JEE (Main) QUESTION PAPER

Time : 3 Hours

General Instructions :

- There are three subjects in the question paper consisting of Mathematics Q. no. 1 to 30. 1.
- 2. This Paper is divided into two sections:

• Section A Consists of 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

• Section B consist of 10 questions, Numerical Value Type Questions - In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

- There will be only one correct choice in the given four choices in Section A. For each question 4 marks will be awarded for correct 3. choice, 1 mark will be deducted for incorrect choice for Section A questions and zero mark will be awarded for not attempted question.
- 4. For Section B questions, 4 marks will be awarded for correct answer and zero for unattempted and incorrect answer.

Mathematics

Section A

Q.1. The function $f(x) = 2x + 3(x)^3$, $x \in \mathbb{R}$, has

- (1) exactly one point of local minima and no point of local maxima
- (2) exactly one point of local maxima and no point of local minima
- (3) exactly one point of local maxima and exactly one point of local minima
- (4) exactly two points of local maxima and exactly one point of local minima
- Q. 2. Let A be the point of intersection of the lines 3x + 2y = 14, 5x - y = 6 and B be the point of intersection of the lines 4x + 3y = 8, 6x + 3y = 8y = 5. The distance of the point P(5, -2) from the line AB is
 - (1) (2) 8 (3) $\frac{5}{2}$ (4) 6

Q.3. If the mean and variance of five observations are
$$\frac{24}{5}$$
 and $\frac{194}{25}$ respectively and the mean

of the first four observations is $\frac{7}{2}$, then the

29th January Sl

variance of the first four observations in equal to

(1)
$$\frac{4}{5}$$
 (2) $\frac{77}{12}$
(3) $\frac{5}{4}$ (4) $\frac{105}{4}$

- **Q.4.** The distance of the point (2, 3) from the line 2x - 3y + 28 = 0, measured parallel to the line $\sqrt{3x} - y + 1 = 0$, is equal to

 - (1) $4\sqrt{2}$ (2) $6\sqrt{3}$ (3) $3+4\sqrt{2}$ (4) $4+6\sqrt{3}$
- **Q.5.** If $\log_e a$, $\log_e b$, $\log_e c$ are in an A.P. and $\log_e a - \log_e 2b$, $\log_e 2b - \log_e 3c$, $\log_e 3c - \log_e a$ are also in an A.P, then a : b : c is equal to

(1)
$$9:6:4$$

(2) $16:4:1$
(3) $25:10:4$
(4) $6:3:2$
Q. 6. Let $A = \begin{bmatrix} 2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5 \end{bmatrix}$

Total Marks: 300

The sum of the prime factors of $1|P^{-1}AP - 2I|$ is equal to

- **(1)** 26 **(2)** 27
- (3) 66 (4) 23
- **Q. 7.** If each term of a geometric progression a_1, a_2, a_3, \dots with $a_1 = \frac{1}{8}$ and $a_2 \neq a_1$, is the arithmetic mean of the next two terms and $S_n = a_1 + a_2 + \dots + a_n$, then $S_{20} - S_{18}$ is equal to (1) 2^{15} (2) -2^{18} (3) 2^{18} (4) -2^{15}
- **Q. 8.** An integer is chosen at random from the integers 1, 2, 3, ..., 50. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is

(1)
$$\frac{8}{25}$$
 (2) $\frac{21}{50}$
(3) $\frac{9}{50}$ (4) $\frac{14}{25}$

Q. 9. Let P(3, 2, 3), Q(4, 6, 2) and R(7, 3, 2) be the vertices of △PQR. Then, the angle ∠QPR is

(1)
$$\frac{\pi}{6}$$
 (2) $\cos^{-1}\left(\frac{7}{18}\right)$
(3) $\cos^{-1}\left(\frac{1}{18}\right)$ (4) $\frac{\pi}{3}$

Q. 10. Let r and θ respectively be the modulus and amplitude of the complex number

$$z = 2 - i\left(2\tan\frac{5\pi}{8}\right), \text{ then } (r,\theta) \text{ is equal to}$$
(1) $\left(2\sec\frac{3\pi}{8}, \frac{3\pi}{8}\right)$ (2) $\left(2\sec\frac{3\pi}{8}, \frac{5\pi}{8}\right)$
(3) $\left(2\sec\frac{5\pi}{8}, \frac{3\pi}{8}\right)$ (4) $\left(2\sec\frac{11\pi}{8}, \frac{11\pi}{8}\right)$

Q. 11. If $\sin\left(\frac{y}{x}\right) = \log |x| + \frac{\alpha}{2}$ is the solution of the differential equation $x\cos\left(\frac{y}{x}\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) + x$ and $y(1) = \frac{\pi}{3}$, then α^2 is equal to

$$(1-x^2)$$

Q. 12. Let
$$y = \log_e \left(\frac{1-x}{1+x^2} \right)$$
, $-1 < x < 1$. Then at $x = \frac{1}{2}$, the value of $225(y' - y'')$ is equal to

Q. 13. If
$$\int \frac{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x}{\sqrt{\sin^{3} x \cos^{3} x \sin(x - \theta)}} dx = A$$

 $\sqrt{\cos\theta \tan x - \sin\theta} + B\sqrt{\cos\theta - \sin\theta \cot x} + C$ where C is the integration constant, then AB is equal to

- 4cosec(2θ)
 4secθ
 2secθ
 8cosec(2θ)
 8cosec(2θ)
- **Q. 14.** Let $x = \frac{m}{n}$ (*m*, *n* are co-prime natural numbers) be a solution of the equation $\cos(2\sin^{-1}x) = \frac{1}{9}$ and let α , $\beta(\alpha > \beta)$ be the roots of the equation $mx^2 - nx - m + n = 0$. Then the point (α , β) lies on the line

(1)
$$3x + 2y = 2$$

(2) $5x - 8y = -9$
(3) $3x - 2y = -2$
(4) $5x + 8y = 9$

Q.15. Number of ways of arranging 8 identical books into 4 identical shelves where any number of shelves may remain empty is equal to

(1) 18	(2) 16
(3) 12	(4) 15

Q. 16. If R is the smallest equivalence relation on the set {1, 2, 3, 4} such that {(1, 2), (1, 3)}
⊂ R, then the number of elements in R is

