JEE (Main) CHEMISTRY SOLVED PAPER

Time : 1 Hour

General Instructions :

- 1. In Chemistry Section, there are 30 Questions (Q. no. 1 to 30) having Section A and B.
- 2. Section A consists of 20 multiple choice questions & Section B consists of 10 numerical value type questions. In Section B, candidates have to attempt any five questions out of 10.
- 3. There will be only one correct choice in the given four choices in Section A. For each question for Section A, 4 marks will be awarded for correct choice, 1 mark will be deducted for incorrect choice questions and zero mark will be awarded for not attempted question.
- 4. For Section B questions, 4 marks will be awarded for correct answer and zero for unattempted and incorrect answer.
- 5. Any textual, printed or written material, mobile phones, calculator etc. is not allowed for the students appearing for the test.

Chemistry

6. All calculations / written work should be done in the rough sheet is provided with Question Paper.

Q.1. Using the rules for significant figures, the correct answer for the expression

be

Section A

0.02858×0.112	3azi11
0.5702	vv III

50001

(C) 0.0056 (D) 0.006

Q. 2. Which of the following is the correct plot for the probability density $\Psi^2(r)$ as a function of distance '*r*' of the electron from the nucleus for 2*s* orbitals ?

- **Q.3.** Consider the species CH_4 , NH_4^+ and BH_4^- . Choose the correct option with respect to these species.
 - (A) They are isoelectronic and only two have tetrahedral structures.
 - **(B)** They are isoelectronic and all have tetrahedral structures.
 - **(C)** Only two are isoelectronic and all have tetrahedral structures.
 - **(D)** Only two are isoelectronic and only two have tetrahedral structures.
- **Q. 4.** 4.0 moles of argon and 5.0 moles of PCl_5 are introduced into an evacuated flask of 100 litre capacity at 610 K. The system is allowed

Total Marks : 100

2022

29th June Shift 2

to equilibrate. At equilibrium, the total pressure of mixture was found to be 6.0 atm. The K_n for the reaction is

[Given : $R = 0.082 L atm K^{-1} mol^{-1}$] (A) 2.25 (B) 6.24 (C) 12.13 (D) 15.24

- **Q.5.** A 42.12% (w/v) solution of NaCl causes precipitation of a certain sol in 10 hours. The coagulating value of NaCl for the sol is [Given: Molar Mass : Na = 23.0 g mol⁻¹; $Cl = 35.5 g mol^{-1}$]
 - (A) 36 mmol L^{-1} (B) 36 mol L^{-1} (C) 1440 mol L^{-1} (D) 1440 mmol L^{-1}
- **Q.6.** Given below are two statements. One is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A) : The first ionization enthalpy for oxygen is lower than that of nitrogen.

Reason (R) : The four electrons in 2*p* orbitals of oxygen experience more electron-electron repulsion.

In the light of the above statements, choose the correct answer from the options given below.

- (A) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (B) Both (A) and (R) are correct and (R) is **NOT** the correct explanation of (A).
- (C) (A) is correct but (R) is not correct.
- (D) (A) is not correct but (R) is correct.
- **Q. 7.** Match List I with List II.

List- I		List-II	
a.	Siderite	I.	FeCO ₃
b.	Malachite	II.	$CuCO_3$. $Cu(OH)_2$
с.	Sphalerite	III.	ZnS
d.	Calamine	IV.	ZnCO ₃

Choose the correct answer from the option given below.

- (A) a-I, b-II, c-III, d-IV
- **(B)** a-III, b-IV, c-II, d-I
- (C) a-IV, b-III, c-I, d-II
- **(D)** a-I, b-II, c-IV, d-III
- **Q. 8.** Given below are two statements.
 - **Statement I** : In CuSO₄.5H₂O, Cu-O bonds are present.
 - **Statement II** : In CuSO₄5H₂O, ligands coordinating with Cu(II) ion are O- and S based ligands.

In the light of the above statement, choose the correct answer from the options given below

- (A) Both Statement I and Statement II are correct.
- (B) Both Statement I and Statement II are incorrect.

