JEE Advanced (2025)

MATHEMATICS

General Instructions:

SECTION 1 (Maximum Marks: 12)

3.

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme: •

Full Marks	:	+3 If ONLY the correct option is chosen;
Zero Marks	:	0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	:	-1 in all other cases.

Let x_0 be the real number such that $e^{x_0} + x_0 = 0$. For a 1. given real number α , define

$$g(x) = \frac{3xe^2 + 3x - \alpha e^x - \alpha}{3(e^x + 1)}$$

for all real numbers *x*. Then which one of the following statements is TRUE?

(A) For
$$\alpha = 2$$
, $\lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 0$
(B) For $\alpha = 2$, $\lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 1$
(C) For $\alpha = 3$, $\lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 0$
(D) For $\alpha = 3$, $\lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = \frac{2}{3}$

Let \mathbb{R} denote the set of all real numbers. Then the area of 2. the region

$$\left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x}, 5x - 4y - 1 > 0, \\ 4x + 4y - 17 < 0 \right\}$$
 is:

General Instructions:

SECTION 2 (Maximum Marks: 16)

This spation contains FOUR (04) quasti

This section contains FOUR (04) questions.						
Each question has FOUR options (Å), (B), (C) and (D). ONLY OR MORE THAN ONE of these four options is (are) the correct						
answer(s).						
For each question, choose the option(s) corresponding to (all) the correct answer(s).						
Answer to each question will be evaluated according to the following marking scheme :						
<i>Full Marks</i> : +4 ONLY if (all) the correct option(s) is(are) chosen;						
<i>Partial Marks</i> : +3 If all the four options are correct but ONLY three options are chosen;						
<i>Partial Marks</i> : +2 If three or more options are correct but ONLY two options are chosen, both of which are						
correct;						
<i>Partial Marks</i> : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;						
<i>Zero Marks</i> : 0 If none of the options is chosen (i.e., the question is unanswered);						
Negative Marks : –2 In all other cases.						
For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then						
choosing ONLY (Å), (B) and (D) will get +4 marks;						
choosing ONLY (A) and (B) will get +2 marks;						
choosing ONLY (A) and (D) will get +2 marks;						
choosing ONLY (B) and (D) will get +2 marks;						
choosing ONLY (Å) will get +1 mark;						
choosing ONLY (B) will get +1 mark;						
choosing ONLY (D) will get +1 mark;						
choosing no option (i.e., the question is unanswered) will get 0 marks; and						
choosing any other combination of options will get -2 marks.						

(B) $\frac{33}{8} - \log_e 4$ (D) $\frac{17}{2} - \log_e 4$ (A) $\frac{17}{16} - \log_e 4$ (C) $\frac{57}{8} - \log_e 4$

The total number of real solutions of the equation

$$\theta = \tan^{-1}(2\tan\theta) - \frac{1}{2}\sin^{-1}\left(\frac{6\tan\theta}{9+\tan^2\theta}\right)$$
 is

(Here, the inverse trigonometric functions $\sin^{-1} x$ and $\tan^{-1} x$ assume values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, respectively). (A) 1 **(B)** 2 (C) 3 (D) 5

PAPER

4. Let *S* denote the locus of the point of intersection of the pair of lines $4x - 3y = 12\alpha$

$$4x - 3y = 12\alpha$$
$$4\alpha x + 3\alpha y = 12$$

where α varies over the set of non-zero real numbers. Let T be the tangent to S passing through the points (*p*, 0) and (0, *q*), *q* > 0, and parallel to the line $4x - \frac{3}{\sqrt{2}}y = 0$. Then the value *pq* is:

(A)
$$-6\sqrt{2}$$
 (B) $-3\sqrt{2}$ (C) $-9\sqrt{2}$ (D) $-12\sqrt{2}$

5. Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $P = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. Let $Q = \begin{pmatrix} x & y \\ z & 4 \end{pmatrix}$ for

some non-zero real numbers x, y and z, for which there is 2×2 matrix R with all entries being non-zero real numbers, such that QR = RP.

Then which of the following statements is (are) TRUE?