(1) 10	(2) 12
(3) 8	(4) 15

Q.17. Let a unit vector $\hat{u} = x\hat{i} + y\hat{j} + z\hat{k}$ make

angles,
$$\frac{\pi}{2}$$
, $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ with the vectors
 $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}, \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}$ and $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$
respectively. If $\vec{v} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}$, then
 $|\hat{u} - |\vec{v}|^2$ is equal to
(1) $\frac{11}{2}$ (2) $\frac{5}{2}$
(3) 9 (4) 7
Let $\overrightarrow{OA} = a$, $\overrightarrow{OB} = 12\vec{a} + 4\vec{b}$ and \overrightarrow{OC}

Q. 18. Let $\overrightarrow{OA} = a$, $\overrightarrow{OB} = 12\overrightarrow{a} + 4\overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{b}$, where O is the origin. If S is the parallelogram with adjacent sides OA and OC, then $\frac{\text{area of the quadrilateral OABC}}{\text{area of S}}$

is equal to

 (1) 6
 (2) 10

 (3) 7
 (4) 8

Q. 19. The function
$$f(x) = \frac{x}{x^2 - 6x - 16}$$
, $x \in \mathbb{R} - \{-2, -2\}$

8}

- (1) decreases in (-2, 8) and increases in (-∞, -2) ∪ (8, ∞)
- (2) decreases in $(-\infty, -2) \cup (-2, 8) \cup (8, \infty)$
- (3) decreases in (-∞, -2) and increases in (8, ∞)
- (4) increases in $(-\infty, -2) \cup (-2, 8) \cup (8, \infty)$
- **Q.20.** The sum of the solutions $x \in \mathbb{R}$ of the

equation
$$\frac{3\cos 2x + \cos^3 2x}{\cos^6 x - \sin^6 x} = x^3 - x^2 + 6$$
 is
(1) 0 (2) 1

(3) -1 (4) 3

Section B

Q. 21. Let α , β be the roots of the equation $x^2 - \sqrt{6}x + 3 = 0$ such that Im (α) > Im (β). Let *a*, *b* be integers not divisible by 3 and *n* be a natural number such that $\frac{\alpha^{99}}{\beta} + \alpha^{98} =$ $3^{n}(a + ib), i = \sqrt{-1}$. Then n + a + b is equal to

- **Q. 22.** Let the slope of the line 45x + 5y + 3 =be $27r_1 + \frac{9r_2}{2}$ for some $r_1, r_2 \in \mathbb{R}$. Then $\lim_{x \to 3} \left(\int_{3}^{x} \frac{8t^2}{2} - r_2 x^2 - r_1 x^3 - 3x \right)$ is equal to
- **Q. 23.** Let P(α , β) be a point on the parabola $y^2 = 4x$. If P also lies on the chord of the parabola $x^2 = 8y$ whose mid point is $\left(1\frac{5}{4}\right)$, then $(\alpha 28)(\beta 8)$ is equal to
- **Q. 24.** Let O be the origin, and M and N be the points on the lines $\frac{x-5}{4} = \frac{y-4}{1} = \frac{z-5}{3}$ and $\frac{x+8}{12} = \frac{y+2}{5} = \frac{z+11}{9}$ respectively such that MN is the shortest distance between the given lines. Then $\overrightarrow{OM}.\overrightarrow{ON}$ is equal to
- **Q. 25.** Let for any three distinct consecutive terms *a*, *b*, *c* of an A.P, the lines ax + by + c = 0 be concurrent at the point P and Q(α , β) be a point such that the system of equations x + y + z = 6, $2x + 5y + \alpha z = \beta$ and x + 2y + 3z = 4, has infinitely many solutions. Then (PQ)² is equal to
- **Q. 26.** Remainder when 64³² is divided by 9 is equal to

Q.27. Let
$$f(x) = \sqrt{\lim_{r \to x} \left\{ \frac{2r^2 [f(r)]^2 - f(x)f(r)}{r^2 - x^2} - r^3 \frac{\overline{f(r)}}{r} \right\}}$$
 be differentiable in $(-\infty, 0) \cup (0, \infty)$

and f(1) = 1. Then the value of *ea*, such that f(a) = 0, is equal to

Q. 28. Let the set C = $\{(x, y) | x^2 - 2^y = 2023, x, y \in N\}$. Then $\sum_{(x,y)\in C} (x+y)$ is equal to

Q. 29. If
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1 - \sin 2x} dx = \alpha + \beta \sqrt{2} + \gamma \sqrt{3}$$
, where

Q. 30. Let the area of the region $\{(x, y): 0 \le x \le 3, 0 \le y \le \min\{x^2 + 2, 2x + 2\}\}$ be A. Then 12A is equal to

Mathematics				
Q. No.	Answer	Topic Name	Chapter Name	
1	(3)	Maxima and Minima	Application of Derivatives	
2	(4)	Point and Line	Straight Line	
3	(3)	Mean and Variance	Statistics	
4	(4)	Line and Line	Straight Line	
5	(1)	AP	Sequence and Series	
6	(1)	Value of Determinant	Matrix and Determinant	
7	(4)	GP	Sequence and Series	
8	(2)	Probability	Probability	
9	(4)	Dot product	Vector	
10	(1)	Modulus and Argument	Complex number	
11	(1)	Solution of Differential Equation	Differential Equation	
12	(4)	Value of Derivatives	Differentiation	
13	(4)	Method of Substitution	Indefinite Integral	
14	(4)	Trigonometric Equation	ITF	
15	(4)	Distribution	Permutation and Combination	
16	(1)	Equivalence Relation	Relation and Function	
17	(2)	Dot Product	Vector	
18	(4)	Cross Product	Vector	
19	(2)	Increasing and Decreasing Function	Application of Derivatives	
20	(2)	Trigonometry Equation	Trigonometry	
21	[49]	Algebra of Complex Number	Complex Number	
22	[12]	Leibnitz Theorem	Limit	
23	[-192]	Chord	Parabola	
24	[9]	Shortest Line	3D	
25	[113]	System of Linear Equations	Determinants	
26	[1]	Divisibility Problem	Binomial Theorem	
27	[2]	Limi and Differential Equation Limit and Differential Equation		
28	[46]	Solution of Equation Basic Mathematics		
29	[6]	Definite Integration	Definite Integral	
30	[164]	Area Between 2 Curves	Area Under the Curves	

