JEE (Main) MATHEMATICS SOLVED PAPER

General Instructions :

- 1. In mathematics Section, there are 30 Questions (Q. no. 1 to 30).
- 2. In mathematics, Section A consists of 20 single choice questions & Section B consists of 10 numerical value type questions. In Section B, candidates have to attempt any five questions out of 10.
- 3. There will be only one correct choice in the given four choices in Section A. For each question for Section A, 4 marks will be awarded for correct choice, 1 mark will be deducted for incorrect choice question and zero mark will be awarded for unattempted question.
- 4. For Section B questions, 4 marks will be awarded for correct answer and zero for unattempted and incorrect answer.
- 5. Any textual, printed or written material, mobile phones, calculator etc. are not allowed for the students appearing for the test.
- 6. All calculations / written work should be done in the rough sheet provided with Question Paper.

Section A

Q.1. Let
$$\vec{u} = \hat{i} - \hat{j} - 2\hat{k}, \vec{v} = 2\hat{i} + \hat{j} - \hat{k}, \vec{v}.\vec{w} = 2$$
 and $\vec{v} \times \vec{w} = \vec{u} + \lambda \vec{v}$. Then $\vec{u}.\vec{w}$ is equal to

(A) 2 (B)
$$\frac{3}{2}$$

(C) 1 (D) $-\frac{2}{3}$

Q. 2.
$$\lim_{t \to 0} \left(1 \frac{1}{\sin^2 t} + 2 \frac{1}{\sin^2 t} + \dots + n \frac{1}{\sin^2 t} \right)^{\sin^2 t}$$
 is equal to

(A)
$$n^2$$
 (B) $\frac{n(n+1)}{2}$
(C) n (D) $n^2 + n$

Q.3. Let α be a root of the equation $(a - c) x^2 + (b - a)x$ (c - b) = 0 where *a*, *b*, *c* are distinct real numbers

such that the matrix $\begin{bmatrix} \alpha^2 & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & c \end{bmatrix}$ is singular.

Then, the value of $\frac{(a-c)^2}{(b-a)(c-b)} + \frac{(b-a)^2}{(a-c)(c-b)} + \frac{(c-b)^2}{(a-c)(b-a)}$ is (A) 12 (B) 9 (C) 3 (D) 6

Q. 4. The area enclosed by the curves $y^2 + 4x = 4$ and y - 2x = 2 is:

(A) 9 (B)
$$\frac{22}{3}$$

(C)
$$\frac{23}{3}$$
 (D) $\frac{25}{3}$

Q. 5. Let $p, q \in \mathbb{R}$ and $(1 - \sqrt{3}i)^{200} = 2^{199} (p + iq),$ $i = \sqrt{-1}$. Then $p + q + q^2$ and $p - q + q^2$ are roots of the equation. (A) $x^2 - 4x - 1 = 0$ (B) $x^2 - 4x + 1 = 0$ (C) $x^2 + 4x - 1 = 0$ (D) $x^2 + 4x + 1 = 0$

2023

Jan. Shift 1

 24^{th}

Q. 6. Let N denote the number that turns up when a fair die is rolled. If the probability that the system of equations x + y + z = 1 2x + Ny + 2z = 2 3x + 3y + Nz = 3has unique solution is $\frac{k}{6}$, then the sum of value of *k* and all possible values of N is **(A)** 21 **(B)** 18 **(C)** 20 **(D)** 19

Q. 7. For three positive integers p, q, r, $x^{pq^2} = y^{qr} = z^{p^2r}$ and r = pq + 1 such that 3, $3\log_y x$, $3\log_z y$, 7 $\log_x z$ are in A.P. with common difference $\frac{1}{2}$. Then r - p - q is equal to (A) -6 (B) 12 (C) 6 (D) 2

- **Q.8.** The relation $R = \{(a, b): gcd (a, b) = 1, 2 a \neq b, a, b \in Z\}$ is:
 - (A) reflexive but not symmetric
 - (B) transitive but not reflexive
 - (C) symmetric but not transitive
 - (D) neither symmetric nor transitive

Q.9. Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such

that $\frac{QA}{AR} = \frac{RB}{BP} = \frac{PC}{CQ} = \frac{1}{2}$. Then $\frac{Area(\Delta PQR)}{Area(\Delta ABC)}$ is equal to (A) 4 (B) 3 (C) 1 (D) 2

- **Q.10.** Let y = y(x) be the solution of the differential equation $x^{3}dy + (xy - 1) dx = 0, x > 0$,
- $y\left(\frac{1}{2}\right) = 3 e. \text{ Then } y(1) \text{ is equal to}$ (A) 1 (B) e (C) 3 (D) 2 - e Q. 11. If A and B are two non-zero $n \times n$ matrices such
 - that $A^2 + B = A^2 B$, then (A) $A^2 = I \text{ or } B = I$ (B) $A^2 B = I$ (C) AB = I (D) $A^2 B = BA^2$
- **Q. 12.** The equation $x^2 4x + [x] + 3 = x[x]$, where [x] denotes the greatest integer function, has : **(A)** a unique solution in $(-\infty, 1)$ **(B)** no solution
 - (C) exactly two solutions in $(-\infty, \infty)$
 - (D) a unique solution in $(-\infty, \infty)$
- **Q. 13.** Let a tangent to the curve $y^2 = 24x$ meet the curve xy = 2 at the points A and B. Then the mid points of such line segment AB lie on a parabola with the
 - (A) length of latus rectum $\frac{3}{2}$
 - **(B)** directrix 4x = -3
 - (C) length of latus rectum 2
 - (D) directrix 4x = 3
- **Q. 14.** Let Ω be the sample space and $A \subseteq \Omega$ be an event. Given below are two statements : (S_1) : If P(A) = 0, then $A = \phi$ (S_2) : If P(A) = 1, then $A = \Omega$ Then **(A)** both (S_1) and (S_2) are true **(B)** only (S_1) is true **(C)** only (S_2) is true
 - (D) both (S_1) and (S_2) are false
- **Q. 15.** The value of $\sum_{r=0}^{22} C_r^{23} C_r$ is **(A)** ${}^{44}C_{23}$ **(B)** ${}^{45}C_{23}$ **(C)** ${}^{44}C_{22}$ **(D)** ${}^{45}C_{24}$
- **Q.16.** The distance of the point (-1, 9, -16) from the plane 2x + 3y z = 5 measured parallel to the
 - line $\frac{x+4}{3} = \frac{2-y}{4} = \frac{z-3}{12}$ is (A) 31 (B) $13\sqrt{2}$
 - (C) $20\sqrt{2}$ (D) 26

Q. 17.
$$\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right)$$
 is equal to:

(A)
$$\frac{\pi}{3}$$
 (B) $\frac{\pi}{4}$

(C)
$$\frac{\pi}{6}$$
 (D) $\frac{\pi}{2}$

Q. 18. Let
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

Then at $x = 0$
(A) f is continuous but not differentiable
(B) f and f both are continuous
(C) f is continuous but not differentiable
(D) f is continuous but f is not continuous