- (C) Statement I is correct but Statement II is incorrect.
- (D) Statement I is incorrect but Statement II is correct.
- **Q. 9.** Amongst baking soda, caustic soda and washing soda, carbonate anion is present in **(A)** washing soda only
 - (B) washing soda and caustic soda only
 - (C) washing soda and baking soda only
 - (D) baking soda, caustic soda and washing soda
- **Q. 10.** Number of lone pair(*s*) of electrons on central atom and the shape of BrF₃ molecule respectively are
 - (A) 0, triangular planar (B) 1, pyramidal
 - (C) 2, bent-T-shape (D) 1, bent T-shape
- **Q. 11.** Aqueous solution of which of the following boron compounds will be strongly basic nature?
 - (A) NaBH₄ (B) LiBH₄ (C) B_2H_6 (D) Na₂B₄O₇
- **Q. 12.** Sulphur dioxide is one of the components of polluted air, SO_2 is also a major contributor to acid rain. The correct and complete reaction to represent acid rain caused by SO_2 is.

(A)
$$2SO_2 + O_2 \rightarrow 2SO_3$$

(B) $SO_2 + O_3 \rightarrow SO_3 + O_3$
(C) $SO_2 + H_2O_2 \rightarrow H_2SO_4$
(D) $2SO_2 + O_2 + 2H_2O \rightarrow 2H_2SO_4$

Q. 13. Which of the following carbocation's is most stable ?

Q. 14. The stable carbocation formed in the below reaction is

Q. 15. Two isomers (A) and (B) with molar mass 184 g /mol and elemental composition C 52.2%; H 4.9% and Br 42.9% gave benzoic acid and *p*-bromobenzoic acid, respectively on oxidation with KMnO₄. Isomer 'A' is optically active and gives a pale yellow precipitate when warmed with alcoholic AgNO₃. Isomer 'A' and 'B' are, respectively :

- Q. 16. In Friedel-Crafts alkylation of aniline, one gets :
 - (A) alkylated product with ortho and para substitution
 - (B) secondary amine after acidic treatment
 - (C) an amide product
 - (D) positively charged nitrogen at benzene ring
- Q. 17. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as **Reason** (R).

Assertion (A) : Dacron is an example of polyester polymer.

Reason (**R**) : Dacron is made up of ethylene glycol and terephthalic acid monomers.

In the light of the above statement, choose the most appropriated answer from the options given below :

- (A) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- Both (A) and (R) are correct but (R) is **(B) NOT** the correct explanation of **(A)**.
- (C) (A) is correct but (R) is not correct.
- (D) (A) is not correct but (R) is correct.
- **Q. 18.** The structure of protein that is unaffected by heating is :

- (A) secondary structure
- **(B)** tertiary structure
- (C) primary structure
- (D) quaternary structure
- Q. 19. The mixture of chloroxylenol and terpineol is an example of :
 - (A) antiseptic (**B**) pesticide
 - (C) disinfectant **(D)** narcotic analgesic

3

Q. 20. A white precipitate was formed when BaCl₂ was added to extract of an inorganic salt. Farther, a gas 'X' with characteristic odour was released when the formed white precipitate was dissolved in dilute HCl. The anion present in the inorganic salt is :

(A)
$$I^{-}$$
 (B) SO_{3}^{2-}
(C) S^{2-} (D) NO_{2}^{2-}

Section B

Q. 21. A box contains 0.90 g of liquid water in equilibrium with water vapour at 27°C. The equilibrium vapour pressure of water at 27°C is 32.0 Torr. When the volume of the box is increased, some of the liquid water evaporates to maintain the equilibrium pressure. If the liquid water evaporates, then the volume of the box must be -1 litre. (nearest integer) R = 0.0821 L atm K⁻¹ mol⁻¹

> (Ignore the volume of the liquid water and assume water vapours behave as an ideal gas).