JEE (Main) SOLVED PAPER

2024 29th January Shift 2

ANSWERS WITH EXPLANATIONS

Section A

1. Option (3) is correct.

Diff. wrfx.

$$f(x) = 2x + 3x^{\frac{2}{3}}$$

$$f'(x) = 2 + 2x^{\frac{-1}{3}} = 2 + \frac{2}{x\frac{1}{3}}$$

$$= 2\left(x\frac{1}{3} + 1\right)$$

$$= 2\left(\frac{-5}{x\frac{1}{3}}\right)$$
$$f^{1}(x) = 0$$
$$x\frac{1}{3}+1 = 0$$

x = -1Critical point x = 0, -1using first order derivative test $\begin{array}{c|c} & \\ \hline \\ \hline \\ \hline \\ \hline \\ -1 & 0 \end{array}$

\downarrow
Point
of
Local minima

 \Rightarrow Exactly are point local maxima & exactly one point local minima.

2. Option (4) is correct.

Point of intersection of the lines

3x + 2y = 14and 5x - y = 6 is A(2, 4) Point of intersection of lines

$$4x + 3y = 8$$

& $6x + y = 5$ is $B\left(\frac{1}{2}, 2\right)$

 Eq^n of line AB

$$\Rightarrow \qquad y-4 = \frac{4-2}{2-\frac{1}{2}}(x-2)$$
$$\Rightarrow \qquad y-4 = \frac{4}{3}(x-2)$$
$$3y-12 = 4x-8$$
$$4x-3y+4 = 0$$

Distance of line 4x - 3y + 4 = 0from P(5, 2) is $\left|\frac{4(5)-3(-2)+4}{5}\right| = \frac{30}{5}$ = 6 3. Option (3) is correct. $\overline{X}_{o/d} = \frac{24}{5}$ $\Rightarrow \frac{a_1 + a_2 + a_3 + a_4 + a_5}{5} = \frac{24}{5}$ $=\sum_{i=1}^{5}ai$ = 24...(i) $(Var)_{o/d} = \frac{194}{25}$ n = 5 $\overline{X}_{New} = \frac{7}{2}$ $\frac{\sum_{i=1}^{4}ai}{4} = \frac{7}{2}$ $\sum_{i=1}^{4} ac = 14$ \Rightarrow ...(ii)

by (i) & (ii)
$$a_5 = 10$$

 $(\operatorname{Var})_{o/d} = \frac{194}{25}$
 $\frac{\sum xc^2}{5} - (\overline{X})^2 = \frac{194}{25}$
 $\frac{\sum_{i=1}^{4} ai^2 + 100}{5} - \left(\frac{24}{5}\right)^2 = \frac{194}{25}$
 $\frac{\sum_{i=1}^{4} ac^2 + 100}{5} = \frac{194}{25} + \frac{576}{26}$
 $\sum_{i=1}^{4} ac^2 = \frac{720}{5} - 100 = \frac{270}{5}$
 $= 54$

5. Option (1) is correct.

New Variance

$$\frac{\sum_{i=1}^{4} ac^2}{4} - (\overline{X})^2 = \frac{54}{4} - \left(\frac{7}{2}\right)^2 = \frac{5}{4}$$

Let 'Q' be the angle b/w two given lines

$$\tan \theta = \left| \frac{\frac{2}{3} - \sqrt{3}}{1 + \frac{2}{3}\sqrt{3}} \right|$$
$$\tan \theta = \left| \frac{2 - 3\sqrt{3}}{3 + 2\sqrt{3}} \right|$$
$$\tan \theta = \frac{3\sqrt{3} - 2}{2\sqrt{3} + 3}$$

Now

$$Pm = \left| \frac{2(2) - 3(3) + 28}{\sqrt{4 + 9}} \right|$$
$$= \frac{23}{\sqrt{13}}$$

$$\therefore PQ = \frac{Pm}{\sin \theta}$$

$$= Pm \cos \theta$$

$$= \frac{23}{\sqrt{13}} \left(\frac{\sqrt{(2\sqrt{3}+3)^2 + (3\sqrt{3}-2)^2}}{3\sqrt{3}-2} \right)$$

$$= \frac{23}{\sqrt{13}} \left(\frac{\sqrt{12+9+12\sqrt{3}+27+4-12\sqrt{3}}}{3\sqrt{3}-2} \right)$$

$$= \frac{23}{\sqrt{13}} \times \frac{\sqrt{52}}{(3\sqrt{3}-2)}$$

$$= \frac{46}{3\sqrt{3}-2} \times \frac{3\sqrt{3}+2}{3\sqrt{3}+2}$$

$$= \frac{46(3\sqrt{3}+2)}{23}$$

$$= 4+6\sqrt{3}$$

$$log_e a, log_e b, log_e c \text{ are in } AP$$

$$\Rightarrow 2 log_e b = log_e a + log_e c$$

$$\Rightarrow b^2 = ac$$

$$\because log_e a - log_e 2b, log_e 2b - log_e 3c,$$

$$log_e 3c - log_e a \text{ are in } AP$$

$$\Rightarrow log_e \frac{a}{2b}, log_e \frac{2b}{3c}, log_e \frac{3c}{a} \text{ are in } AP$$

$$\Rightarrow 2 log_e \frac{2b}{3c} = log_e \frac{a}{2b} + log_e \frac{3c}{a}$$

$$\Rightarrow \left(\frac{2b}{3c}\right)^2 = \frac{a}{2b} \times \frac{3c}{a}$$

$$\Rightarrow \left(\frac{2b}{3c}\right)^2 = \frac{a}{2b} \times \frac{3c}{a}$$

$$\Rightarrow \frac{4b^2}{9c^2} = \frac{3c}{2b}$$

$$8b^3 = 27c^3$$

$$2b = 3c$$

$$\therefore b^2 = ac$$

$$\left(\frac{3c}{2}\right)^2 = ac$$

$$\Rightarrow 9c = 4a$$

$$\therefore a : b : c$$

$$\frac{9c}{4} : \frac{3c}{2} : c = 9 : 6 : 4$$

6. Option (1) is correct.

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2 \end{bmatrix}$$
$$P = \begin{bmatrix} 1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5 \end{bmatrix}$$
$$Iet B = P^{-1}AP - 2I$$
Post multiply by P
$$PB = AP - 2P$$
$$\{ \because PP^{-1} = I \& PI = P \}$$
Post multiply by P⁻¹
$$PBP^{-1} = A - 2I$$
$$PBP^{-1} = |A - 2I|$$
$$Now |PBP^{-1}| = |A - 2I|$$
$$|P| . |B| . |P^{-1}| = \begin{bmatrix} 2 - 2 & 1 & 2 \\ 6 & 2 - 2 & 11 \\ 3 & 3 & 2 - 2 \end{bmatrix}$$