- **Q. 19.** The compound statement $(\sim (P \land Q)) \lor$ $((\sim P) \land Q) \Rightarrow ((\sim P) \land (\sim Q))$ is equivalent to
 - (A) $(\sim Q) \lor P$ (B) $((\sim P) \lor Q) \land (\sim Q)$ (C) $(\sim P) \lor Q$ (D) $((\sim P) \lor Q) \land ((\sim Q) \lor P)$
- **Q.20.** The distance of the point (7, -3, -4) from the plane passing through the points (2, -3,1), (-1,1, -2) and (3, -4,2) is : **(A)** 5 **(B)** 4

(C)
$$5\sqrt{2}$$
 (D) $4\sqrt{2}$

Section B

- **Q.21.** Let $\lambda \in \mathbb{R}$ and let the equation E be $|x|^2 2|x| + |\lambda 3| = 0$. Then the largest element in the set S = $\{x + \lambda : x \text{ is an integer solution of E}\}$ is
- **Q.22.** Let a tangent to the curve $9x^2 + 16y^2 = 144$ intersect the coordinate axes at the points A and B. Then, the minimum length of the line segment AB is
- **Q.23.** The shortest distance between the lines $\frac{x-2}{3}$

$$=\frac{y+1}{2}=\frac{z-6}{2}$$
 and $\frac{x-6}{3}=\frac{1-y}{2}=\frac{z+8}{0}$ is equal to

- **Q. 24.** Suppose $\sum_{r=0}^{2023} r^{2} \cdot 2023 C_r = 2023 \times \alpha \times 2^{2022}$. Then the value of α is
- **Q.25.** The value of $\frac{8}{\pi} \int_0^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx$ is
- **Q.26.** The number of 9 digit numbers, that can be formed using all the digits of the number 123412341 so that the even digits occupy only even places, is

- **Q.27.** A boy needs to select five courses from 12 available courses, out of which 5 courses are language courses. If he can choose at most two language courses, then the number of ways he can choose five courses is
- **Q.28.** The 4th term of a GP is 500 and its common ratio is $\frac{1}{m}$, $m \in \mathbb{N}$. Let S_n denote the sum of the first *n*

terms of this GP. If $S_6 > S_5 + 1$ and $S_7 < S_6 + \frac{1}{2}$, then the number of possible values of *m* is

Q.29. Let C be the largest circle centred at (2,0) and inscribed in the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$. If (1, α) lies on C, then 10 α^2 is equal to

Q.30. The value of
$$12\int_0^3 |x^2 - 3x + 2| dx$$
 is

Q. No.	Answer	Topic Name	Chapter Name	
1	С	Triple Products	Vector Algebra	
2	С	Methods of Evaluation of Limits	Limits	
3	С	Quadratic Equation and its Solution	Quadratic Equations	
4	А	Area Bounded by Curves	Area under Curves	
5	В	Euler's law	Complex Numbers	
6	С	System of linear equations	Matrices and Determinants	
7	D	Arithmetic Progressions	Sequences and Series	
8	D	Equivalence Relations	Set Theory and Relations	
9	В	Scalar and Vector Products	Vector Algebra	
10	A	Solution of Linear Differential Equations	Differential Equations	
11	D	Operations on Matrices	Matrices and Determinants	
12	D	Quadratic Equations and its solution	Quadratic Equations	
13	D	Interaction Between Two Conics	Hyperbola	
14	A	Basics of Probability	Probability	
15	В	Properties of Binomial Coefficients	Binomial Theorem	
16	D	Intersection of a Line and a Plane	Three Dimensional Geometry	
17	A	Basics of Inverse Trigonometric Functions	Inverse Trigonometric Functions	
18	D	Differentiability of a Function	Continuity and Differentiability	
19	С	Logical Operations	Mathematical Reasoning	
20	C	Plane and a Point	Three Dimensional Geometry	
21	[5]	Algebra of Functions	Function	
22	[7]	Properties of Ellipse	Ellipse	
23	[14]	Skew Lines	Three Dimensional Geometry	
24	[1012]	Properties of Binomial Coefficients	Binomial Theorem	
25	[2]	Properties of Definite Integrals	Definite Integration	
26	[60]	Permutations	Permutations and Combinations	
27	[546]	Combinations	Permutations and Combinations	
28	[12]	Geometric Progressions	Sequences and Series	
29	[118]	Interaction between Two Conics	Ellipse	
30	[22]	Properties of Definite Integrals	Definite Integration	

Answer Key

JEE (Main) MATHEMATICS SOLVED PAPER

Solutions

Section A

1. Option (C) is correct.
Given,
$$\vec{v} \times \vec{w} = \vec{u} + \lambda \vec{v}$$

Taking dot product with \vec{v}
 $\Rightarrow (\vec{v} \times \vec{w}).\vec{v} = (\vec{u} + \lambda \vec{v}).\vec{v}$
 $\Rightarrow 0 = \vec{u}.\vec{v} + \lambda \vec{v}.\vec{v}$
 $\Rightarrow 0 = (\hat{i} - \hat{j} - 2\hat{k}).(2\hat{i} + \hat{j} - \hat{k}) + \lambda |\vec{v}|^2$
 $\Rightarrow 0 = 2 - 1 + 2 + \lambda (4 + 1 + 1)$
 $\Rightarrow \lambda = \frac{-3}{6} = \frac{-1}{2}$
So, $\vec{v} \times \vec{w} = \vec{u} + \lambda \vec{v} = \vec{u} - \frac{1}{2}\vec{v}$

Taking dot product with \vec{w}

$$\Rightarrow (\vec{v} \times \vec{w}) \cdot \vec{w} = \vec{u} \cdot \vec{w} - \frac{1}{2} \vec{v} \cdot \vec{w}$$
$$\Rightarrow 0 = \vec{u} \cdot \vec{w} - \frac{1}{2} (2)$$

 $\Rightarrow \vec{u}.\vec{w} = 1$

HINT:

= n

- (1) $(\vec{a} \times \vec{b}).\vec{b} = 0$
- (2) Take dot product to obtain the desired Dot product
- 2. Option (C) is correct.