Q. 22. 2.2 g of nitrous oxide (N_2O) gas is cooled at a constant pressure of 1 atm from 310 K to 270K causing the compression of the gas from 217.1 mL to 167.75 mL. The change in internal energy of the process, ΔU is '-x' J. The value of \mathbf{x} is _

(Nearest integer)

(Given : atomic mass of N = 14 g mol⁻¹ and of O = 16 g mol⁻¹, Molar heat capacity of N₂O is 100 J K⁻¹ mol⁻¹)

- Q.23. Elevation in boiling point for 1.5 molal solution of glucose in water is 4 K. The depression in freezing point of 4.5 molal solution of glucose in water is 4 K. The ratio of molal elevation constant to molal depression constant (K_b/K_f) is
- **Q. 24.** The cell potential for the given cell at 298 K Pt | $H_2(g, 1 \text{ bar})$ | $H^+(aq)$ | $Cu^{2+}(aq)$ | Cu(s)is 0.31 V. The pH of the acidic solution is found to be 3, whereas the concentration of Cu^{2+} is 10^{-x} M. The value of x is 2 303 RT

[Given:
$$(E_{Cu^{2+}/Cu} = 0.34 \text{ V and } \frac{2.505 \text{ Kr}}{F}$$

= 0.06 V)]

O. 25. The equation

$$k = (6.5 \times 10^{12} \text{s}^{-1})e^{-26000 \text{K/T}}$$

is followed for the decomposition of compound A. The activation energy for the

reaction is _____kJ mol⁻¹. (Nearest integer) (Given : R = 8.314 JK⁻¹ mol⁻¹)

- **Q. 26.** Spin only magnetic moment of $[MnBr_6]^{4-}$ is ______B.M. (Round off to the closest integer)
- **Q. 27.** For the reaction given below : $CoCl_3. x NH_3 + AgNO_3(aq) \rightarrow$ If two equivalents of AgCl precipitate out, then the value of x will be _____.
- **Q.28.** The number of chiral alcohol (*s*) with molecular formula $C_4H_{10}O$ is ____.
- **Q. 29.** In the given reaction,

the number of sp^2 hybridised carbon (s) in compound 'X' is _____.

Q. 30. In the given reaction,

$$(i) \xrightarrow{OH} (ii) \xrightarrow{P'} (ii) \xrightarrow{Heat} (ii) \xrightarrow{P'} (iii) \xrightarrow{Heat} (iii) \xrightarrow{P'} (iii)$$

The number of π electrons present in the product 'P' is ____.

O No	A	Torris Norma	Charater Neme
Q. NO.	Answer	<u>1 Topic Name</u>	Chapter Name
1	D	Section (A)	Como basis concento of chamistry
1	D	Significant figures	Some basic concepts of chemistry
2	В	Concept of Orbital	Structure of Atom
3	В	VSEPR theory	Chemical Bonding and Molecular
			Structure
4	А	Equilibrium	Equilibrium
5	D	Surface chemistry	Surface chemistry
6	А	General characteristics of <i>p</i> -Block	Some <i>p</i> -Block Elements
		elements	
7	А	Ores	General principle and process of
			isolation of Elements
8	С	Coordination Compounds	Coordination Compounds
9	Ā	Chemical Bonding and Molecular	Chemical Bonding and Molecular
		Structure	Structure
10	С	VSEPR theory and Hybridisation	Chemical Bonding and Molecular
10	C		Structure
11	П	Acids and bases	Fauilibrium
12		Environmental Chemistry	Equinorium Environmental Chemistry
13	D	Reaction Intermediates	Organic Chemistry Some Basic
10	D		Principles and Techniques
14	C	Aromatic Hydrocarbons	Hydrocarbons
15		Haloalkanes and Haloarenes	Haloalkanes and Haloarenes
16		Chemical properties of Aniline	Organic Compounds Containing
10	D	chemical properties of Alimite	Nitrogon
17	Δ	Polymer	Polymer
17	<u> </u>	Proteins	Biomolecules
10	<u>A</u>	Chemistry in Everyday Life	Chemistry in everyday life
20	B	Chemical properties of s-block	s-Block Elements (Alkali and Alkaline
20	D	alamants	Forth Motols)
		Section (B)	Earth Wetais)
21	29	Ideal gas equation	States of Matter · Gases and Liquids
21	195	Internal energy	Thermodynamics
23	3.1	Colligative properties	Solutions
28	7	Nernst Equation	Electrochemistry
25	216	Arrhenius equation	Chemical Kinetics
26	7	Magnetic properties	Coordination Compounds
27	5	Coordination Compounds	Coordination Compounds
28	1	Chirality (Stereochemistry)	Alcohols, Phenols and Ethers
29	8	Chemical properties of alcohols	Alcohols, Phenols and Ethers
30	4	Chemical properties of carbonyl	Aldehydes, Ketones and Carboxvlic
		compounds	acids