_

$$|\mathbf{P}| \cdot |\mathbf{B}| \cdot \frac{1}{|\mathbf{P}|} = \begin{bmatrix} 0 & 1 & 2 \\ 6 & 0 & 11 \\ 3 & 3 & 0 \end{bmatrix}$$

(expand wrf 12,) |B| = -1(-33) + 2(18) $\Rightarrow |P^{-1}AP - 2I| = 33 + 36 = 69$ Prime factors of 69 is 3 & 23 sum = 3 + 23

$$= 26$$

7. Option (4) is correct.

 $\therefore a_1, a_2, a_3$ are in G.P.

$$a_1 = \frac{1}{8}$$

 $a_2 = \frac{a_3 + a_4}{2}$ (i)

:. $a_1 = a \& r'$ be the common ratio :. eq^n (i) becomes

$$ar = \frac{ar^{2} + ar^{3}}{2}$$

$$2 = r + r^{2}$$

$$r^{2} + r - 2 = 0$$

$$r^{2} + 2r - r - 2 = 0$$

$$(r + 2) (r - 1) = 0$$

$$r = -2, 1$$

$$a_{2} \neq a_{1}$$

$$r \neq 1$$

$$\therefore \qquad r = -2$$
Now
$$S_{20} - S_{18} = a_{19} + a_{20}$$

$$= ar^{18} + ar^{19}$$

$$= ar^{18}(1 + r)$$

$$= \frac{1}{8}(-2)^{18}(1 - 2)$$

$$= -2^{15}$$

8. Option (2) is correct.

$$U = \{1, 2, 3.....50\}$$

- A = Set of integers which is multiple of 4
- B = Set of integers which is multiple of 6
- C = Set of integers which is multiple of 7
 - n(A) = 12 n(B) = 8 n(C) = 7 $n(A \cap B) = 4$ $n(B \cap C) = 1$ $n(C \cap A) = 1$

$$n(A \cap B \cap C) = 0$$

$$\therefore n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$$

$$= 12 + 8 + 7 - 4 - 1 - 1 + 0$$

$$= 21$$

$$\therefore required probability$$

$$= \frac{21}{50}$$
9. Option (4) is correct.
P(3, 2, 3), Q(4, 6, 2) & R(7, 3, 2) be the vertices of ΔPQR
P(3,2,3)
P(3,3,3)
P

$$= \frac{9}{18} = \frac{1}{2}$$
$$Q = \frac{\pi}{3}$$

10. Option (1) is correct.

$$z = 2 - i\left(2\tan\frac{5\pi}{8}\right)$$
$$= 2 - 2i\frac{\sin\frac{5\pi}{8}}{\cos\frac{5\pi}{8}}$$
$$= \frac{2}{\cos\frac{5\pi}{8}}\left(\cos\frac{5\pi}{8} - i\sin\frac{5\pi}{8}\right)$$
$$= \frac{2}{\cos\left(\pi - \frac{3\pi}{8}\right)}\left(\cos\left(\pi - \frac{3\pi}{8}\right) - i\sin\left(\pi - \frac{3\pi}{8}\right)\right)$$
$$= \frac{-2}{\cos\frac{3\pi}{8}}\left(-\cos\frac{3\pi}{8} - i\sin\frac{3\pi}{8}\right)$$

$$= 2 \sec \frac{3\pi}{8} \left(\cos \frac{3\pi}{8} + i \sin \frac{3\pi}{8} \right)$$

In polar form any complex no. z can be written

$$z = |z|(\cos \theta + i \sin \theta)$$

$$\therefore \qquad |z| = r$$

$$= 2 \sec \frac{3\neq}{8}$$

Arg (z) = θ

$$= \frac{3\neq}{8}$$

11. Option (1) is correct.

$$\sin \frac{y}{x} = \ln x + \frac{\alpha}{2}$$

$$\therefore \qquad y(1) = \frac{\pi}{3}$$

$$\therefore \qquad \sin \frac{\pi}{3} = \ln(1) + \frac{\alpha}{2}$$

$$\frac{\sqrt{3}}{2} = 0 + \frac{\alpha}{2}$$

$$\alpha = \sqrt{3}$$

$$\alpha^{2} = 3$$

12. Option (4) is correct.

$$y = \log_{e} \left(\frac{1-x^{2}}{1+x^{2}}\right) - 1 < x < 1$$

$$y' = \frac{1}{\left(\frac{1-x^{2}}{1+x^{2}}\right)} \cdot \frac{(1+x^{2})(-2x) - (1-x^{2})(2x)}{(1+x^{2})^{2}}$$

$$= \frac{2x(-1-x^{2}-1+x^{2})}{(1-x^{2})(1+x^{2})}$$

$$= \frac{-4x}{1-x^{4}}$$

$$y'' = \frac{(1-x^{4})(-4) - (-4x)(-4x^{3})}{(1-x^{4})^{2}}$$

$$= \frac{4[-1+x^{4}-4x^{4}]}{(1-x^{4})^{2}}$$

$$= 4\frac{(-3x^{4}-1)}{(1-x^{4})^{2}} = -4\left[\frac{3x^{4}+1}{(1-x^{4})^{2}}\right]$$
At
$$x = \frac{1}{2}$$

$$\Rightarrow \qquad y' = \frac{-4 \times \frac{1}{2}}{1-\frac{1}{16}}$$

$$= \frac{-2 \times 16}{15}$$

$$= -\frac{32}{15}$$

$$y'' = -4 \frac{\left(\frac{3}{10} + 1\right)}{\left(1 - \frac{1}{10}\right)^2}$$

$$= \frac{-4 \times 19}{16} \times \frac{16 \times 16}{15 \times 15} = \frac{-64 \times 19}{225}$$
Now 225(y' - y'')
$$= 225 \left(\frac{-32}{15} + \frac{64 \times 19}{225}\right)$$

$$= 32(-15 + 38)$$

$$= 32 \times 23$$

$$= 736$$

13. Option (4) is correct. 3 3

$$\int \frac{\sin^{\frac{3}{2}}x + \cos^{\frac{3}{2}}x}{\sqrt{\sin^3 x \cdot \cos^3 x \cdot \sin(x - \theta)}} dx$$