Let
$$l = \lim_{t \to 0} \left(\frac{1}{1^{\sin^2 t} + 2^{\sin^2 t} + \dots + n^{\sin^2 t}} \right)^{\sin^2 t}$$

$$= \lim_{t \to 0} n \left[\left(\frac{1}{n} \right)^{\csc^2 t} + \left(\frac{2}{n} \right)^{\csc^2 t} + \dots + \left(\frac{n}{n} \right)^{\csc^2 t} \right]^{\sin^2 t}$$

$$\left[\frac{n-1}{n} \left(r \right)^{\csc^2 t} \right]^{\sin^2 t} \left[\frac{n-1}{n} \right]^{\sin^2 t}$$

$$= n \lim_{t \to 0} \left[\sum_{r=1}^{n-1} \left(\frac{r}{n} \right)^{\operatorname{cosec} t} + 1 \right] = n \lim_{t \to 0} \left[\sum_{r=1}^{n-1} 0 + 1 \right]$$
$$\left[\operatorname{as} \left(\frac{r}{n} \right)^{\operatorname{cosec}^{2} t} \to 0 \because 0 < \frac{r}{n} < 1 \& \operatorname{cosec}^{2} t \to \infty \right]$$

(1) As $n \to \infty, \frac{r}{n} \to 0$, for 0 < r < n(2) As $x \to 0$, $\operatorname{cosec}^2 x \to \infty$

3. Option (C) is correct.

$$\operatorname{Exploit}(c) \text{ is context.}$$

$$\operatorname{Let} P = \begin{bmatrix} \alpha^2 & \alpha & 1\\ 1 & 1 & 1\\ a & b & c \end{bmatrix}$$
Given that P is singular
$$\Rightarrow |P| = 0$$

$$\Rightarrow \alpha^2 (c-b) + \alpha (c-a) + 1(b-a) = 0$$

$$\Rightarrow \alpha^2 (c-b) + \alpha (a-c) + (b-a) = 0$$
Put $\alpha = 1, c-b+a-c+b-a = 0$
So, $\alpha = 1$ is a root
Now, $\sum \frac{(a-c)^2}{(b-a)(c-b)} = M$ (say)
$$= \sum \frac{(a-c)^2}{(b-a)(c-b)} \cdot \left(\frac{a-c}{a-c}\right) = \sum \frac{(a-c)^3}{(b-a)(c-b)(a-c)}$$

$$= \frac{(a-c)^3 + (c-b)^3 + (b-a)^3}{(b-a)(c-b)(a-c)}$$
Here, $(a-c) + (c-b) + (b-a) = 0$

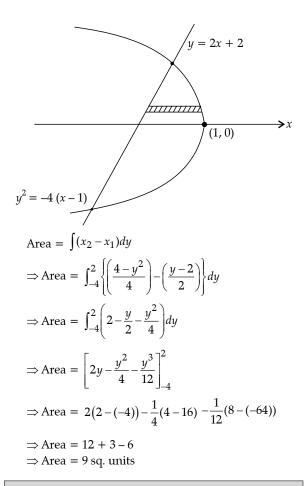
$$\Rightarrow (a-c)^3 + (c-b)^3 + (b-a)^3 = 3 (a-c) (c-b) (b-a)$$

$$\therefore M = \frac{3(a-c)(c-b)(b-a)}{(b-a)(c-b)(a-c)}$$

$$\Rightarrow M = 3$$

HINT:

- (1) If a + b + c = 0, $a^3 + b^3 + c^3 = 3abc$ (2) $ax^2 + bx + c = 0 \checkmark^{\alpha}_{\beta}_{\beta}$ $\alpha + \beta = \frac{-b}{a}, \alpha\beta = \frac{c}{a}$
- 4. Option (A) is correct. Let $C_1: y^2 + 4x = 4 \& C_2: y - 2x = 2$ Solving $C_1 \& C_2$ $\Rightarrow y^2 + 4\left(\frac{y}{2} - 1\right) = 4$ $\Rightarrow y^2 + 2y - 4 = 4$ $\Rightarrow y^2 + 2y - 8 = 0$
 - $\Rightarrow y^{2} + 2y 8 = 0$ $\Rightarrow (y - 2) (y + 4) = 0$ $\Rightarrow y = -4, 2$



- (1) Solve both the curves to get the point of intersection.
- (2) Plot both the curves & think of a strip either horizontal or vertical and then integrate.

5. Option (B) is correct.

Given
$$2^{199}(p+iq) = (1-\sqrt{3}i)^{200}$$

$$\Rightarrow \frac{2^{199}}{2^{200}}(p+iq) = \left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)^{200}$$

$$\Rightarrow p+iq = 2\left(\operatorname{Cis}\left(-\frac{\pi}{3}\right)\right)^{200}$$

$$\Rightarrow p+iq = 2\left(e^{-i\frac{\pi}{3}}\right)^{200}$$

$$\Rightarrow p+iq = 2e^{-i\frac{200\pi}{3}}$$

$$\Rightarrow p+iq = 2\left(\cos\left(\frac{200\pi}{3}\right)-i\sin\left(\frac{200\pi}{3}\right)\right)$$

$$\Rightarrow p+iq = 2\left[\cos\left(66\pi+\frac{2\pi}{3}\right)-i\sin\left(66\pi+\frac{2\pi}{3}\right)\right]$$

$$\Rightarrow p + iq = 2\left[\cos\left(\frac{2\pi}{3}\right) - i\sin\left(\frac{2\pi}{3}\right)\right]$$

$$\Rightarrow p + iq = 2\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$\Rightarrow p = -1, q = -\sqrt{3}$$

Now, $p + q + q^2 = -1 - \sqrt{3} + (-\sqrt{3})^2 = 2 - \sqrt{3}$
$$p - q + q^2 = -1 - (-\sqrt{3}) + (-\sqrt{3})^2 = 2 + \sqrt{3}$$

Equation whose roots are $p + q + q^2$ & $p - q + q^2$
having
Sum of roots (S) = $(2 - \sqrt{3}) + (2 + \sqrt{3}) = 4$
and product of roots (P) = $(2 - \sqrt{3})(2 + \sqrt{3}) = 4 - 3 = 1$
Required quadratic equation is $x^2 - (S) x + P = 0$
 $\Rightarrow x^2 - 4x + 1 = 0$

HINT:

- (1) Use $\cos\theta + i\sin\theta = e^{i\theta}$
- (2) Quadratic equation whose roots are α and β is $x^2 (\alpha + \beta) x + \alpha \beta = 0$
- 6. Option (C) is correct.

System of equations is, x + y + z = 12x + Ny + 2z = 23x + 3y + Nz = 3For unique solution, $\Delta \neq 0$ $|1 \ 1 \ 1|$ $\Rightarrow \begin{vmatrix} 2 & N & 2 \end{vmatrix} \neq 0$ 3 3 N $\Rightarrow 1 (N^2 - 6) - (2N - 6) + (6 - 3N) \neq 0$ \Rightarrow N² – 5N + 6 \neq 0 \Rightarrow (N – 2) (N – 3) \neq 0 Therefore $N \neq 2, N \neq 3$ So, favourable cases are $\{1, 4, 5, 6\}$ Total cases $\equiv \{1, 2, 3, 4, 5, 6\}$ Hence, probability = $\frac{\text{Number of favourable cases}}{\text{Total cases}}$ Total cases $\Rightarrow \frac{k}{6} = \frac{4}{6} \Rightarrow k = 4$

So, sum of all possible values of k & N= 4 + (1 + 4 + 5 + 6) = 20

HINT:

- (1) For system of linear equations have unique solution $\Delta \neq 0$
- (2) Probability = $\frac{\text{Number of favourable cases}}{\text{Total number of cases}}$
- 7. Option (D) is correct.