(A) The determinant of Q - 2I is zero (B) The determinant of Q - 6I is 12 (C) The determinant of Q - 3I is 15

(D)
$$yz = 2$$

6. Let *S* denote the locus of the mid-points of those chords of the parabola $y^2 = x$, such that the area of the region enclosed between the parabola and the chord is 4/3. Let *R* denote the region lying in the first quadrant, enclosed by the parabola $y^2 = x$, the curve *S*, and the lines x = 1 and x = 4.

Then which of the following statements is (are) TRUE? **(A)** $(4,\sqrt{3}) \in S$

- **(B)** $(5,\sqrt{2}) \in S$
- (C) Area of *R* is $\frac{14}{3} 2\sqrt{3}$
- **(D)** Area of *R* is $\frac{14}{3} \sqrt{3}$
- 7. Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be two distinct points on the ellipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

such that $y_1 > 0$, and $y_2 > 0$. Let C denote the circle $x^2 + y^2 = 9$, and *M* be the point (3, 0).

General Instructions:

- This section contains EIGHT (08) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

SECTION 3 (Maximum Marks: 32)

- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+4 If ONLY the correct numerical value is entered in the designated place,
Zero Marks	:	0 In all other cases.

9. Let y(x) be the solution of the differential equation

$$x^{2}\frac{dy}{dx} + xy = x^{2} + y^{2}, \quad x > \frac{1}{e}, \text{ satisfying } y(1) = 0.$$

Then the value of $2\frac{(y(e_J))}{y(e^2)}$

10. Let a_0, a_1, \dots, a_{23} be real numbers such that

$$\left(1 + \frac{2}{5}x\right)^{23} = \sum_{i=0}^{23} a_i x$$

for every real number *x*. Let a_r be the largest among the numbers a_j for $0 \le j \le 23$.

Then the value of *r* is

11. A factory has a total of three manufacturing units, M_1 , M_2 , and M_3 , which produce bulbs independent of each other. The units M_1 , M_2 and M_3 produce bulbs in the proportions of 2:2:1, respectively. It is known that 20% of the bulbs produced in the factory are defective. It is also known that, of all the bulbs produced by M_1 , 15% are defective. Suppose that, if a randomly chosen bulb

Suppose the line $x = x_1$ intersects *C* at *R*, and the line $x = x_2$ intersects *C* at *S*, such that the *y*-coordinates of *R*

and *S* are positive. Let $\angle ROM = \frac{\pi}{6}$ and $\angle SOM = \frac{\pi}{3}$, where *O* denotes the origin (0, 0). Let |XY| denote the length of the line segment *XY*.

Then which of the following statements is (are) TRUE?

- (A) The equation of the line joining *P* and *Q* is $2x + 3y = 3(1 + \sqrt{3})$
- **(B)** The equation of the line joining *P* and *Q* is $2x + y = 3(1+\sqrt{3})$
- (C) If $N_2 = (x_2, 0)$, then $3|N_2Q| = 2|N_2S|$

(D) If
$$N_1 = (x_1, 0)$$
, then $9|N_1P| = 4|N_1R|$

8. Let \mathbb{R} denote the set of all real numbers. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{6x + \sin x}{2x + \sin x} & \text{if } x \neq 0, \\ \frac{7}{3} & \text{if } x = 0 \end{cases}$$

Then which of the following statements is (are) TRUE?

- (A) The point x = 0 is a point of local maxima of f
- **(B)** The point x = 0 is a point of local minima of f
- (C) Number of points of local maxima of *f* in the interval $[\pi, 6\pi]$ is 3
- **(D)** Number of points of local minima of *f* in the interval $[2\pi, 4\pi]$ is 1

following marking scheme: value is entered in the designated place,

produced in the factory is found to be defective, the probability that it was produced by M_2 is $\frac{2}{5}$.

If a bulb is chosen randomly from the bulbs produced by M_3 , then the probability that it is defective is

12. Consider the vectors

Then the val

$$\vec{x} = i + 2j + 3k$$
, $\vec{y} = 2i + 3j + k$, and $\vec{z} = 3i + j + 2k$.
For two distinct positive real numbers α and β define

$$\vec{\nabla} = \alpha \vec{x} + \beta \vec{y} = \vec{z} - \vec{\nabla} = \alpha \vec{y} + \beta \vec{z} - \vec{x} - \alpha \vec{z} + \beta \vec{x} - \vec{z}$$

$$x = \alpha x + \beta y - 2$$
, $y = \alpha y + \beta z - x$, and $z = \alpha z + \beta x - y$.
If the vectors added from source lie in a plane, then the value of $\alpha + \beta - 3$ is