 $= A\sqrt{\cos\theta.\tan x - \sin\theta} + 13\sqrt{\cos\theta - \sin\theta\cot x} + c$

let
$$I = \int \frac{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x}{\sqrt{\sin^{3} x \cos^{3} x \sin(x - \theta)}} dx$$
$$= \int \frac{dx}{\sqrt{\cos^{3} x (\sin x \cos \theta - \cos x \sin \theta)}} dx$$

$$+ \int \frac{dx}{\sqrt{\sin^3 x (\sin x \cos \theta - \cos x \sin \theta)}}$$

$$= \int \frac{\sec^2 x dy}{\sqrt{\tan x \cos \theta - \sin \theta}} + \int \frac{\cos e^2 x dx}{\sqrt{\cos \theta - \cot x \sin \theta}}$$

$$\downarrow$$

$$\tan x = y \qquad -\cot x = z$$

$$\sec^2 x dx = dy \qquad \csc^2 x dx = dz$$

$$= \int \frac{dy}{\sqrt{y \cos \theta - \sin \theta}} + \int \frac{dz}{\sqrt{\cos \theta + \sin \theta}} 2z$$

$$= \frac{2\sqrt{y\cos\theta - \sin\theta}}{\cos\theta} + \frac{2\sqrt{\cos\theta + \sin\theta2}}{\sin\theta}$$
$$A = 2 \sec\theta$$

$$\therefore \quad A = 2 \sec \theta$$

$$B = 2 \operatorname{cosec} \theta$$

$$AB = 2 \sec \theta \cdot 2 \operatorname{cosec} \theta$$

$$= \frac{4}{\sin \theta \operatorname{cosec} \theta} = \frac{8}{\sin 2\theta}$$

$$= 8 \operatorname{cosec} 2\theta$$

14.	Option (4) is correct.	
	$\cos(2\sin^{-1}x)$	$=\frac{1}{9}$
	cos20	$= 1 - 2 \sin^2 \theta$
	$\therefore \qquad \cos(2\sin^{-1}x)$	$= 1 - 2[\sin(\sin^{-1}x)]^2$
		$=\frac{1}{9}$
	$1 - 2(x^2)$	$=\frac{1}{9}$
	$1 - \frac{1}{9}$	$=2x^{2}$
	$\frac{8}{9}$	$=2x^2$
	x^2	$=\frac{4}{9}$
	x	$=\pm\frac{2}{3}$
	∴ x	$=\frac{2}{3}=\frac{m}{n}$
	т	= 2
	п	= 3
	\therefore eqn is $mx^2 - nx + m + m$	-n = 0
	$\Rightarrow 2x^2 - 3x - 2 + 3$	= 0
	$\Rightarrow \qquad 2x^2 - 3x + 1$	= 0
	$\Rightarrow 2x^2 - 2x - x + 1$	= 0
	$\Rightarrow 2x^2 (x-1) - (x-1)$	= 0
	(2x-1)(x-1)	= 0
	\Rightarrow x	$=1, \frac{1}{2}$
	α	= 1,
	β	= 1
	\Rightarrow (α , β)	$=\left(1,\frac{1}{2}\right)$
	(1) $5(1) - 8\left(\frac{1}{2}\right)$	= -9
	\Rightarrow 1	= -9 false
	(2) $3(1) - 2\left(\frac{1}{2}\right)$	= -2
	\Rightarrow 2	= -2 false

(3)
$$3(1) + 2\left(\frac{1}{2}\right) = -2$$

$$\Rightarrow \qquad 4 = 2 \text{ false}$$

(1)
$$5(1) + 8\left(\frac{1}{2}\right) = 9$$

$$\Rightarrow \qquad 9 = 9 \text{ true}$$

15. Option (4) is correct.

8 identical objects into 4 identical shelves where any number of shelves may remain empty is given by

008, 0017, 0026, 0035, 0044 = 5

0	1	1	6	
0	1	2	5	
0	1	3	4	
0	2	2	4	
0224				
1	1	1	5]	
1	1	2	4	
1	1	3	3	
1	2	2	3	

<u>2222 – 1</u>

$$Total = 15$$

16. Option (1) is correct.

 $A = \{1, 2, 3, 4\}$ $\mathbf{R} = \{(1, 2) \ (1, 3)\}$ for reflexive we need to have = (1, 1), (2, 2), (3, 3), (4, 4)For symmetric $(1,2)\in R \Rightarrow (2,1)\in R$ $(1,3) \in \mathbb{R} \Rightarrow (3,1) \in \mathbb{R}$: R becomes $\{(1, 1) (2, 2) (3, 3) (4, 4) (1, 2) (2, 1), (1, 3), (3, 1)\}$ Now (3, 1) & (1, 2) both belongs to R So for transitive (3, 2) must be on R \therefore (3, 2) must be added again for symmetric (2, 3) also be an element $\therefore R = \{(1, 1) (2, 2) (3, 3) (4, 4) (1, 2) (2, 1) (1, 3) (3, 3)$ 1) (3, 2) (2, 3): No. of elements in R = 10