Given than, $x^{pq^2} = y^{qr} = z^{p^2r}$...(1) Also, 3, $3\log_y x$, $3\log_z y$, $7\log_x z$ are in A.P.

$$\Rightarrow 3 + \frac{1}{2} = 3 \log_y x$$

$$\Rightarrow \log_y x = \frac{7}{6}$$

$$\Rightarrow x = (y)^{7/6} \Rightarrow x^6 = y^7$$

$$3 \log_z y = 3 + 2\left(\frac{1}{2}\right) = 4$$
 ...(2)

$$\Rightarrow \log_z y = \frac{4}{3}$$

$$\Rightarrow y = (z)^{4/3}$$

$$\Rightarrow y^3 = z^4$$
 ...(3)

$$7 \log_x(z) = 3 + 3\left(\frac{1}{2}\right) = \frac{9}{2}$$

$$\Rightarrow \log_x(z) = \frac{9}{14}$$

$$\Rightarrow z = (x)^{9/14}$$

$$\Rightarrow z^{14} = x^9$$
 ...(4)

2

Now from (1), we have

$$x^{pq^{2}} = \left(x^{\frac{6}{7}}\right)^{qr} = \left(x^{\frac{9}{14}}\right)^{p-r}$$

$$\Rightarrow pq^{2} = \frac{6}{7}qr = \frac{9}{14}p^{2}r$$

$$\Rightarrow pq = \frac{6}{7}r, q^{2} = \frac{9}{14}pr$$

Also, $r = pq + 1$

$$\Rightarrow r = \frac{6}{7}r + 1$$

$$\Rightarrow \frac{r}{7} = 1 \Rightarrow r = 7$$

Now, $q^{2} = \frac{9}{14}pr$

$$\Rightarrow q(q^{2}) = \left(\frac{9}{14}r\right)(pq)$$

$$\Rightarrow q^{3} = \left(\frac{9}{14}\right)r\left(\frac{6}{7}\right)r$$

$$\Rightarrow q^{3} = \frac{9\times6}{14\times7}\times(7)^{2}$$

$$\Rightarrow q^{3} = 27$$

$$\Rightarrow q = 3$$

And, $pq = \frac{6}{7}r$

$$\Rightarrow p = \frac{6}{7}\times\frac{7}{3}$$

$$\Rightarrow p = 2$$

So, $r - p - q$

$$= 7 - 2 - 3 = 2$$

HINT:

(1) For an A.P., $T_n = a + (n - 1) d$, where a & d are first term & common difference respectively.

(2) $\log_b(a) = c \Rightarrow a = b^c$

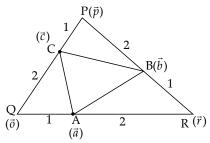
(3) If $a^b = a^q \Rightarrow p = q$

8. Option (D) is correct.

 $R = \{(a, b) : gcd(a, b) = 1, 2a \neq b, a, b \in Z\}$ **Reflexive:** Check for (*a*, *a*) gcd(a, a) = aSo, R is not reflexive Symmetric: $(a, b) \in \mathbb{R} \Rightarrow gcd(a, b) = 1$ Now check for (*b*, *a*) gcd(b, a) = gcd(a, b) = 1But gcd(1, 2) = gcd(2, 1) = 1But $b \neq 2a$, So R is not symmetric. Transitive: Consider, gcd(2, 3) = 1 \Rightarrow (2, 3) \in R Now, gcd(3, 4) = 1 \Rightarrow (3, 4) \in R Again, *gcd* $(2, 4) = 2 \neq 1$ \Rightarrow (2, 4) \notin R \Rightarrow R is not Transitive.

HINT:

- (1) R is reflexive if $(a, a) \in \mathbb{R} \forall a \in \mathbb{A}$
- (2) If $a, b \in A$, $(a, b) \in \mathbb{R} \Rightarrow (b, a) \in \mathbb{R}$, then \mathbb{R} is symmetric.
- (3) If $a, b, c \in A$, $(a, b) \in R$, $(b, c) \in R \Rightarrow (a, c) \in R$, then R is transitive.
- 9. Option (B) is correct.



Let position vector of Q, P, and R be \vec{o} , \vec{p} and \vec{r} respectively.

Again, let position vector of points A, B, C be \vec{a} , $\vec{b} \& \vec{c}$ respectively.

Using section formula

$$\vec{a} = \frac{\vec{r}}{3}, \vec{b} = \frac{\vec{p} + 2\vec{r}}{3}, \vec{c} = \frac{2\vec{p}}{3}$$
Area of $\Delta PQR = \left|\frac{1}{2}\right| \overrightarrow{QP} \times \overrightarrow{QR} \right| = \frac{1}{2} |\vec{r} \times \vec{p}|$
Area of $\Delta ABC = \frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$

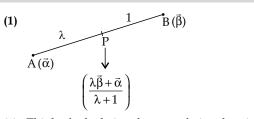
$$= \frac{1}{2} \left| \left(\frac{\vec{r}}{3} \times \left(\frac{\vec{p} + 2\vec{r}}{3} \right) \right) + \left(\frac{\vec{p} + 2\vec{r}}{3} \right) \times \left(\frac{2\vec{p}}{3} \right) + \left(\frac{2\vec{p}}{3} \times \frac{\vec{r}}{3} \right) \right|$$

$$= \frac{1}{2} \left| \frac{\vec{r} \times \vec{p}}{9} + 4 \left(\frac{\vec{r} \times \vec{p}}{9} \right) + \frac{2}{9} (\vec{p} \times \vec{r}) \right|, \text{ as } \vec{r} \times \vec{r} = 0$$

$$= \frac{1}{18} \left| \vec{r} \times \vec{p} + 4 (\vec{r} \times \vec{p}) - 2 (\vec{r} \times \vec{p}) \right| \text{ as } \vec{p} \times \vec{r} = -(\vec{r} \times \vec{p})$$

$$= \frac{\left| \vec{r} \times \vec{p} \right|}{6}$$

So, $\frac{\text{area of } \Delta PQR}{\text{area of } \Delta ABC} = 3$



(2) Think of calculating the area of triangle using cross product.

