mathrm{sec}^{-1} \\
\Rightarrow & \omega & =6.976 \mathrm{rad} \mathrm{sec}^{-1} \\
\text { and } & v & =4.3 \mathrm{~m} \mathrm{sec}^{-1}
\end{aligned}
$$

5. Correct option is (B).


Volume of dielectric filled in 10 sec

$$
\begin{aligned}
& =250 \times 10=2500 \mathrm{~cm}^{3} \\
h \times 50 \times 5 & =2500 \\
\Rightarrow \quad h & =10 \mathrm{~cm} \\
C_{1} & =\frac{\varepsilon_{0} A_{1}}{d}, C_{2}=\frac{\varepsilon_{0} A_{2}}{d} K
\end{aligned}
$$

$$
A_{1}=50 \times(50-h)
$$

$$
A_{2}=50 \times h
$$

$$
C_{e q}=C_{1}+C_{2}
$$

$$
=\frac{\varepsilon_{0} 50(50-h) \mathrm{cm}^{2}}{5 \mathrm{~cm}}+\frac{3 \times \varepsilon_{0} \times 50 \times h}{5 \mathrm{~cm}}
$$

$$
=\varepsilon_{0}\left[\frac{50 \times 40}{5}+\frac{3 \times 50 \times 10}{5}\right] \times 10^{-2}
$$

$$
=7 \varepsilon_{0}=63 \times 10^{-12}
$$

$$
=63 \mathrm{pF}
$$



$$
T_{A} V_{0}^{\gamma-1}=T_{f}\left(5 V_{0}\right)^{\gamma-1} \quad[\because \text { process is adiabatic }]
$$

$$
\begin{aligned}
T_{A} & =T_{f} 5^{\gamma-1} \\
& =T_{B} 5^{\gamma-1}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{T_{A}}{T_{B}}=5^{\gamma-1}
$$

7. Correct option is (A).

Above the surface of earth

$$
\begin{aligned}
g & =\frac{g_{0}}{\left(1+\frac{h}{R}\right)^{2}} \\
\frac{g_{P}}{g_{Q}} & =\frac{g_{0}}{\left(1+\frac{h_{P}}{R}\right)^{2}} \times \frac{\left(1 \times \frac{h_{Q}}{R}\right)^{2}}{g_{0}} \\
\Rightarrow \quad \frac{36}{25} & =\frac{\left(1+\frac{h_{Q}}{R}\right)^{2}}{\left(1+\frac{h_{P}}{R}\right)^{2}} \\
\Rightarrow \quad \frac{6}{5} & =\frac{\left(1+\frac{h_{Q}}{R}\right)^{R}}{\left(1+\frac{R / 3}{R}\right)} \\
\Rightarrow \quad \frac{h_{Q}}{R}+1 & =\frac{6}{5} \times \frac{4}{3} \\
& =\frac{8}{5} \\
\Rightarrow h_{Q} & =\frac{3}{5} R
\end{aligned}
$$

8. Correct answer is [3].

Energy of photon (E)

$$
\begin{aligned}
E & =13.6 \mathrm{Z}^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
& =13.6 \mathrm{Z}^{2}\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right) \\
& =\frac{13.6 \times 7 \times z^{2}}{16 \times 9}
\end{aligned}
$$

During photo electric effect

$$
\begin{aligned}
\mathrm{KE}_{\max } & =E-\phi, \phi=\frac{h c}{\lambda_{0}}=\frac{1240}{310}=4 \mathrm{eV} \\
\Rightarrow \quad 1.95 & =\frac{13.6 \times 7 \times \mathrm{Z}^{2}}{16 \times 9}-4 \\
13.6 \times 7 \times \mathrm{Z}^{2} & =9 \times 95.2 \\
\mathrm{Z}^{2} & =9 \\
\Rightarrow \quad Z & =3
\end{aligned}
$$

9. Correct answer is [150].


For Image $\mathrm{I}_{1}$

$$
\begin{aligned}
\frac{1}{v}+\frac{1}{u} & =\frac{1}{f} \\
\Rightarrow \quad \frac{1}{v}+\frac{1}{-10} & =\frac{1}{-12} \\
\frac{1}{v} & =\frac{1}{10}-\frac{1}{12} \\
\Rightarrow \quad v & =60 \mathrm{~cm}
\end{aligned}
$$

For Image $I_{2}$


$$
\begin{aligned}
& \frac{1}{v}-\frac{1}{-80} & =\frac{1}{10} \\
\Rightarrow \quad & v & =\frac{80}{7} \mathrm{~cm}
\end{aligned}
$$