17. Option (2) is correct.

unit vector $\hat{u} = x\hat{i} + y\hat{j} + z\hat{k}$ makes $\frac{\pi}{2}, \frac{\pi}{3} \& \frac{2\pi}{3}$

with the vectors
$$\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k} \cdot \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}$$
 &
 $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ respectively.
 $\therefore \qquad \frac{x}{\sqrt{2}} + \frac{z}{\sqrt{2}} = |\hat{u}|\sqrt{\frac{1}{2} + \frac{1}{2}}.\cos\sqrt{\frac{\pi}{2}}$
 $\Rightarrow \qquad x + z = 0 \qquad ...(i)$
&
 $\sqrt{\frac{y}{2}} + \frac{z}{\sqrt{2}} = |\hat{u}|\sqrt{\frac{1}{2} + \frac{1}{2}}\cos\frac{\pi}{3}$
 $\frac{y + z}{\sqrt{2}} = \frac{1}{2}$
 $\Rightarrow \qquad y + z = \frac{1}{\sqrt{2}}...(ii)$
&
 $\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = |\hat{u}|\sqrt{\frac{1}{2} + \frac{1}{2}}\cos\frac{2\pi}{3}$
 $\frac{x + y}{\sqrt{2}} = 1 \times 1 \times -\frac{1}{2}$
 $\Rightarrow \qquad x + y = -\frac{1}{\sqrt{2}}...(iii)$
add (i), (ii) & (iii)
 $7x + 2y + 2z = 0$
 $x + y + z = 0$
 $y = 0$
 $x = -\frac{1}{\sqrt{2}}$
 $\hat{u} = -\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}$
 $|\hat{u} - J|^2 = (\frac{2}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2 + 0^2$
 $= \frac{4}{2} + \frac{1}{2} = \frac{5}{2}$

18. Option (4) is correct.

$$\overrightarrow{OA} = \overrightarrow{a}$$

$$\overrightarrow{OB} = 12\overrightarrow{a} + 4\overrightarrow{b}$$

$$OC = b$$

·· S is parallelogram with adjacent sides OA & OC. Now

Area of quad. OABC =
$$\frac{1}{2} |\overline{d}_1 \times \overline{d}_2|$$

(Where $\vec{d}_1 \otimes \vec{d}_2$ are diagram)

$$= \frac{1}{2} |\overrightarrow{OB} \times \overrightarrow{AC}|$$

$$= \frac{1}{2} |(12\vec{a} \times 4\vec{b}) \times (\vec{b} - \vec{a})|$$

$$= \frac{1}{2} |12(\vec{a} \times \vec{b}) - 4(\vec{b} \times \vec{a})|$$

$$= \frac{1}{2} |16(\vec{a} \times \vec{b})|$$

$$= 8 |\vec{a} \times \vec{b}|$$
Area of $S = |\vec{a} \times \vec{b}|$

$$\therefore \frac{\text{Area of quad.} \varnothing \text{ABC}}{\text{Area of S}} = 8$$

19. Option (2) is correct.

:..

$$f(x) = \frac{x}{x^2 - 6x - 16} \ x \in \mathbb{R} \{-2, 8\}$$
$$f'(x) = \frac{(x^2 - 6x - 16)(1) - x(2x - 6)}{(x^2 - 6x - 16)^2}$$
$$= \frac{x^2 - 6x - 16 - 2x^2 + 6x}{(x^2 - 6x - 16)^2}$$
$$= \frac{-x^2 - 16}{(x^2 - 6x - 16)^2}$$
$$= \frac{-(x^2 - 16)}{(x^2 - 6x - 16)^2} < 0$$

∴ $f^1(\mathbf{x}) < 0$ for $\mathbf{x} \in$ domain ∴ It is a decreasing $f4^n$ in its domain $x \in (-\infty, -2) \cup (2, 8) \cup (8, \infty)$

20. Option (2) is correct.

$$\frac{3\cos 2x + \cos^3 2x}{\cos^6 x - \sin 6x} = x^3 - x^2 + 6$$

L.H.S

$$\frac{\cos 2x(3 + \cos^2 2x)}{(\cos^2 x - \sin^2 x)(\cos^4 x + \sin^4 x + \cos^2 x \sin^2 x)}$$

{ $\because \qquad \cos 2x = \cos^2 x - \sin^2 2x$ }
 $\frac{\cos 2x(3 + \cos^2 2x)}{\cos 2x((\cos^2 x + \sin^2 x)^2 - \cos^2 x \sin^2 x)}$
 $\frac{3 + \cos^2 24}{1 - \frac{1}{4}\sin^2 2x}$
{ $\because \sin 2x = 2\sin x \cos x$ }
 $= \frac{4(3 + 1 - \sin^2 2x)}{4 - \sin^2 2x}$

$$= 4 \frac{(4 - \sin^2 2x)}{4 - \sin^2 2x}$$
$$= 4$$

Now $x^3 - x^2 + 6 = 4$ $x^3 - x^2 + 2 = 0$ \therefore sum of solution = 1

Section B

21. Correct answer is [49].

$$\alpha \& \beta \text{ are roots of eq}^{n}$$

$$x^{2} - \sqrt{6}x + 3 = 0$$

$$x = \frac{\sqrt{6} \pm \sqrt{6-12}}{2}$$

$$= \frac{\sqrt{6} \pm \sqrt{6i}}{2}$$

$$= \frac{\sqrt{6}}{2}(1 \pm i)$$

$$\text{Im}(\alpha) > \text{Im}(\beta)$$

$$\alpha = \frac{\sqrt{6}}{2}(1 \pm i),$$

$$\beta = \frac{\sqrt{6}}{2}(1 \pm i),$$

$$\beta = \frac{\sqrt{6}}{2}(1 \pm i),$$

$$\alpha = re^{i\theta}$$

$$= \sqrt{3}e^{i}\frac{\neq}{4}$$

$$\alpha^{98} = (\sqrt{3})^{98}\left(e^{i98\times\frac{\pi}{4}}\right)$$

$$= 3^{49}\left[e^{i49\frac{\pi}{2}}\right]$$

$$= 3^{49}\left[e^{i49\frac{\pi}{2}}\right]$$

$$= i(3^{49})$$

$$\therefore \qquad \frac{\alpha^{99}}{\beta} + a^{98} = \alpha^{98}\left(\frac{\alpha}{\beta} + 1\right)$$