Answer Key

JEE (Main) CHEMISTRY SOLVED PAPER

ANSWERS WITH EXPLANATIONS

Chemistry

Section A

 Option (B) is correct. Explanation : 0.002858 × 0.112/0.5702 = 0.000561 Number of significant fig. in 0.002858 = 4 Number of significant fig. in 0.112 = 3 Number of significant fig. in 0.5702 = 4 Hence, 0.00561 has three significant figures.

2. Option (B) is correct. Explanation :

$$\Psi^2(r)$$

Plot of $\psi^2(\mathbf{r}) \mathbf{v}/\mathbf{s}$ 'r' for 2s orbital of single electron species.

For 2s orbital, n = 2, l = 0So, radial node = n - l - 1 = 2 - 0 - 1= 1

Hence, there is 1 radial node present. The value of ψ^2 is always positive.

3. Option (B) is correct.

Explanation : Number of electrons in $CH_4 = 6 + 4 = 10$ Number of electrons in $NH_4 + = 7 + 4 - 1 = 10$ Number of electrons in $BH_4^- = 5 + 4 + 1 = 10$ Since, CH_4 , NH_4^+ and BH_4^- , all have equal number of electrons, i.e., 10, so these compounds are isoelectronic.

They all have tetrahedral structures $(sp^3 hybridisation)$.

4. Option (A) is correct. **Explanation :** Given PCl₅ = 5.0 mole $n_{\rm PCl_{z}} = 5, n_{\rm Ar} = 4$ V = 100 L, T = 610 K.PV = nRT $P_{\text{Total}} = \frac{n_{\text{Total}} RT}{V}$ $P_{\text{Total}} = \frac{9 \times 0.082 \times 610}{100}$ = 4.5 atmSo, $p_{PCl_5} = \frac{n_{PCl_5} \times P_{Total}}{n_{Total}} = \frac{5}{9} \times 4.5 = 2.5 \text{ atm}$ $p_{Ar} = \frac{n_{Ar} \times P_{Total}}{n_{Total}} = \frac{4}{9} \times 4.5 = 2 atm$ $PCl_5 \implies PCl_3 + Cl_2$ 0 At t = 02.5 0 At t = $t_{eq} 2.5 - x$ x х $P_{Total} = 2.5 - x + x + x + P_{Ar}$ 6 = 2.5 + x + 2x = 1.5So, at eq^m , $p_{PCl_s} = 2.5 - 1.5 = 1$ $p_{\rm PCl_3} = 1.5$, $p_{\rm Cl_3} = 1.5$ $K_P = \frac{[p_{\text{PCl}_3}][p_{Cl_2}]}{[p_{\text{PCl}_3}]}$ $K_p = \frac{1.5 \times 1.5}{1}$ $K_p = 2.25$

5. Option (D) is correct.

Explanation : Given : 42.12 g NaCl in 100 mL solution.