13. For a non-zero complex number *z*, let $\arg(z)$ denote the principal argument of *z*, with $-\pi < \arg(z) \le \pi$. Let ω be the cube root of unity for which $0 < \arg(\omega) < \pi$. Let

$$\alpha = \arg\left(\sum_{n=1}^{2025} (-\omega)^n\right).$$

ue of $\frac{3\alpha}{\pi}$ is

14. Let \mathbb{R} denote the set of all real numbers. Let $f \colon \mathbb{R} \to \mathbb{R}$ and $g \colon \mathbb{R} \to (0, 4)$ be functions defined by

$$f(x) = \log_e(x^2 + 2x + 4)$$
, and $g(x) = \frac{4}{1 + e^{-2x}}$

Define the composite function $f \circ g^{-1}$ by $(f \circ g^{-1})(x) = f(g^{-1}(x))$, where g^{-1} is the inverse of the function g. Then the value of the derivative of the composite function $f \circ g^{-1}$ at x = 2 is ______.

$$\alpha = \frac{1}{\sin 60^{\circ} \sin 61^{\circ}} + \frac{1}{\sin 62^{\circ} \sin 63^{\circ}} + \dots + \frac{1}{\sin 118^{\circ} \sin 119^{\circ}}.$$

value of $\left(\frac{\operatorname{cosec} 1^{\circ}}{\alpha}\right)^2$ is ______. $\alpha = \int_{1/2}^{2} \frac{\tan^{-1} x}{2x^2 - 3x + 2} dx,$

then the value of $\sqrt{7} \tan\left(\frac{2\alpha\sqrt{7}}{\pi}\right)$ is ______. (Here, the inverse trigonometric function $\tan^{-1} x$ assumes values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.)

Answer Key

Q.No.	Answer key	Topic name	Chapter name
1	(C)	Basic limit	Limit continuity and differentiability
2	(B)	Area	Area
3	(C)	Basic identities	Inverse trigonometric function
4	(A)	Tangent	Hyperbola
5	(A, B)	Product of matrices	Matrix
6	(A, C)	Area between chord and parabola	Area
7	(A, C)	Chord equation	Ellipse
8	(B, C, D)	Local maxima or minima	Application of derivative
9	[0.7 to 0.8]	First-order differential equation	Differential equation
10	6	Numerically greatest term	Binomial theorem
11	[0.27 to 0.33]	Total probability	Probability
12	-2	Co-planar vector	Vector
13	-2	Argument	Complex number
14	0.2 to 0.3	Derivative of inverse function	Differentiation
15	3	Basic identities	Trigonometric ratio and identities
16	21	Properties of definite integration	Definite integration

ANSWERS WITH EXPLANATIONS

2.

:.

$$g(x) = \frac{3xe^{x} + 3x - \alpha e^{x} - \alpha x}{3(e^{x} + 1)} \text{ and}$$

$$e^{x_{0}} + x_{0} = 0$$

$$\Rightarrow \quad g(x) = \frac{3x(e^{x} + 1) - \alpha(e^{x} + x)}{3(e^{x} + 1)}$$

$$\Rightarrow \quad g(x) = x - \frac{\alpha(e^{x} + x)}{3(e^{x} + 1)}$$
Now,
$$\lim_{x \to x_{0}} \frac{g(x) + e^{x_{0}}}{x - x_{0}}$$
Let $x - x_{0} = h$

$$x \to x_{0} \Rightarrow h \to 0$$

$$\lim_{h \to 0} \frac{g(h + x_{0}) + e^{x_{0}}}{h}$$

$$= \lim_{h \to 0} \frac{h + x_{0} - \frac{\alpha(e^{h + x_{0}} + h + x_{0})}{3(e^{h + x_{0}} + 1)} + e^{x_{0}}}{h}$$

$$= \lim_{h \to 0} \left(1 - \frac{\alpha(e^{h + x_{0}} + h + x_{0})}{3h(e^{h + x_{0}} + 1)}\right)$$

$$= \lim_{h \to 0} \left(1 - \frac{\alpha}{3(e^{x_0 + h} + 1)} \left\{ \frac{e^{x_0} \left(e^h - 1 \right)}{h} + 1 \right\} \right)$$

= $1 - \frac{\alpha}{3(e^{x_0} + 1)} (e^{x_0} + 1)$
= $1 - \frac{\alpha}{3}$
For $\alpha = 2$, the required limit is $1 - \frac{2}{3} = \frac{1}{3}$.
For $\alpha = 3$, the required limit is $1 - \frac{3}{3} = 0$.
Correct option is (B).