## For Image $I_{3}$

Image $\mathrm{I}_{3}$ must be such that $\mathrm{I}_{4}$ is formed at O and O is at focus of L , so $I_{3}$ must be at infinity.

$$
\begin{array}{rlrl}
\frac{1}{v}+\frac{1}{u} & =\frac{1}{f} \\
\frac{1}{\infty}+\frac{1}{u} & =\frac{1}{-10} \\
\Rightarrow \quad & u & =-10 \mathrm{~cm}
\end{array}
$$

Separation between L and M ,

$$
\begin{aligned}
& & 10+\frac{80}{7}=\frac{150}{7} \\
\Rightarrow & & n=150
\end{aligned}
$$

10. Correct answer is [1].


Error

$$
\begin{array}{rl}
\frac{\Delta v}{v^{2}}+\frac{\Delta u}{u^{2}} & =\frac{\Delta f}{f}\left(\frac{1}{f}\right) \\
\frac{0.2}{20^{2}}+\frac{0.1}{10^{2}} & =\frac{\Delta f}{f} \times \frac{3}{20} \\
\frac{\Delta f}{f} & =\frac{1}{100} \\
\Rightarrow \quad \frac{\Delta f}{f} \times 100 & =n \\
\Rightarrow \quad n & n=1
\end{array}
$$

11. Correct answer is [121].

$$
\begin{aligned}
\Delta U & =n L V \Delta T \\
\Delta W & =n R \Delta T \quad \text { [at constant pressure] } \\
\Rightarrow \quad & \\
\Delta 6 & =n R \Delta T
\end{aligned}
$$

Also $\left(n_{1}+n_{2}\right) C_{V}=n_{1} \mathrm{Cv}_{1}+n_{2} \mathrm{Cv}_{2}$

$$
\begin{aligned}
& =2 \times \frac{R}{\gamma_{1}-1}+1 \times \frac{R}{\gamma_{2}-1} \\
(2+1) C_{V} & =2 \times \frac{3}{2} R+1 \times \frac{5 R}{2} \\
\Rightarrow \quad C_{V} & =\frac{11}{6} R \\
\Delta U & =\frac{11}{6} n R \Delta T \\
\Rightarrow \quad \Delta U & =\frac{11}{6} \times 60=121 \mathrm{~J}
\end{aligned}
$$

12. Correct answer is [40].
$y=$ distance of tip of shadow from person.

$$
\begin{aligned}
\tan \theta & =\frac{4}{x+y}=\frac{1.6}{y} \\
2 x & =3 y \\
2 \frac{d x}{d t} & =3 \frac{d y}{d t}
\end{aligned}
$$


$\Rightarrow \quad 2 \times 60=3 \times \frac{d y}{d t}$
$\Rightarrow \quad \frac{d y}{d t}=40 \mathrm{~cm} \mathrm{~s}^{-1}$
13. Correct answer is [10].


Moment of inertia about CoM

$$
\begin{aligned}
I & =30 \times x^{2}+20 \times(10-x)^{2} \\
& =\left(30 \times 4^{2}+20 \times 6^{2}\right) \times 10^{-3} \times\left(10^{-2}\right)^{2} \\
& =1.2 \times 10^{-4} \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2} \\
\tau & =I \alpha \\
-K \theta & =I \alpha \\
\Rightarrow \quad \alpha & =\frac{-K}{I} \theta=-\omega^{2} \theta \\
\Rightarrow \quad \omega^{2} & =\frac{1.2 \times 10^{-8}}{1.2 \times 10^{-4}} \\
\omega^{2} & =10^{-4} \\
\omega & =10^{-2} \mathrm{rad} / \mathrm{s} \\
\omega & \quad=n \times 10^{-3} \\
\Rightarrow \quad n & =10
\end{aligned}
$$

14. Correct answer is [A].
${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow \underset{\mathrm{Z}-4 n_{1}+n_{2}}{\mathrm{~A}-4 n_{1}} \mathrm{Y}$

$$
\begin{aligned}
& \eta_{1}=\text { no. of } \alpha \text { decay } \\
& \eta_{2}=\text { no. of } \beta \text { decay }
\end{aligned}
$$

(P) ${ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{91}^{234} \mathrm{~Pa}$

$$
\begin{aligned}
238-4 n_{1} & =234 \Rightarrow n_{1}=1 \\
& 92-2 n_{1}+n_{2}
\end{aligned}=91 . ~\left(\quad 2 n_{1}-n_{2}=1 \quad \Rightarrow \quad n_{2}=1\right.
$$

$$
\Rightarrow 1 \alpha \text { and } 1 \beta^{-} \text {decay }
$$

$$
\text { (Q) }{ }_{82}^{214} \stackrel{\mathrm{~Pb} \rightarrow 4}{210}{ }_{82}^{210} \mathrm{~Pb}
$$