Molar mass of Na = 23.0 g mol^{-1} Molar mass of Cl = 35.5 g mol^{-1}

MOIAr mass of CI = 35.5 g m

Molarity (M) = n/V

$$M = \frac{42.12 \times 1000}{(23+35.5) \times 100}$$
$$M = \frac{42.12 \times 10}{58.5}$$
$$= 7.2$$

Coagulation value = Number of milli mole of electron/Volume of solution Number of milli mole of electron = 7200

Coagulation value for 10 hours = 7200

Coagulation value for 2 hours

$$= \frac{7200}{10} \times 2$$

= 1440 m mol L⁻¹

6. Option (A) is correct.

Explanation : Oxygen has lower ionisation energy than that of nitrogen because the electronic configuration of nitrogen has halffilled stability whereas for oxygen it is partially filled. It is easier to remove the electron from partially filled oxygen atom as in doing so it attains half-filled stability. In the case of nitrogen, it required more energy to remove an electron from half-filled or full filled orbitals. Electronic configuration of $O = 1s^2 2s^2 2p^6$ Electronic configuration of $N = 1s^2 2s^2 2p^3$ Ionisation energy N > O. In oxygen atom, 2 of the 4 2*p* electrons must occupy the same 2*p* orbital resulting in an increased electron electron-repulsion.

- 7. Option (A) is correct. Explanation : Siderite — FeCO₃ Malachite — CuCO₃.Cu(OH)₂ Calamine — ZnCO₃ Sphalerite — ZnS
- 8. Option (C) is correct. Explanation :

A covalent bond is formed between sulphur and oxygen as they both are non metals and the bond between copper and sulphate is ionic one is metal and other non metal. Hydrated copper sulphate is a complex which is bonded to water molecules acting as ligands forming coordinate bond.

9. Option (A) is correct.

Explanation : Baking soda : NaHCO₃, Washing soda : Na₂CO₃. 10H₂O and Caustic soda : NaOH. Bicarbonate anion (HCO₃⁻) is present in baking soda, OH⁻ is present in caustic soda and CO₃²⁻ anion is present in washing soda.

So, only washing soda contains carbonate anion.

10. Option (C) is correct.

Explanation : In BrF_3 molecule, there are 2 lone pairs and 3 bond pairs of electrons. The central Br atom undergoes sp^3d hybridisation. The expected geometry of BrF_3 is trigonal bipyramidal and actual geometry is T-shaped since 2 of the orbitals are occupied by lone pairs.

$$F - Br \\ F - Br \\ F \\ F$$

Bent T-shaped

11. Option (D) is correct.

Explanation : $Na_2B_4O_7$ gives H_3BO_3 and NaOH in water.

Reaction : $Na_2B_4O_7 + H_2O \rightarrow H_3BO_3 + NaOH$ Weak Strong acid base

An aqueous solution of borax $Na_2B_4O_7$ is basic in nature as it on hydrolysis produces H_3BO_3 (a weak acid) and NaOH (a strong base).

12. Option (D) is correct.

Explanation : Sulphur dioxide and Sulphur trioxide react with water to form H_2SO_4 which causes acid rain.

$$\begin{array}{c} \mathrm{S} + \mathrm{O}_2 \rightarrow \mathrm{SO}_2 \\ \mathrm{2SO}_2 + \mathrm{O}_2 \rightarrow \mathrm{2SO}_3 \\ \mathrm{SO}_3 + \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{H}_2 \mathrm{SO}_4 \end{array}$$

13. Option (D) is correct.

Explanation : The order of stability of carbocation is $3^{\circ} > 2^{\circ} > 1^{\circ}$

The greater is the delocalisation of charge, more is the stability of carbocation.

14. Option (C) is correct. Explanation :

CH₃CH₂CH₂CH₂Cl + Anhyd.AlCl₃

$$\downarrow$$

CH₃CH₂CH₂⁺ + AlCl₄
(1°)
CH₃CH₂CH₂⁺ $\stackrel{\text{Rearrangement}}{\underset{(1^{\circ})}{\overset{\oplus}{\longrightarrow}}}$ CH₃CHCH₃
(1°) (2°)

After 1, 2-Hydride shift, 1° carbocation is converted to 2° carbocation.

15. Option (C) is correct. Explanation :

16. Option (D) is correct.

Explanation : Since, anniline does not undergo Friedel-Crafts alkylation because of salt formation with AlCl₃. So, because of this nitrogen acquires positive charge.

17. Option (A) is correct. Explanation :

Dacron (or terylene) is an example of polyester polymer and it is made up of ethylene glycol and terephthalic acid monomers.