10. Option (A) is correct.

$$x^{3}dy + (xy - 1) dx = 0$$

Also, $y\left(\frac{1}{2}\right) = 3 - e \& x > 0$
Now, $x^{3}\frac{dy}{dx} + xy - 1 = 0$
 $\Rightarrow x^{3}\frac{dy}{dx} = 1 - xy$
 $\Rightarrow x^{3}\frac{dy}{dx} + xy = 1$
 $\Rightarrow \frac{dy}{dx} + \left(\frac{1}{x^{2}}\right)y = \frac{1}{x^{3}}$

This is a linear differential equation

I.F. =
$$e^{\int \frac{1}{x^2} dx} = e^{\frac{-1}{x}}$$

So, differential equation becomes,

$$ye^{\frac{-1}{x}} = \int e^{\frac{-1}{x}} \cdot \frac{1}{x^3} dx$$

Put $\frac{-1}{x} = t \implies \frac{1}{x^2} dx = dt$
R.H.S. = $\int -\frac{t}{t} \frac{e^t}{dt} dt$

Integrating by parts

R.H.S. = $-[te^t - \int e^t dt] = -te^t + e^t + c$ So, solution of differential equation is $ye^{\frac{-1}{x}} = -e^{\frac{-1}{x}} \left(\frac{-1}{x} - 1\right) + c$

$$\Rightarrow y = \left(\frac{1}{x}+1\right) + ce^{\frac{1}{x}}$$

At $x = \frac{1}{2}, y = 3 - e$
$$\Rightarrow 3 - e = \frac{1}{\left(\frac{1}{2}\right)} + 1 + ce^{\left(\frac{1}{2}\right)}$$

$$\Rightarrow 3 - e = (2 + 1) + ce^{2}$$

$$\Rightarrow ce^{2} = -e$$

$$\Rightarrow ce^{2} = -e$$

$$\Rightarrow c = \frac{-1}{e}$$

So, $y = \left(\frac{1}{x}+1\right) + \left(-\frac{1}{e}\right)e^{\frac{1}{x}}$
Now, at $x = 1, y = \left(\frac{1}{1}+1\right) + \left(\frac{-1}{e}\right)e^{\frac{1}{1}}$
$$\Rightarrow y = 2 - 1 = 1$$

HINT:

(1) Convert given differential equation to linear differential equation & find its integrating factor to obtain the solution

(2)
$$\int \underbrace{f(x)g(x)}_{I} dx = (\int g(x)dx)f(x) - \int f'(x)(\int g(x)dx)dx$$

Using integration by parts

11. Option (D) is correct.

Given,
$$A^2 + B = A^2B$$
(1)
 $\Rightarrow A^2 - A^2B + B = 0$
 $\Rightarrow A^2(I - B) - (-B + I - I) = 0$
 $\Rightarrow A^2(I - B) - (I - B) = -I$
 $\Rightarrow (A^2 - I) (I - B) = -I$
 $\Rightarrow (I - A^2) (I - B) = I$
 $\Rightarrow (I - B) (I - A^2) = I$
 $\Rightarrow I - B - A^2 + BA^2 = I$
 $\Rightarrow BA^2 - B - A^2 = 0$ (2)
(1) + (2) $\Rightarrow A^2B = BA^2$

HINT:

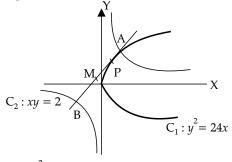
(1)	-(-A) = A	(2)	$A(BC^2) = ABC^2$
(3)	$(A^2B)C = A^2BC$		

12. Option (D) is correct.

 $x^{2} - 4x + [x] + 3 = x [x], \text{ where } [.] = \text{GIF}$ $\Rightarrow x^{2} - 4x + 3 = x [x] - [x]$ $\Rightarrow (x - 1) (x - 3) = (x - 1) [x]$ $\Rightarrow (x - 1) (x - 3 - [x]) = 0$ $\Rightarrow x = 1, x - 3 = [x]$ $\Rightarrow x = 1, x - [x] = 3$ $\Rightarrow x = 1, \{x\} = 3, \text{ where } \{.\} = \text{Fractional part function}$ But $\{x\} \in [0, 1)$ So, $\{x\} \neq 3$ $\Rightarrow x = 1$

HINT:

- (1) Take terms containing GIF on R.H.S. & factorize
- (2) For $y = \{x\}$, where $\{.\} = FPF, y \in [0, 1)$
- 13. Option (D) is correct.



$$P \equiv (at^2, 2at), \text{ here } a = 6$$

$$\Rightarrow P \equiv (6t^2, 12t)$$

Tangent to parabola at P(t)

$$\Rightarrow ty = x + 6t^2 \qquad \dots (1)$$

Let M (h, k) be the mid-point of chord AB to hyperbola xy = 2

$$AB = \frac{x}{h} + \frac{y}{k} = 2 \qquad \dots (2)$$

x = a

▶ χ

Comparing (1) & (2), we get

$$\frac{-1}{\left(\frac{1}{h}\right)} = \frac{t}{\left(\frac{1}{k}\right)} = \frac{6t^2}{2}$$

$$\Rightarrow -h = tk = 3t^2$$

$$\Rightarrow h = -3t^2, k = 3t$$
So, $h = -3\left(\frac{k}{3}\right)^2$

$$\Rightarrow k^2 = -3h$$

$$\Rightarrow y^2 = -3x$$
Directrix
$$y^2 = -3x$$
P
O
O
O

But 4a = 3 $\Rightarrow a = \frac{3}{4}$

$$\therefore$$
 Directrix is $x =$

HINT:

(1) Write equation of tangent to parabola in parametric form.

 $\frac{3}{4}$

- (2) Write equation of chord to rectangular hyperbola $xy = c^2$ whose middle point is given as (h, k).
- 14. Option (A) is correct.

Let $\Omega \equiv \{1, 2, 3, 4, 5, 6\}$ i.e., they are outcome of throwing a dice.

Let $A \equiv$ Getting a number 7

Now, P(A) =
$$\frac{\text{Favourable cases}}{\text{Total cases}} = \frac{0}{6} = 0$$

But A = ϕ
 \Rightarrow S₂ is true.

$$B \equiv Getting a number < 7$$
$$P(B) = \frac{Favourable cases}{Favourable cases}$$

 $\Rightarrow P(B) = \frac{6}{6} = 1$

Since, $B = \Omega$

 \Rightarrow S₂ is true.

HINT:

- (1) Think of a case that can never happen.
- (2) Think of a case that will always happen.
- 15. Option (B) is correct.