$$\Rightarrow i\left(3^{49}\left(\frac{1 \pm c}{1 - c} + 1\right)\right)$$

$$\Rightarrow 3^{49}\left(\frac{i - 1}{1 - c} + i\right)$$

$$\Rightarrow a = -1,$$

$$b = 1$$

$$n = 49$$

$$n + a + b = 49$$

22. Correct answer is [12].

$$45x + 5y + 3 = 0$$
Slope $= -\frac{45}{5}$

$$= 27r_i + \frac{9r_2}{2}$$

$$-9 = 27r_1 + \frac{9r_2}{2}$$

$$-2 = 6r_1 + r_2$$

$$6r_1 + r_2 + 2 = 0$$

$$\lim_{x \to 3} \left(\int_{3}^{x} \frac{3t^2}{\frac{3r_2x}{2} - r_2x^2 - r_1x^3 - 3x} dt \right)$$

$$\lim_{x \to 3} \frac{\frac{8}{3}(x^3 - 27)}{\frac{3r_2x}{2} - r_2x^2 - r_1x^3 - 3x}$$
L¹ Hospital rule

$$\lim_{x \to 3} \frac{\frac{8}{3}\cdot3x^2}{\frac{3r_2}{2} - 2r_2x - 3r_1x^2 - 3}$$

$$\frac{8(9)}{\frac{3r_2}{2} - 6r_2 - 27r_1 - 3} = \frac{8 \times 9 \times 2}{3r_2 - 12r_2 - 54r_1 - 6}$$

$$= \frac{144}{-9(r_2 + 6r_1) - 6}$$

$$= 12$$
23. Correct answer is [-192].

 eq^n of of chord bisected at point $\left(1, \frac{5}{4}\right)$ to

Parabola

$$x^{2} = 8y$$

$$T = S_{1}$$

$$xx_{1} - 4(y + y_{1}) = x_{1}^{2} - 8y_{1}$$

$$\therefore \qquad (x_{1} y_{1}) = \left(1, \frac{5}{4}\right)$$

$$\Rightarrow \qquad x - 4y - 5 = -9$$

$$\Rightarrow \qquad x - 4y + 4 = 0$$

$$\because (\alpha, \alpha) \text{ lies on}$$

$$x - 4y + 4 = 0$$

$$\& \qquad y^{2} = 4x$$

$$\alpha - 4\beta + 4 = 0 \&$$

$$\alpha^{2} = 4\alpha$$

$$\Rightarrow \qquad \beta^{1} = 4(4\alpha - 4)$$

$$\Rightarrow \qquad \beta^{1} - 16\alpha + 16 = 0$$

$$\Rightarrow \qquad \beta = \frac{16 \pm \sqrt{(16)^{2} - 4(1)(16)}}{2}$$

$$\beta = 8 \pm 4\sqrt{3}$$

$$8 - \beta = \mp 4\sqrt{3}$$
Now
$$\alpha = 4\beta - 4$$

$$= 28 \pm 16\sqrt{3}$$

$$\therefore \qquad (\alpha - 28) (8 - \beta) = (\pm 16\sqrt{3})(\mp 4\sqrt{3})$$

$$= -192$$

$$\frac{x-5}{4} = \frac{y-4}{1}$$
$$= \frac{z-5}{3}$$
$$\frac{x+8}{12} = \frac{y+2}{5}$$
$$= \frac{z+11}{9}$$

let m $(4\lambda + 5, \lambda + 4, 3\lambda + 5)$ & N $(12\mu - 8, 5\mu - 2,$ 9µ – 11) are two point on given lines. $\therefore \overrightarrow{\mathrm{MN}} \perp \overrightarrow{b_1}$, & $\overrightarrow{\text{MN}} \perp \overrightarrow{b_2}$ $\overrightarrow{\text{MN}}.\overrightarrow{b_1} = 0$ $4(12\mu - 4\lambda - 13) \, + \, 1(5\mu - \lambda - b) \, + \, 3(9\mu - 3\lambda - 16)$ = 0 $\Rightarrow 48\mu - 16\lambda - 52 \,+\, 5\mu - \lambda - 6 \,+\, 27\mu - 9\lambda - 48$ = 0 $80u - 26\lambda - 106$.

$$\Rightarrow 30\mu - 26\lambda = 106$$

$$40\mu - 13\lambda = 53 \dots(i)$$

$$\overline{MN}.\overline{b_2} = 0$$

$$12(12\mu - 4\lambda - 13) + 5(5\mu - \lambda - 6) + 9(9\mu - 3\lambda - 16)$$

$$= 0$$

$$\Rightarrow 144\mu - 48\lambda - 156 + 25\mu - 5\lambda - 30 + 81\mu - 27\lambda - 144$$

$$= 0$$

$$\Rightarrow 250\mu - 80\lambda = 330$$

$$25\mu - 8\lambda = 33 \dots(ii)$$
Solving (i) & (ii) we get
$$\mu = 1,$$

$$\lambda = -1$$

M = (1, 3, 2)N = (4, 3, -2) $\overrightarrow{OM} = \hat{i} + 3\hat{j} + 2\hat{k}$ $\overrightarrow{ON} = 4\hat{i} + 3\hat{j} - 2\hat{k}$ $\overrightarrow{OM}.\overrightarrow{ON} = 4 + 9 - 4$ = 9 25. Correct answer is [113]. \therefore *a*, *b*, *c* are in AP 2b = a + ca - 2b + c = 0ax + by + c = 0۰. . . oint of inte rtic

:.