 $y = 5x - 4y - 1 = 0$
 $(1, 1) (2, \frac{9}{4}) (4, \frac{1}{4}) y = \frac{1}{x}$

$$4x + 4y = 17$$
Solving Eqs (i) and (ii), we get,

$$5x - \frac{4}{4} = 1$$

$$\Rightarrow 5x^{2} - x = a$$

$$\Rightarrow 5x^{2} - x - 4 = 0$$

$$\therefore x = 1$$
Solving Eqs (i) and (iii), we get,

$$4x + \frac{4}{x} = 17$$

$$\Rightarrow 4x^{2} - 17x + 4 = 0$$

$$\Rightarrow x = 4, \frac{1}{4}$$
Solving Eqs (ii) and (iii), we get,

$$9x = 18$$

$$x = 2$$
Required Area = $\frac{1}{2} \times \frac{13}{4} \times 1 + \frac{1}{2} \times \frac{10}{4} \times 2 - \int_{1}^{4} \frac{1}{x} dx$

$$= \frac{33}{8} - \ln 4$$
Correct option is (C).

$$\theta = \tan^{-1}(2\tan\theta) - \frac{1}{2}\sin^{-1}\left(\frac{6\tan\theta}{9 + \tan^{2}\theta}\right)$$

$$\Rightarrow \theta = \tan^{-1}(2\tan\theta) - \frac{1}{2}\sin^{-1}\left(\frac{2\left(\frac{\tan\theta}{3}\right)}{1 + \left(\frac{\tan\theta}{3}\right)^{2}}\right)$$

$$\Rightarrow \theta = \tan^{-1}(2\tan\theta) - \frac{1}{2}\sin^{-1}(\sin 2\alpha)$$

$$\left\{ \text{Let } \tan\alpha = \frac{\tan\theta}{3}, \sin 2A = \frac{2\tan A}{1 + \tan^{2} A} \right\}$$

$$\Rightarrow \theta = \tan^{-1}(2\tan\theta) - \frac{1}{2} \times 2\alpha$$

$$\Rightarrow \theta + \alpha = \tan^{-1}(2\tan\theta)$$

$$\Rightarrow \frac{\tan\theta + \tan\alpha}{3} = 2\tan\theta$$

$$\Rightarrow \frac{\tan\theta + \tan\alpha}{3} = 2\tan\theta$$

$$\Rightarrow \frac{\tan\theta + \tan\theta}{3} = 2\tan\theta$$

$$\Rightarrow \frac{\tan\theta + \tan\theta}{3} = 2\tan\theta}$$

$$\Rightarrow 4\tan\theta = 6\tan\theta + 2\tan^{3}\theta$$

$$\Rightarrow 2\tan\theta + (\tan^{2}\theta - 1) = 0$$

$$\Rightarrow \tan\theta (\tan^{2}\theta - 1) = 0$$

$$\Rightarrow \tan\theta (\tan^{2}\theta - 1) = 0$$

$$\Rightarrow \tan\theta (\sin^{2}\theta - 1) = 0$$

$$\Rightarrow \tan\theta (\tan^{2}\theta - 1) = 0$$

$$\Rightarrow \tan^{2}\theta - \frac{\pi^{2}\theta}{16} = 1$$

$$T is parallel to $4x - \frac{3y}{\sqrt{2}} = 0$$$

3.

4.

...(iii)

5.