Let S =
$$\sum_{r=0}^{22} {\binom{22}{r}C_r}{\binom{23}{r}C_r}$$

Consider, $(1 + x)^{22} = {}^{22}C_0 x^0 + {}^{22}C_1 x^1 + \dots + {}^{22}C_{22} x^{22}$
...(1)
Again, $(x + 1)^{23} = {}^{23}C_0 x^{23} + {}^{23}C_1 x^{22} + \dots + {}^{23}C_{23} x^0$
...(2)

(1) × (2) gives

$$(1 + x)^{45} = \binom{2^{2}C_{0} x^{0} + {}^{22}C_{1} x^{1} + \dots + {}^{22}C_{22} x^{22}}{\binom{2^{2}C_{0} x^{23} + {}^{23}C_{1} x^{22} + \dots + {}^{23}C_{23} x^{0}} \dots (3)$$
Again, S = $\sum_{r=0}^{22} \binom{2^{2}C_{22-r}}{\binom{2^{2}C_{r}}{r}}$

Using
$${}^{n}C_{r} = {}^{n}C_{n-r}$$

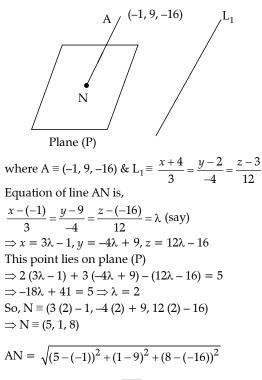
 $\Rightarrow S = ({}^{22}C_{22}) ({}^{23}C_{0}) + ({}^{22}C_{21}) ({}^{23}C_{1}) + \dots + ({}^{22}C_{0}) ({}^{23}C_{22})$

From (3), comparing coefficient of
$$x^{23}$$
 on both sides
or $S = {}^{45}C_{23}$

HINT:

- (1) Use ${}^{n}C_{r} = {}^{n}C_{n-r}$
- (2) Write expansion of $(1 + x)^n \& (x + 1)^n$. Multiply both series and compare coefficient of power of xto obtain the sum.
- 16. Option (D) is correct.

Plane (P) : 2x + 3y - z = 5



$$=\sqrt{36+64+576} = \sqrt{676} = 26$$

- (1) Write equation of line passing through (-1, 9, -16) & parallel to $\frac{x+4}{3} = \frac{2-y}{4} = \frac{z-3}{12}$
- (2) Find point where it intersects the plane and then the required distance.

17. Option (A) is correct.

$$\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right)$$

= $\tan^{-1}\left(\frac{\sqrt{3}+1}{\sqrt{3}(\sqrt{3}+1)}\right) + \sec^{-1}\left(\sqrt{\frac{4(2+\sqrt{3})}{3(2+\sqrt{3})}}\right)$
= $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{4}{3}}\right)$
= $\frac{\pi}{6} + \sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$

HINT:

Take common & simplify the given expressions.

18. Option (D) is correct.

Given:
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

As we know function is said to be continuous at a point if limiting value of the function at that point is equal to the functional value of the function at that point. Now, $\lim_{x\to 0} f(x) = \lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = 0 = f(0)$ $\therefore f(x)$ is continuous at x = 0. As we know function is said to be differentiable at a point if LHD = RHD at that point. Now, L.H.D. at $x = 0, f'(0^-) = \lim_{h\to 0} \frac{f(0-h) - f(0)}{0-h}$ $= \lim_{h\to 0} \frac{-h^2 \sin\left(\frac{1}{h}\right) - 0}{-h} = \lim_{h\to 0} h \sin\left(\frac{1}{h}\right) = 0$ Now, R.H.D. at $x = 0, f'(0^+) = \lim_{h\to 0} \frac{f(0+h) - f(0)}{h}$ $= \lim_{h\to 0} h \sin\left(\frac{1}{h}\right) = 0$ \therefore L.H.D. = R.H.D. at x = 0 $\therefore f(x)$ is differentiable at x = 0Now, $f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) + x^2 \cos\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right), x \neq 0\\ 0, x = 0 \end{cases}$ $f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right), x \neq 0\\ 0, x = 0 \end{cases}$ \therefore limit of f'(x) = 0 oscillates

 \therefore f'(x) is not continuous at x = 0

HINT:

- (1) Function f(x) is said to be continuous at a point x = a if $\lim_{x \to a} f(x) = f(a)$
- (2) Function is said to be differentiable at the point if L.H.D. = R.H.D. at that point.
- **19.** Option (C) is correct.

As we know $A \Rightarrow B \equiv \sim A \lor B$ So, $\sim (\sim P \land Q) \Rightarrow (\sim (P \lor Q))$ $= \sim [\sim (\sim P \land Q)] \lor (\sim P \lor Q)$ $= (\sim P \land Q) \lor (\sim P \lor Q)$ $= [\sim P \lor (\sim P \lor Q)] \land [Q \lor (\sim P \lor Q)]$ $= [\sim P \lor Q] \land [\sim P \lor Q] \equiv \sim P \lor Q$

HINT:

(1) Use $A \Rightarrow B = \sim A \lor B$ (2) Use $\sim (A \lor B) = \sim A \land \sim B$

20. Option (C) is correct.

As we know equation of plane passing through the points (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) is given by $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \end{vmatrix}$

$$\begin{vmatrix} x_1 & y_1 & y_1 & z_1 \\ x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ x_1 - x_3 & y_1 - y_3 & z_1 - z_3 \end{vmatrix} = 0$$

So, equation of plane passing through (2, -3, 1), (-1, 1, -2) and (3, -4, 2) is given by

$$\begin{vmatrix} x-2 & y+3 & z-1 \\ 3 & -4 & 3 \\ -1 & 1 & -1 \end{vmatrix} = 0$$

$$\Rightarrow (x-2) (4-3) - (y+3) (-3+3) + (z-1) (3-4) = 0$$

$$\Rightarrow x-2-z+1 = 0$$

$$\Rightarrow x-z-1 = 0$$

Now, distance of the point (7, -3, -4) from plane $x-z$
 $-1 = 0$ is

$$d = \left| \frac{7 - (-4) - 1}{\sqrt{2}} \right| \Rightarrow d = 5\sqrt{2}$$

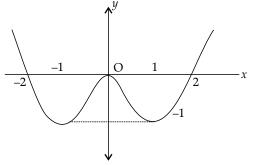
(1) Equation of plane passing through the points $(x_1, y_1, z_1), (x_2, y_2, z_2)$ and (x_3, y_3, z_3) is given by $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \end{vmatrix} = 0$

$$\begin{vmatrix} x_1 & x_2 & y_1 & y_2 & z_1 & z_2 \\ x_1 - x_3 & y_1 - y_3 & z_1 - z_3 \end{vmatrix}$$

(2) Distance of the point (x_1, y_1, z_1) from plane ax + by + cz + d = 0 is given by

D =
$$\left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$

21. The correct answer is (5). Given, E: $|x|^2 - 2|x| + |\lambda - 3| = 0$ S = { $x + \lambda$: x is an integer solution of E}. So, $|x|^2 - 2|x| = - |\lambda - 3|$ Lets draw the graph of $f(x) = |x|^2 - 2|x|$



It is clear from the figure, $-1 \le |x|^2 - 2|x| < \infty$ and $-|\lambda - 3| \le 0$

So, given equation holds only when $|\lambda - 3| \le 1$ and $x \in [-2, 2]$

 $\Rightarrow -1 \le \lambda -3 \le 1 \Rightarrow 2 \le \lambda \le 4$ For $x = 0, \lambda = 3$ For $x = \{-1, 1\}, \lambda = 4$ or 2 For $x = \{-2, 2\}, \lambda = 3$

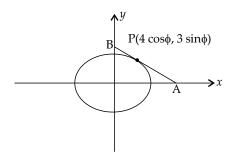
So, largest element in the set S is 5

HINT:

(1) Write given equation as $|x|^2 - 2|x| = -|\lambda - 3|$ and draw the graph of $|x|^2 - 2|x|$ and analyse further using the concept of modulus function.