18. Option (C) is correct.

Explanation : Primary structure of protein is unaffected by physical changes or chemical changes.

Since, primary structure of protein is straight chain of amino acids which are held together by covalent peptide bond and is not disrupted on heating. While on heating, the helix gets uncoiled and globules gets unfold, so secondary and tertiary structures are destroyed.

19. Option (A) is correct.

Explanation : Mixture of chloroxylenol and terpineol is known as Dettol. It acts as an antiseptic. It is applied to living tissue as it kills bacteria and stops their growth, preventing further infections.

20. Option (B) is correct.

Explanation :

$$BaCl_2 + SO_3^{2-} \rightarrow BaSO_3 \downarrow \xrightarrow{\text{dil. HCl}} SO_2 \uparrow$$

burning sulphur like smell So, the anion present in the inorganic salt is SO_3^{2-} .

Section B

21. Correct answer is [29]. Explanation : Since, 760 Torr = 1 atm

 \therefore 32 Torr = 32/760 atm

As all the liquid water evaporates so entire water is in gaseous state.

Weight of water vapour = 0.9 g

:. Moles of water vapour (n) = $\frac{\text{Given mass}}{\text{Molecular mass}}$ = $\frac{0.9}{18}$

Pressure (P) = 32/760 atm

Temperature (T) = (27 + 273) K = 300 K R = 0.082 L atm K⁻¹ mol⁻¹

Given water vapour act as an ideal gas, so we can apply ideal gas equation.

From ideal gas equation,

$$PV = n RT$$

$$\frac{32}{760} \times V = \frac{0.9}{18} \times 0.082 \times 300$$

$$V = \frac{0.9 \times 0.082 \times 300 \times 760}{32 \times 18}$$

$$V = 29.21 L$$

$$= 29 L$$
 (nearest integer)

22. Correct answer is [195].

Explanation :

$$\begin{split} {\rm T_1} &= 310 \; {\rm K}, \, {\rm T_2} = 270 \; {\rm K} \\ {\rm \Delta T} &= {\rm T_2} - {\rm T_1} = 270 \; {\rm K} - 310 \; {\rm K} = - \; 40 \; {\rm K} \\ {q_{\rm p}} &= n \; {\rm C_p} \; {\rm \Delta T} \end{split}$$

$$= \frac{2.2}{44} \times 100 \times (-40)$$

= - 200 J
 $\Delta V = V_2 - V_1 = (167.75 - 217.1) \text{ mL}$
= 49.35 mL
w = - P_{ext} × DV
w = - (1) × $\frac{(-49.35)}{1000}$ atm L
w = + 0.04935 atm L
w = 0.04935 × 101.3 J
w = 4.99 J ~5 J
 $\Delta U = q + w$
= - 200 + 5
= - 195 J
So, the value of x is 195.

23. Correct answer is [3:1].

24.

Explanation :

$$\Delta T_b = K_b m_1 \qquad \dots (1)$$

$$\Delta T_f = K_f m_2 \qquad \dots (2)$$
Given, $m_1 = 1.5 \text{ m}$

$$m_2 = 4.5 \text{ m}$$

$$\Delta T_b = 4 \text{ K}$$

$$\Delta T_f = 4 \text{ K}$$
Dividing (1) by (2)
$$\frac{\Delta T_b}{\Delta T_f} = \frac{K_b m_1}{K_f m_2}$$

$$\frac{4}{4} = \frac{K_b \times 1.5}{K_f \times 4.5}$$

$$\frac{K_b}{K_f} = \frac{4.5}{1.5} = \frac{3}{1}$$
So, $K_b : K_f = 3 : 1$
Correct answer is [7].
Explanation : Given cell :
Pt $|H_2(g)|H^+(aq)| |Cu^{2+}(aq)| Cu(s)$
Oxidation Half reaction :

$$\begin{split} H_2 &\rightarrow 2H^+ + 2e^-, \ E^0_{H^+/H_2} = 0 \ V \\ \text{Reduction Half reaction :} \\ & Cu^{2+} + 2e^- \rightarrow Cu_{,} \ E^0_{Cu^{2+}/Cu} = 0.34 \ V \\ \text{Net cell reaction :} \\ & H_2 + Cu^{2+} \rightarrow 2H^+ + Cu \\ & E^0_{cell} = E^0_{cathode} - E^0_{anode} \\ & E^0_{cell} = (0.34 - 0) \ V = 0.34 \ V \\ \text{Now, pH of the acidic solution = 3 (given)} \\ & pH = -\log_{10}[H^+] \end{split}$$