...(i)

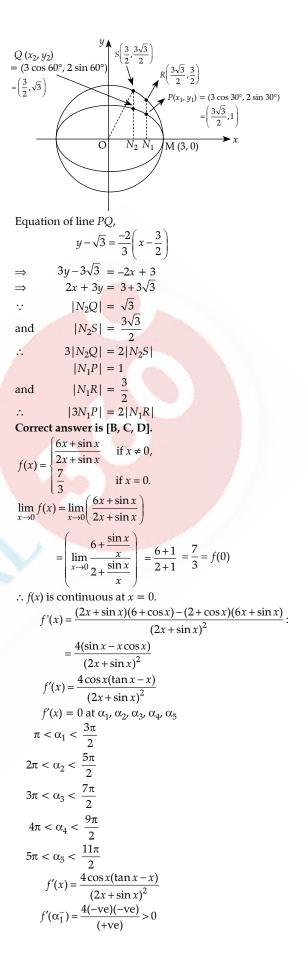
...(ii)

 $\Rightarrow m = \frac{4}{3/\sqrt{2}} = \frac{4\sqrt{2}}{3}$: Equation of tangent, $y = mx + \sqrt{a^2m^2 - b^2}$ $\Rightarrow y = \frac{4\sqrt{2}}{3}x + \sqrt{9 + \frac{16 \times 2}{9} - 16}$ $\Rightarrow y = \frac{4\sqrt{2}}{3}x + 4$ It passes through (p, 0). $\Rightarrow 0 = \frac{4\sqrt{2}}{3}p + 4$ $p = \frac{-3}{\sqrt{2}}$ It also pass through (0, q). q = 0 + 4 q = 4 $p \cdot q = \frac{-3}{\sqrt{2}} \times 4 = -6\sqrt{2}$ \Rightarrow ÷ Correct options are (A, B). QR = RPGiven, Subtracting 2R on both sides, QR - 2R = RP - 2R(Q-2I)R = R(P-2I) \Rightarrow $P = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ ÷ $P - 2I = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $P - 2I = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\left|P-2I\right| = 0$ ∴From Eq. (i), we get, |Q-2I||R| = |R||P-2I| $|Q-2I||R| = |R| \times 0$ |Q - 2I| = 0Now, QR = RPSubtracting 6R on both side, QR - 6R = RP - 6R $(Q-6\mathrm{I})R=R(P-6\mathrm{I})$ ⇒ $P - 6\mathbf{I} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$ \Rightarrow $= \begin{bmatrix} -4 & 0 \\ 0 & -3 \end{bmatrix}$ |P - 6I| = 12:. From Eq. (ii), we get, |Q-6I| |R| = |R| |P-6I||Q - 6I| = 12Now, QR = RPSubtracting 3R on both sides, QR - 3R = RP - 3R(Q-3I)R=R(P-3I)...(iii) $P - 3I = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

...(i)

...(ii)

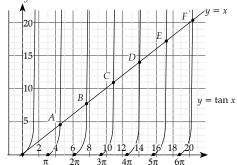
 $P - 3I = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$ |P - 3I| = 0From Eq. (iii), we get, |Q-3I||R| = |R||P-3I| $|Q-3I||R| = |R| \times 0$ |Q-3I| = 0Correct options are (A, C). 6. $y^2 = x$ Let point p = (h, k) $T: ky - \frac{x+h}{2}$ $S_1 = k^2 - h$ Equation of chord with point *p* as mid-point $\Rightarrow T = S_1$ $ky - \left(\frac{x+h}{2}\right) = k^2 - h$ $\Rightarrow x - 2ky + 2k^2 - h = 0$...(i) Solving Eq. (i) with $y^2 = x$ \Rightarrow $y^2 - 2ky + 2k^2 - h = 0$ Let the roots be y_1 and y_2 . $y_1 + y_2 = 2k$ *:*.. $y_1y_2 = 2k^2 - h$ & $y_1^2 + y_2^2 = 4k^2 - 2(2k^2 - h)$ \Rightarrow = 2hNow, $\left| \int_{y_{1}}^{y_{2}} (2ky - 2k^{2} + h - y^{2}) dy \right| = \frac{4}{3}$ $\left(ky^2 - 2k^2y + hy - \frac{y^3}{3}\right)\Big|_{y_1}^{y_2} = \frac{4}{3}$ $k(y_2^2 - y_1^2) - 2k^2(y_2 - y_1) + h(y_2 - y_1) - \frac{y_2^3 - y_1^3}{3} = \frac{4}{3}$ $(y_2 - y_1) \Big\{ 3k(y_1 + y_2) - 6k^2 + 3h - (y_1^2 + y_2^2 + y_1y_2) \Big\} = 4$ $(y_2 - y_1) \{6k^2 - 6k^2 + 3h - (2k^2 + h)\} = 4$ $(y_2 - y_1) \, (2h - 2k^2) = 4$ $\sqrt{4h-4k^2(2h-2k^2)}=4$ $h - k^{2} = 1$ h = x, k = y $y^{2} = x - 1$ ∴ Now, (A) $(4,\sqrt{3})$ lies on *S* is correct. (B) $(5,\sqrt{2})$ lies on *S* is wrong. x = 1 x = 4Area of region $R = \int (\sqrt{x} - \sqrt{x-1}) dx$ $=\frac{2}{3}\left\{x^{3/2}-(x-1)^{3/2}\right\}_{1}^{4}$ $=\frac{2}{3}\left\{8-3\sqrt{3}-1\right\}=\frac{2}{3}(7-3\sqrt{3})=\frac{14}{3}-2\sqrt{3}$ 7. Correct options are (A, C). $\frac{x^2}{9} + \frac{y^2}{4} = 1$ $x^2 + y^2 = 9$...(1) ...(2) $m_{PQ} = \frac{\sqrt{3} - 1}{\frac{3}{2}(1 - \sqrt{3})}$ $m_{PQ} = -\frac{2}{2}$ \Rightarrow