- (2) Quadratic function $f(x) = x^2 + bx + c$; a > 0 has minimum value at $x = \frac{-b}{2a}$.
- 22. The correct answer is (7). Given equation of curve is $9x^2 + 16y^2 = 144$ $\Rightarrow \frac{x^2}{16} + \frac{y^2}{9} = 1$

As we know equation of tangent to ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at any point $(a \cos\phi, b \sin\phi)$ is $\frac{x}{a}\cos\phi + \frac{y}{b}\sin\phi = 1$ So, equation of tangent to given ellipse at $(4\cos\phi, 3\sin\phi)$ is $\frac{x}{4}\cos\phi + \frac{y}{3}\sin\phi = 1$



So, coordinates of A = (4 sec ϕ , 0) Coordinates of B = (0, 3 cosec ϕ) Now, AB = $\sqrt{16 \sec^2 \phi + 9 \csc^2 \phi}$ \Rightarrow AB = $\sqrt{16(1 + \tan^2 \phi) + 9(1 + \cot^2 \phi)}$ \Rightarrow AB = $\sqrt{25 + (4 \tan \phi)^2 + (3 \cot \phi)^2}$ \Rightarrow AB = $\sqrt{25 + (4 \tan \phi - 3 \cot \phi)^2 + 24}$ \Rightarrow (AB)_{min} = $\sqrt{25 + 24} = 7$

HINT:

(1) Equation of tangent to ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at any

point $(a \cos \phi, b \sin \phi)$ is $\frac{x}{a} \cos \phi + \frac{y}{b} \sin \phi = 1$

- (2) Use $1 + \tan^2 \theta = \sec^2 \theta$ and $1 + \cot^2 \theta = \csc^2 \theta$.
- 23. The correct answer is (14).

Given lines
$$L_1: \frac{x-2}{3} = \frac{y+1}{2} = \frac{z-6}{2}$$

$$L_2: \frac{x-6}{3} = \frac{1-y}{2} = \frac{2+6}{0}$$

 L_1 can be written as in vector from

$$\vec{r} = (2\hat{i} - \hat{j} + 6\hat{k}) + \lambda(3\hat{i} + 2\hat{j} + 2\hat{k})$$

$$L_2 \text{ can be written as in vector from}$$

$$\vec{r} = (6\hat{i} + \hat{j} - 8\hat{k}) + \mu(3\hat{i} - 2\hat{j})$$

As we know shortest distance between two lines

$$\vec{r} = \vec{a} + \lambda \vec{p}$$
 and $\vec{r} = \vec{b} + \mu \vec{q}$ is given by

$$d = \left| \frac{(\vec{b} - \vec{a}).(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \right|$$

Here, $\vec{a} = 2\hat{i} - \hat{j} + 6\hat{k}$, $\vec{b} = 6\hat{i} + \hat{j} - 8\hat{k}$, $\vec{p} = 3\hat{i} + 2\hat{j} + 2\hat{k}$, $\vec{q} = 3\hat{i} - 2\hat{j}$

Now,
$$\vec{p} \times \vec{q} = \begin{vmatrix} i & j & k \\ 3 & 2 & 2 \\ 3 & -2 & 0 \end{vmatrix}$$

 $\Rightarrow \vec{p} \times \vec{q} = 4\hat{i} + 6\hat{j} - 12\hat{k} = 2(2\hat{i} + 3\hat{j} - 6\hat{k})$
Now, $\vec{b} - \vec{a} = 4\hat{i} + 2\hat{j} - 14\hat{k} = 2(2\hat{i} + \hat{j} - 7\hat{k})$
So, $(\vec{b} - \vec{a}).(\vec{p} \times \vec{q}) = 4[4 + 3 + 42] = 196$
And $|\vec{p} \times \vec{q}| = 2\sqrt{4 + 9 + 36} = 14$

∴ Shortest distance between given lines is $d = \left| \frac{196}{14} \right| = 14$

HINT:

(1) Write the given equation of line in vector form
and use distance between two lines
$$\vec{r} = \vec{a} + \lambda \vec{p}$$
 and
 $\vec{r} = \vec{b} + \mu \vec{q}$ is given by $d = \left| \frac{(\vec{b} - \vec{a}).(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \right|$
(2) If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then
 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

24. The correct answer is (1012).

Given:
$$\sum_{r=0}^{2023} r^{2} \, {}^{2023}C_{r} = 2023 \times \alpha \times 2^{2022}$$

Let $A = \sum_{r=0}^{2023} r^{2} \, {}^{2023}C_{r}$
$$\Rightarrow A = \sum_{r=0}^{2023} r^{2} \, {}^{2022}C_{r-1} \qquad \left\{ \because {}^{n}C_{r} = \frac{n}{r} \, {}^{n-1}C_{r-1} \right\}$$
$$\Rightarrow A = \sum_{r=1}^{2023} r (2023) \, {}^{2022}C_{r-1}$$

$$\Rightarrow A = 2023 \left\{ \sum_{r=1}^{2023} (r-1)^{2022} C_{r-1} + \sum_{r=1}^{2023} \sum_{r=1}^{2022} C_{r-1} \right\}$$

$$\Rightarrow A = 2023 \left\{ 2022 \ 2^{2021} + 2^{2022} \right\}$$

$$\{ \because {}^{n}C_{1} + 2^{n}C_{2} + 3^{n}C_{3} + \dots + n {}^{n}C_{n} = n \ 2^{n-1} \text{ and } n \ C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n} \right\}$$

$$\Rightarrow A = 2023 \times 2022 \times 2^{2021} + 2^{2022} \times 2023$$

$$\Rightarrow A = 2023 \times 2^{2022} (1011 + 1)$$

$$\Rightarrow A = 1012 \times 2023 \times 2^{2022}$$

$$\Rightarrow 2023 \times \alpha \times 2^{2022} = 1012 \times 2023 \times 2^{2022}$$

$$\Rightarrow \alpha = 1012$$

HINT:

- (1) Simplify given expression using ${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1}$ (2) Use ${}^{n}C_{1} + 2 {}^{n}C_{2} + 3 {}^{n}C_{3} + \dots + n {}^{n}C_{n} = n2^{n-1}$ (3) Use ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$
- 25. The correct answer is (2).