&

$$\therefore \quad ax + by + c = 0$$

three lines are concurrent point of intersection is
$$\frac{x}{1} = \frac{y}{-2} = \frac{1}{1}$$
$$x = 1$$
$$y = -2$$
$$\therefore P(1, -2)$$
&
Given system $x + y + z = 6$
$$2x + 5y + \alpha z = \beta$$
$$x + 2y + 32 = 4$$
 has
Infinite solve
$$\therefore \qquad \Delta = \Delta_n = \Delta_y$$
$$= \Delta_2$$
$$= 0$$
$$\Delta = 0$$
$$\Rightarrow \qquad \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 3 \end{bmatrix} = 0$$
$$1(15 - 2\alpha) - 1(6 - \alpha) + 1(4 - 5) = 0$$
$$= 15 - 2\alpha - 6 + \alpha - 1$$
$$= 0$$
$$\alpha = 8$$
$$\Delta_2 = 0$$
$$\begin{bmatrix} 1 & 1 & 6 \\ 2 & 5 & \beta \\ 1 & 2 & 4 \end{bmatrix} = 0$$
$$1(20 - 2\beta) - 1(8 - \beta) + 6(4 - 5)$$
$$= 0$$
$$\Rightarrow 20 - 2\beta - 8 + \beta - 6 = 0$$
$$\beta = 6$$
$$\therefore Q (8, 6) \qquad PQ^2 = 49 + 64$$
$$= 113$$

26. Correct answer is [1].
(64)32³² is divided by 9 then for remainder→
(64)^K = (1 + 63)K
when K = 32³²
= 1 + K(63) +
$$\frac{K(K-1)}{2!}(63)^2$$
 +...

$$= 1 + 63\lambda$$
$$= 1 + 9\mu$$

 \therefore remainder = I

27. Correct answer is [2].

$$f(x) = \sqrt{\lim_{r \to x} \frac{2r^2 [(f(x))^2 - f(x) \cdot f(x)]}{r^2 - x^2}} - r^3 e^{\frac{f(z)}{r}}$$
$$= \sqrt{\lim_{r \to x} \frac{2r^2 f(x) [f(x) - f(x)]}{(r - x) - (r + x)}} - \lim_{x \to \infty} r^3 e^{\frac{r(x)}{r}}$$
$$= \sqrt{\lim_{x \to \infty} \frac{2r^2 - f(x)}{r + x}} \cdot \left(\frac{f(r) - f(x)}{r - x}\right) - x^3 e^{\frac{f(x)}{x}}$$
$$= \sqrt{\frac{2x^2 \cdot f(x)}{2x}} \cdot f^1(x) - x^3 e^{\frac{f(x)}{x}}$$

Squaring both sides

$$f^{2}(x) = x f(x) f^{4}(x) - \frac{x^{3} e^{\frac{f(x)}{x}}}{x^{3} e^{\frac{y}{x}}}$$

$$y^{2} = xy \frac{dy}{dx} - x^{3} e^{\frac{y}{x}}$$

$$x^{3} e^{\frac{y}{x}} dx = xy dy - y^{2} dx$$

$$x^{3} dx = y \frac{(x dy - y dx)}{e^{\frac{y}{x}}}$$

$$x^{3} dx = y \cdot (x dy - y dx) \cdot e^{-\frac{y}{x}}$$

$$\frac{x}{y} dx = \frac{(x dy - y dx)}{xz} \cdot e^{-\frac{y}{x}} = t$$

$$\Rightarrow -\frac{y}{x} = lnt$$

$$e^{-\frac{y}{x}}(-1) \left(\frac{x dy - y dx}{x^{2}}\right) = dt$$

$$e^{-\frac{y}{x}} \left(\frac{x dy - y dx}{x^{2}}\right) = -dt$$
Now eqn (i) become

 $-\frac{dx}{\ln t} = dt$ $dx = \ln t.dt$ $\int dx = \int \ln t \, dt$ $x = t[\ln t - 1] + C$

$$x = e^{-\frac{y}{x}} \left(-\frac{y}{x}-1\right) + C$$

$$x + \left(1 + \frac{y}{x}\right) e^{-\frac{y}{x}} = C \qquad \dots(i)$$

$$f(1) = 1$$

$$\Rightarrow \qquad x = 1$$

$$\Delta \qquad y = 1$$
Satisfies eqn (i)
$$1 + (1 + 1)e^{-1} = C$$

$$\Rightarrow 1 + 2e^{-1}$$
Now
$$f(a) = 0$$

$$x = a$$

$$\& \qquad y = 0$$

$$a + (1 + 0)e^{-0} = C$$

$$a + 1 = C$$

$$a = C - 1$$

$$a = 1 + 2e^{-1} - 1$$

$$a = 2e^{-1}$$

$$a = 2$$
Correct answer is [46].
$$x^{2} - 2y = 2023$$

$$x^{2} = 2023 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2023 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2023 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2023 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2023 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2023 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2025 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2025 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2025 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2025 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2025 + 2y$$
let
$$y = 1$$

$$\Rightarrow \qquad x^{2} = 2025 + 2y$$

$$x = 45$$

$$\therefore \qquad x + y = 46$$
Correct answer is [6].
$$\int_{\frac{\pi}{0}}^{\frac{\pi}{0}} \sqrt{1 - \sin 2x} \, dx = a + \beta \sqrt{2} + \gamma \sqrt{3}$$
let
$$I = \int_{\frac{\pi}{0}}^{\frac{\pi}{0}} \sqrt{1 - \sin 2x} \, dx$$

$$= \int_{\frac{\pi}{0}}^{\frac{\pi}{0}} |\sin x - \cos x| dx$$

$$= \int_{\frac{\pi}{0}}^{\frac{\pi}{0}} (\cos x - \sin x) dy + \int_{\frac{\pi}{0}}^{\frac{\pi}{0}} (\sin x - \cos x) dx$$

 $= [\sin x + \cos x]_{\frac{\pi}{6}}^{\frac{\pi}{4}} - [\cos x + \sin x]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$

28.

29.

$$= \left(\sqrt{2} - \frac{1}{2} - \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{2} + \frac{\sqrt{3}}{2} - \sqrt{2}\right)$$
$$= 2\sqrt{2} - 1 - \sqrt{3}$$
$$\alpha = -1$$
$$\beta = 2$$
$$\gamma = -1$$
$$3\alpha + 4\beta - \gamma = -3 + 8 + 1$$
$$= 6$$

30. Correct answer is [164]. Region = $\{(x, y): 0 \le x \le 3, 0 < y < \min(x^2 + 2, 2x + 2)\}$

$$A = \int_{0}^{2} x^{2} + 2 + \int_{2}^{3} 2x + 2$$

= $\left[\frac{x^{3}}{3} + 2x\right]_{0}^{2} + [x^{2} + 2x]_{2}^{3}$
= $\frac{8}{3} + 4 + [9 + 6 - 4 - 4]$
= $\frac{8}{3} + 4 + 7$
= $11 + \frac{8}{3}$
12 A = $12 \times 11 + 32$
= $132 + 32$
= 164