8.

$$f'(\alpha_1^+) = \frac{4(-ve)(+ve)}{(+ve)} < 0$$

 $\therefore x = \alpha_1$ is point of local maxima



Similarly $x = \alpha_2$ is point of minima & so on. So $[\pi, 6\pi]$ points of local maxima are $A, C, E \rightarrow 3$ Points & $[2\pi, 4\pi]$ points of local minima are *B* only \rightarrow 1 Point.

9. Correct answer is [0.75].

$$x^{2} \frac{dy}{dx} + xy = x^{2} + y^{2}$$

$$\Rightarrow \qquad x^{2} \frac{dy}{dx} = x^{2} + y^{2} - xy$$

$$\Rightarrow \qquad \frac{dy}{dx} = 1 + \frac{y^{2} - xy}{x^{2}}$$
Let
$$y = vx.$$

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

then

$$\Rightarrow v + x \frac{dv}{dx} = 1 + \frac{v^2 x^2 - vx^2}{x^2}$$

$$\Rightarrow v + x \frac{dv}{dx} = 1 + v^2 - v$$

$$\Rightarrow x \frac{dv}{dx} = 1 + v^2 - 2v$$

$$\Rightarrow \int \frac{dv}{(v-1)^2} = \int \frac{dx}{x}$$

$$\Rightarrow \frac{-1}{v-1} = \ln x + \ln c \quad (:x > 0)$$

$$\Rightarrow \frac{-1}{v-1} = \ln cx$$

$$\Rightarrow \frac{x}{x-y} = \ln cx$$

$$\Rightarrow \frac{x}{x-y} = \ln cx$$

$$\Rightarrow c = e$$

$$\therefore \frac{x}{x-y} = \ln xe$$
Let
$$x = e,$$

$$\therefore \frac{e}{e-y} = \ln e^2$$

$$\therefore e = 2e - 2y$$

$$y = \frac{e}{2}$$
Now, let
$$x = e^2$$

$$\Rightarrow \qquad \frac{e^2}{e^2 - y} = \ln e^3$$

$$\Rightarrow \qquad e^2 = 3e^2 - 3y$$

$$\Rightarrow \qquad y = \frac{2e^2}{3}$$

$$\therefore \qquad \frac{2(y(e))^2}{y(e^2)} = \frac{2 \times \left(\frac{e}{2}\right)^2}{\frac{2e^2}{3}}$$

$$= \frac{3}{4} = 0.75$$
10. Correct answer is [6].
$$\left(1 + \frac{2}{5}x\right)^{23} = \sum_{i=0}^{23} a_i x^i$$
Let
$$T_{r+1} = a_r x^r$$
If T_{r+1} is numerically the greatest term, then,
$$r \ge \frac{(23+1)\left|\frac{2x}{5}\right|}{1+\left|\frac{2x}{5}\right|} - 1$$
We want to find the largest value of a_{rr}