Let I =
$$\int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx$$
 ...(1)
Using $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$
 $\Rightarrow I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{2023}}{(\cos x)^{2023} + (\sin x)^{2023}} dx$...(2)
(1) + (2), 2I = $\int_{a}^{\frac{\pi}{2}} dx$

$$\Rightarrow I = \frac{1}{2} \left(\frac{\pi}{2} - 0 \right) \Rightarrow I = \frac{\pi}{4}$$

So, $\frac{8}{\pi} (I) = \frac{8}{\pi} \cdot \frac{\pi}{4} = 2$

HINT:

Use property: $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$

- **26.** The correct answer is (60). $1 \rightarrow 3$ times
 - $2 \rightarrow 2 \text{ times}$ $3 \rightarrow 2 \text{ times}$ $4 \rightarrow 2 \text{ times}$ $\frac{X}{O E O E O E O E O E O E O$
 - O odd, E even

Number of ways for even digits to occupy even places

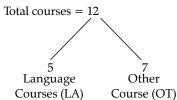
$$=\frac{4!}{2!2!} = \frac{24}{2 \times 2} = 6$$

Total number of 9 digit numbers = $(6)\left(\frac{5!}{3!2!}\right)$

$$= (6)\left(\frac{120}{6\times 2}\right) = 60$$

Number of ways of arranging '*m*' alike & '*n*' distinct objects in a line are $\frac{(m+n)!}{m!}$

27. The correct answer is (546).



Number of wavs

HINT:

(1) Make cases like (zero language, 5 other) or so on.
 (2) Use ⁿC_r = ⁿC_{n-r}

28. The correct answer is (12). Let first term of G P be |a|

Et first term of G.f. be *u*.
Given,
$$T_4 = a \left(\frac{1}{m}\right)^3 = 500$$

 $\Rightarrow \frac{a}{m^3} = 500$
 $\Rightarrow a = 500 m^3$
Consider, $S_n - S_{n-1}$
 $= a \left(\frac{1-r^n}{1-r}\right) - a \left(\frac{1-r^{n-1}}{1-r}\right)$, where $r = \frac{1}{m}$
 $= \frac{a}{(1-r)} [1-r^n - 1 + r^{n-1}] = \frac{ar^{n-1}}{(1-r)} (1-r) = ar^{n-1}$
 $\Rightarrow S_n - S_{n-1} = \frac{a}{m^{n-1}} \Rightarrow S_n - S_{n-1} = \frac{500m^3}{m^{n-1}}$
 $\Rightarrow S_n - S_{n-1} = 500 m^{4-n}$
Given, $S_6 - S_5 > 1$
 $\Rightarrow 500 m^{4-6} > 1$
 $\Rightarrow \frac{500}{m^2} > 1$
Again, $S_7 - S_6 < \frac{1}{2}$
 $\Rightarrow 500 m^{4-7} < \frac{1}{2}$

$$\Rightarrow \frac{500}{m^3} < \frac{1}{2} \qquad ...(2)$$
(1)
$$\Rightarrow m^2 < 500$$
(2)
$$\Rightarrow m^3 > 1000$$
So, $m \in \{11, 12, 13, ..., 22\}$

$$\therefore$$
 Number of possible values of *m* is 12.

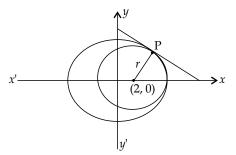
HINT:

- (1) n^{th} term of a G.P. is $T_n = ar^{n-1}$, where 'a' and 'r' are first term and common ratio respectively.
- (2) Sum of 'n' terms of a G.P.

$$S_n = a\left(\frac{1-r^n}{1-r}\right), \text{ if } r < 1$$

29. The correct answer is (118).

Let ellipse be E:
$$\frac{x^2}{36} + \frac{y^2}{16} =$$



1

Circle (C) $\equiv (x - 2)^2 + (y - 0)^2 = r^2$ For C to be largest possible circle, its radius has to be maximum.

Point P on ellipse \equiv (6 cos θ , 4 sin θ) T = 0

Normal at P on ellipse should also be normal to circle as ellipse and circle are touching each other at P. Normal $\equiv 6x \sec\theta - 4y \csc\theta = 36 - 16$ It also passes through centre of circle i.e., (2, 0) $\Rightarrow 12 \sec\theta = 20$

$$\Rightarrow \cos\theta = \frac{3}{5}$$

So, $\sin\theta = \frac{4}{5}$
$$P \equiv \left(6 \times \frac{3}{5}, 4 \times \frac{4}{5}\right) \equiv \left(\frac{18}{5}, \frac{16}{5}\right)$$

Now, $r = \sqrt{\left(2 - \frac{18}{5}\right)^2 + \left(0 - \frac{16}{5}\right)^2}$
$$\Rightarrow r = \sqrt{\frac{64}{25} + \frac{256}{25}}$$

$$\Rightarrow r = \frac{\sqrt{320}}{5} = \frac{8\sqrt{5}}{5} \Rightarrow r = \frac{8}{\sqrt{5}}$$

Now $(1, \alpha)$ lies on c .
$$\therefore \sqrt{(2 - 1)^2 + (0 - \alpha)^2} = \frac{8}{\sqrt{5}}$$

...(1)

$$1 + \alpha^{2} = \frac{64}{5} \Rightarrow \alpha^{2} = \frac{64}{5} - 1 = \frac{59}{5}$$
$$10\alpha^{2} = \frac{59}{5} \times 10 = 118$$

- (1) Think of common normal and remember that normal of circle passes through its centre.
- (2) Normal to ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at P ($a \cos\theta, b \sin\theta$) is $(a \sec \theta) x - (b \csc \theta) y = a^2 - b^2$ (3) Finally find radius of circle and make it equal to
- the distance between $(1, \alpha)$ and (2, 0).

30. The correct answer is (22).

Let I =
$$\int_{0}^{3} |x^{2} - 3x + 2| dx$$
$$|x^{2} - 3x + 2| = \begin{bmatrix} x^{2} - 3x + 2 \\ x \in (-\infty, 1] \cup [2, \infty) \\ -(x^{2} - 3x + 2), \\ x \in (1, 2) \end{bmatrix}$$

So, I =
$$\int_0^1 (x^2 - 3x + 2) dx - \int_1^2 (x^2 - 3x + 2) dx$$

$$\begin{split} + \int_{2}^{3} (x^{2} - 3x + 2) dx \\ \Rightarrow I &= \left[\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x \right]_{0}^{1} - \left[\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x \right]_{1}^{2} \\ &+ \left[\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x \right]_{2}^{3} \\ \Rightarrow I &= \left[\frac{1}{3} - \frac{3}{2} + 2 \right] - \left[\left(\frac{8}{3} - \frac{1}{3} \right) - \frac{3}{2} (4 - 1) + 2(2 - 1) \right] \\ &+ \left[\left(\frac{27}{3} - \frac{8}{3} \right) - \frac{3}{2} (9 - 4) + 2(3 - 2) \right] \\ \Rightarrow I &= \frac{5}{6} + \frac{1}{6} + \frac{5}{6} = \frac{11}{6} \\ \text{So, } 12I &= 12 \left(\frac{11}{6} \right) = 22 \end{split}$$

HINT:

(1)
$$|f(x)| =$$

 $f(x), f(x) \ge 0$
 $f(x), f(x) < 0$
(2) $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$