 $3 = -log_{10}[H^+]$

 $[H^+] = 10^{-3} M$ \Rightarrow $[Cu^{2+}] = 10^{-x} M$ $E_{cell} = 0.31 \text{ V} \text{ (given)}$ Applying Nernst equation, $E_{cell} = E_{cell}^0 - \frac{2.303 RT}{nF} \log \frac{[H^+]^2}{[Cu^{2+}]}$ $0.31 = 0.34 - \frac{0.06}{2} \log \frac{(10^{-3})^2}{10^{-x}}$ $\begin{array}{rl} 0.31 &= 0.34 - 0.03 \log \left(10^{-6 - (-x)} \right) \\ - 0.03 &= -0.03 \log 10^{-6 + x} \\ 1 &= \log 10^{-6 + x} \end{array}$ $1 = (-6 + x) \log 10$ x = 1 + 6 = 7 $[:: \log 10 = 1]$ So, the value of x is 7. 25. Correct answer is [216]. Explanation : Given, $k = (6.5 \times 10^{12})e^{-\frac{26000 \,\mathrm{K}}{\mathrm{T}}}$...(1) $k = Ae^{-E_a/RT}$ Arrhenuis eq : ...(2) On comparing (1) & (2), we get $\frac{\mathrm{E_a}}{RT} = \frac{26000}{T}$ $E_a = 26000 \times R$ $E_a^{"} = 26000 \text{ K} \times 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$ $E_a = 216164 \text{ J mol}^{-1}$ $E_a^a = 216.164 \text{ kJ mol}^{-1}$ $\vec{E_a} = 216 \text{ kJ mol}^{-1}$ (nearest integer) 26. Correct answer is [7]. **Explanation** : $[MnBr_6]^{4-}$ x - 6 = -4x = +2 $Mn = [Ar] 3d^5 4s^2$ $Mn^{2+} = [Ar] 3d^5 4s^0$ Mn^{2+} : [Ar] [1] 3d 4s

So, number of unpaired electrons (n) = 5 $\mu = \sqrt{n(n+2)}$

$$\mu = \sqrt{5(5+2)} = \sqrt{35}$$

$$= 5.91$$
 B.M.

≈ 6 B.M.

27. Correct answer is [5]. Explanation : $CoCl_3.xNH_3 + AgNO_3 \rightarrow AgCl\downarrow$

$$2 \,\mathrm{mo}$$

Two equivalents of AgCl precipitates out, which symbolises that there are two free Cl⁻ ions. The coordination number of Co is six. So, the ligands inside the coordination sphere should be six. Hence, the complex should be $[Co(NH_3)_5Cl]Cl_2$. $[Co(NH_3)_5Cl]Cl_2 + AgNO_3 \rightarrow AgCl \downarrow 2 mol$

Hence, the value of *x* is 5.

28. Correct answer is [1]. Explanation : Molecular formula is C₄H₁₀O. So, all possible structures of alcohols are :

$$\begin{array}{cccc} CH_{3}CH_{2}CH_{2}CH_{2}OH, & CH_{3}CH_{2}CH - OH, \\ & & & \\ CH_{3} \\ CH_{3} \\ CH_{3} - C \\ CH_{3} - C \\ CH_{3} \\ CH_{3$$

Out of (A), (B), (C) and (D) only (B) is a chiral alcohol.

So, number of chiral alcohol with molecular formula $C_4H_{10}O$ is 1.

29. Correct answer is [8]. Explanation :

So, there are 8 sp^2 hybridised carbon atom in compound X.

30. Correct answer is [4]. Explanation :

In compound 'P', there are 4π electrons.