$$\therefore \qquad |x| = 1$$

$$\Rightarrow \qquad r \ge \frac{24 \times 2}{7} - 1$$

$$\Rightarrow \qquad r \ge \frac{24 \times 2}{7} - 1$$

$$\Rightarrow \qquad r \ge \frac{24 \times 2}{7} - 1$$

$$\Rightarrow \qquad r \ge 6.8 - 1$$

$$\Rightarrow \qquad r \ge 5.8$$

$$\therefore \qquad r_{\min} = 6$$

$$\Rightarrow T_7 \text{ is the largest.}$$

$$\Rightarrow a_6 \text{ is the largest.}$$

$$\Rightarrow a_6 \text{ is the largest.}$$

$$\Rightarrow a_6 \text{ is the largest.}$$

$$\Rightarrow \frac{20}{100} = \frac{40}{100} \times \frac{15}{100} + \frac{40}{100} \times D_2 + \frac{20}{100} \times D_3$$

$$\Rightarrow \frac{14}{100} = \frac{40}{100} D_2 + \frac{20}{100} D_3 \qquad \dots (1$$

$$\text{ and } p\left(\frac{M_2}{D}\right) = \frac{P(M_2) \cdot P\left(\frac{D}{M_2}\right)}{20\%}$$

$$\begin{array}{rcl} \text{and} & P\left(\frac{D}{D}\right) = \frac{20\%}{20\%} \\ \Rightarrow & \frac{2}{5} \times \frac{100}{20} = \frac{40}{100} \times D_2 \\ \Rightarrow & \frac{8}{100} = \frac{40}{100} D_2 \\ \Rightarrow & D_2 = \frac{1}{5} \\ \text{From Eq. (1), we get,} \\ & \frac{14}{100} = \frac{40}{100} \times \frac{1}{5} + \frac{20}{100} D_3 \\ \Rightarrow & 6 = 20 D_3 \\ \Rightarrow & D_3 = \frac{6}{20} = \frac{3}{10} \end{array}$$

...(1)

12. Correct answer is [-2]. $\vec{X}, \vec{Y}, \vec{Z}$ lie in a plane. $\therefore \ [\vec{X} \ \vec{Y} \ \vec{Z}] \ = 0$

 $|\alpha \beta -1| |1 2 3|$ $\begin{vmatrix} -1 \alpha \beta \\ \times 2 3 1 \end{vmatrix} = 0$ $\left| \beta - 1 \alpha \right| = 3 1 2$ $|\beta - 1 \alpha| |\beta - 1 2|$ $\alpha^{3} + \beta^{3} - 1 + 3\alpha\beta = 0$ $\alpha^{3} + \beta^{3} + (-1)^{3} = 3\alpha\beta(-1)$ $\{if A^{3} + B^{3} + C^{3} = 3ABC \Rightarrow A = B = C \text{ Or, } A + B + C + 0$ $\therefore \alpha + \beta - 1 = 0 \Rightarrow \alpha + \beta - 3 = -2$

13. Correct answer is (–2). 2025

$$:: S = \sum_{n=1}^{2025} (-\omega)^n = (-\omega) + (-\omega)^2 + (-\omega)^3 + \dots + (-\omega)^{2025}$$
Applying sum of G.P.,

16.

$$\begin{array}{l} \text{Applying sum of GLT},\\ (-\omega) \left(\frac{(-\omega)^{2025} - 1}{-\omega - 1} \right) = \omega \left(\frac{-\omega^{2025} - 1}{\omega + 1} \right) \quad \left\{ \because 1 + \omega + \omega^2 = 0 \\ \omega^3 = 1 \right\} \\ \therefore \qquad S = \frac{-2\omega}{1 + \omega} = \frac{-2\omega}{-\omega^2} = \frac{2}{\omega} = 2\omega^2 \\ \therefore \qquad \omega^{-1} = \omega^2, \text{ because } \omega \cdot \omega^2 = 1 \\ S = -1 - \sqrt{3}i \\ \text{Arg } (S) = \arg \left(-1 - \sqrt{3}i \right) \\ \alpha = \frac{-2\pi}{3} \\ \therefore \qquad \frac{3\alpha}{\pi} = -2 \end{array}$$

4

14. Correct answer is (0.25).

$$g(x) = \frac{4}{1+e^{-2x}}$$

$$\therefore \qquad g(0) = \frac{4}{1+1} = 2 = 2$$

$$\Rightarrow \qquad g^{-1}(2) = 0$$

$$\frac{d}{dx} \left(f\left(g^{-1}(x)\right) \right) = f'(g^{-1}(x))(g^{-1}(x))'$$