$\Rightarrow \quad \begin{aligned} n_{1} & =1 \\ 81-2 n_{1}+n_{2} & =82\end{aligned}$
$1 \alpha$ and $3 \beta^{-}$decay

$$
\mathrm{R} \rightarrow 2
$$

(S) ${ }_{91}^{228} \mathrm{~Pa} \longrightarrow{ }_{88}^{224} \mathrm{~Pa}$

$$
\Rightarrow \quad \begin{aligned}
228-4 n_{1} & =224 \\
n_{1} & =1 \\
91-2 n_{1}+n_{2} & =88 \\
n_{2} & =-1
\end{aligned}
$$

$\Rightarrow \quad \beta^{+}$decay occurs
$1 \alpha$ and $1 \beta^{+}$decay

$$
S \rightarrow 1
$$

$\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 3, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 1$.

## 15. Correct option is $(\mathrm{C})$

$\lambda_{0} T=b$
(P) $\quad \lambda_{0}(2000)=2.9 \times 10^{-3}$

$$
\lambda_{0}=1450 \mathrm{n} \mathrm{~m}
$$

(Q) $\quad \lambda_{0}(3000)=2.9 \times 10^{-3}$

$$
\lambda_{0}=\frac{2900}{3} n \mathrm{~m}
$$

(R) $\quad \lambda_{0}=580 \mathrm{n} \mathrm{m}$
(S)

$$
\lambda_{0}=290 \mathrm{n} \mathrm{~m}
$$

$$
\phi=4 \mathrm{e} V
$$

$\Rightarrow \quad \lambda_{\mathrm{T}}=\frac{1240}{4}=310 \mathrm{n} \mathrm{m}$
To emit photoelectron

$$
\lambda_{0}<\lambda_{\mathrm{T}}
$$

$\Rightarrow \quad \mathrm{S} \rightarrow 1$
$\lambda_{0}=580$ lie in visible range
$\Rightarrow \quad \mathrm{R} \rightarrow 2$
$\Rightarrow \quad \frac{P_{1}}{P_{2}}=\left(\frac{T_{1}}{T_{2}}\right)^{4}$
$\frac{1}{16}=\left(\frac{T_{1}}{6000}\right)^{4}$
$\frac{T_{1}}{6000}=\frac{1}{2}$
$\Rightarrow \quad T_{1}=3000 \mathrm{~K}$
$\mathrm{Q} \rightarrow 4$
$\lambda$ is maximum for $P$.

$$
\sin \theta=\frac{\lambda}{d}
$$

$2 \theta=$ width of central maximum
$\Rightarrow \quad$ width $\propto \lambda$.
$\Rightarrow \quad \max ^{m}$ width of $(\mathrm{P})$

$$
\mathrm{P} \rightarrow 3
$$

$\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 4, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 1$.
16. Correct option is (B).



$$
\begin{aligned}
a & =\frac{\Sigma F}{m} \\
& =\frac{m g-B i l}{m}
\end{aligned}
$$

$$
=\mathrm{g}-\frac{B^{2} l^{2}}{m R} v=10-5 v
$$

$$
\frac{d v}{d t}=10-5 v
$$

$$
\Rightarrow \quad \int_{0}^{v} \frac{d v}{10-5 v}=\int_{0}^{t} d t
$$

$$
\Rightarrow \quad v=2\left(1-e^{-5 t}\right)
$$

$$
\text { at } t=0.2 \mathrm{sec} \quad v=1.2 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
\varepsilon=B l v
$$

$$
=1.2 \mathrm{~V}
$$

$$
F=\frac{B^{2} l^{2} v}{R}=0.12 \mathrm{~N}
$$

$$
P=\frac{B^{2} l^{2} v^{2}}{R}=0.144 \mathrm{~W}
$$

$$
\text { Terminal velocity, } \quad g=\frac{B^{2} l^{2} v_{0}}{m R}
$$

$$
v_{0}=2 \mathrm{~ms}^{-1}
$$

$\mathrm{P} \rightarrow 3, \mathrm{Q} \rightarrow 4, \mathrm{R} \rightarrow 2, \mathrm{~S} \rightarrow 5$.

$$
\begin{aligned}
R & =\frac{2250}{20}=112.5 \Omega \\
I_{0} & =\frac{\varepsilon_{0}}{R}=\frac{45}{112.5} \\
& =400 \mathrm{~m} \mathrm{~A} \quad(\mathrm{P} \rightarrow 3)
\end{aligned}
$$