Put $x = 2$

$$f'(g^{-1}(2)) \times (g^{-1}(2))'$$

$$f'(0) \times (g^{-1}(2))' \qquad \dots (1)$$

$$f(x) = \log_{e} (x^{2} + 2x + 4)$$

Now $f'(x) = \frac{2x+2}{x^{2}+2x+4}$

$$f'(0) = \frac{1}{2} \qquad \dots (2)$$

$$g^{-1}(g(x)))' = \frac{1}{g'(x)}$$

Put $x = 0$

$$(g^{-1}(g(0)))' = \frac{1}{g'(0)}$$

Now $g'(x) = \frac{8e^{-2x}}{(1+e^{-2x})^{2}}$

$$\Rightarrow \qquad g'(0) = \frac{8}{4} = 2 \qquad \dots (3)$$

From Eqs (1), (2) and (3), we get,

$$f'(0) \times (g^{-1}(2))' = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

15. Correct answer is [3].

$$\frac{\sin(A-B)}{\sin A \sin B} = \frac{\sin A \cos B - \cos A \sin B}{\sin A \sin B} = \cot \beta - \cot \alpha$$

$$\begin{aligned} \alpha \times \sin 1^{\circ} &= \frac{\sin (61^{\circ} - 60^{\circ})}{\sin 60^{\circ} + \sin 61^{\circ}} + \frac{\sin (63^{\circ} - 62^{\circ})}{\sin 62^{\circ} - \sin 63^{\circ}} \\ &+ \dots + \frac{\sin (119^{\circ} - 118^{\circ})}{\sin 119^{\circ}} \\ &= (\cot 60^{\circ} - \cot 61^{\circ}) + (\cot 92^{\circ}) - \cot 63^{\circ}) + \dots + (\cot 89^{\circ} - \cot 90^{\circ}) + (\cot 91^{\circ} - \cot 117^{\circ}) + (\cot 118^{\circ} - \cot 119^{\circ}) \\ &= (\cot 60^{\circ} - \cot 90^{\circ}) = \frac{1}{\sqrt{3}} = \left(\frac{\alpha}{\csc e1^{\circ}}\right)^{-2} = \left(\frac{1}{3}\right)^{-1} = 3 \end{aligned}$$
Correct answer is [21].

$$\alpha = \int_{\frac{1}{2}}^{2} \frac{\tan^{-1}x}{2x^{2} - 3x + 2} dx \qquad \dots (1)$$
Let $x = \frac{1}{t}$

$$\Rightarrow \quad dx = \frac{1}{t^{2}} dt$$

$$\therefore \quad \alpha = -\int_{\frac{1}{2}}^{2} \frac{\tan^{-1}\left(\frac{1}{t}\right)}{2x^{2} - 3x + 2} dx \qquad \dots (2)$$
Adding Eqs (1) and (2), we get,

$$2\alpha = \int_{\frac{1}{2}}^{2} \frac{\tan^{-1}x + \tan^{-1}\left(\frac{1}{x}\right)}{2x^{2} - 3x + 2} dx$$

$$\alpha = \frac{\pi}{8} \int_{\frac{1}{2}}^{2} \frac{dx}{(2x^{2} - 3x + 2)} dx$$

$$\alpha = \frac{\pi}{8} \int_{\frac{1}{2}}^{2} \frac{dx}{(x - \frac{3}{4})^{2} + \left(\frac{\sqrt{7}}{4}\right)^{2}}$$

$$= \frac{\pi}{2\sqrt{7}} \left[\tan^{-1}\left(\frac{5}{\sqrt{7}}\right) - \tan^{-1}\left(-\frac{1}{\sqrt{7}}\right)\right]$$

$$= \frac{\pi}{2\sqrt{7}} \left[\tan^{-1}\left(\frac{5}{\sqrt{7}}\right) + \tan^{-1}\left(\frac{6}{\sqrt{7}} \times \frac{7}{2}\right)\right]$$

$$= \frac{\pi}{2\sqrt{7}} \tan^{-1}(3\sqrt{7}) \Rightarrow \sqrt{7} \tan\left(\frac{2\alpha\sqrt{7}}{\pi}\right)$$
$$= \sqrt{7} \tan(\tan^{-1} 3\sqrt{7}) = 21$$

α