JEE (Main) MATHEMATICS SOLVED PAPER

General Instructions :

- 1. In mathematics Section, there are 30 Questions (Q. no. 1 to 30).
- 2. In mathematics, Section A consists of 20 single choice questions & Section B consists of 10 numerical value type questions. In Section B, candidates have to attempt any five questions out of 10.
- 3. There will be only one correct choice in the given four choices in Section A. For each question for Section A, 4 marks will be awarded for correct choice, 1 mark will be deducted for incorrect choice question and zero mark will be awarded for unattempted question.
- 4. *For Section B questions, 4 marks will be awarded for correct answer and zero for unattempted and incorrect answer.*
- Any textual, printed or written material, mobile phones, calculator etc. are not allowed for the students appearing for the test.
 All calculations / written work should be done in the rough sheet provided with Question Paper.

Section A

- Q. 1. If, $f(x) = x^3 x^2 f'(1) + x f''(2) f'''(3), x \in \mathbb{R}$ then (A) f(1) + f(2) + f(3) = f(0)(B) 2 f(0) - f(1) + f(3) = f(2)(C) 3f(1) + f(2) = f(3)(D) f(3) - f(2) = f(1)
- **Q. 2.** If the system of equations $\begin{array}{l} x + 2y + 3z = 3 \\ 4x + 3y - 4z = 4 \\ 8x + 4y - \lambda z = 9 + \mu \end{array}$ has infinitely many solutions, then the ordered pair (λ , μ) is equal to:

(A)
$$\left(-\frac{72}{5}, \frac{21}{5}\right)$$
 (B) $\left(-\frac{72}{5}, -\frac{21}{5}\right)$
(C) $\left(\frac{72}{5}, -\frac{21}{5}\right)$ (D) $\left(\frac{72}{5}, \frac{21}{5}\right)$

Q.3. If, $f(x) = \frac{2^{2x}}{2^{2x} + 2}, x \in \mathbb{R}$, then $f\left(\frac{1}{2023}\right) + f\left(\frac{2}{2023}\right) + \dots + f\left(\frac{2022}{2023}\right)$ is equal to (A) 1011 (B) 2010 (C) 1010 (D) 2011

Q.4. Let $\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k}$ and $\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}$. Let $\vec{\beta}_1$

be parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ be perpendicular to $\vec{\alpha}$. If $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, then the value of $5\vec{\beta}_2 \cdot (\hat{i} + \hat{j} + \hat{k})$ is (A) 7 (B) 9

- (C) 6 (D) 11
- Q. 5. Let y = y(x) be the solution of the differential equation $(x^2 - 3y^2) dx + 3xydy = 0, y(1) = 1$. Then $6y^2(e)$ is equal to (A) $2e^2$ (B) $3e^2$ (C) e^2 (D) $\frac{3}{2}e^2$

Q. 6. The locus of the mid points of the chords of the circle C_1 : $(x - 4)^2 + (y - 5)^2 = 4$ which subtend an angle θ_1 at the centre of the circle C_1 , is a circle of

 24^{th}

radius r_i . If $\theta_1 = \frac{\pi}{3}$, $\theta_3 = \frac{2\pi}{3}$ and $r_1^2 = r_2^2 + r_3^2$, then θ_2 is equal to

2023

an. Shift 2

(A)
$$\frac{\pi}{4}$$
 (B) $\frac{\pi}{2}$
(C) $\frac{\pi}{6}$ (D) $\frac{3\pi}{4}$

Q.7. The number of real solutions of the equation

$$3\left(x^{2} + \frac{1}{x^{2}}\right) - 2\left(x + \frac{1}{x}\right) + 5 = 0, \text{ is}$$

(A) 0 (B) 3
(C) 4 (D) 2

Q.8. Let A be a 3×3 matrix such that |adj(adj(adjA))|= 12^4 Then $|A^{-1}adjA|$ is equal to

(A)
$$\sqrt{6}$$
 (B) $2\sqrt{3}$
(C) 12 (D) 1
Q. 9. $\int_{\frac{3\sqrt{3}}{4}}^{\frac{3\sqrt{3}}{4}} \frac{48}{\sqrt{9-4x^2}} dx$
(A) 2π (B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Q. 10. The number of square matrices of order 5 with entries form the set {0, 1}, such that the sum of all the elements in each row is 1 and the sum of all the elements in each column is also 1, is
 (A) 125 (B) 225
 (C) 150 (D) 120
- **Q.11.** If $({}^{30}C_1)^2 + 2 ({}^{30}C_2)^2 + 3 ({}^{30}C_3)^2 + \dots + 30 ({}^{30}C_{30})^2$ $\alpha 60!$

=
$$\overline{(30!)^2}$$
 then α is equal to:

- **Q. 12.** Let the plane containing the line of intersection of the planes P_1 : $x + (\lambda + 4)y + z = 1$ and P_2 : 2x + y + z = 2 pass through the points (0, 1, 0) and (1, 0, 1). Then the distance of the point (2λ , λ , $-\lambda$) from the plane P_2 is
 - (A) $4\sqrt{6}$ (B) $3\sqrt{6}$
 - (C) $5\sqrt{6}$ (D) $2\sqrt{6}$
- **Q.13.** Let f(x) be a function such that f(x + y) = f(x).

f(y) for all, $x, y \in \mathbb{N}$. If f(1) = 3 and $\sum_{k=1}^{n} f(k) = 3279$, then the value of n is (A) 9 (B) 6

- **Q. 14.** Let the six numbers a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , be in A.P. and $a_1 + a_3 = 10$. If the mean of these six numbers
 - is $\frac{19}{2}$ and their variance is σ^2 , then $8\sigma^2$ is equal to:

(A)	210	(B)	220
·			

(C) 200 (D) 105 Q. 15. The equations of the sides AB and AC of a triangle ABC are $(\lambda + 1)x + \lambda y = 4$ and $\lambda x + (1 - \lambda)$ $y + \lambda = 0$ respectively. Its vertex A is on the y-axis and its orthocentre is (1, 2). The length of the tangent from the point C to the part of the parabola $y^2 = 6x$ in the first quadrant is : (A) 4 (B) 2

(C)
$$\sqrt{6}$$
 (D) $2\sqrt{2}$

- **Q. 16.** Let *p* and *q* be two statements. Then $\sim (p \land (p \Rightarrow \sim q))$ is equivalent to
 - (A) $p \lor (p \land q)$ (B) $p \lor (p \land (\sim q))$ (C) $(\sim p) \lor q$ (B) $p \lor (p \land (\sim q))$ (D) $p \lor ((\sim p) \land q)$
- **Q. 17.** The set of all values of a for which $\lim_{x \to a} ([x 5])$

- [2x + 2] = 0, where $[\alpha]$ denotes the greatest integer less than or equal to α is equal to (A) [-7.5, -6.5] (B) [-7.5, -6.5] (C) (-7.5, -6.5] (D) (-7.5, -6.5)

- **Q. 18.** If the foot of the perpendicular drawn from (1, 9, 7) to the line passing through the point (3, 2, 1) and parallel to the planes x + 2y + z = 0 and 3y z = 3 is (α, β, γ) , then $\alpha + \beta + \gamma$ is equal to (A) 3 (B) 1 (C) -1 (D) 5
- **Q. 19.** The number of integers, greater than 7000 that can be formed, using the digits 3, 5, 6, 7, 8 without repetition, is
 - (A) 168
 (B) 220
 (C) 120
 (D) 48

Q. 20. The value of
$$\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^{3}$$

(A) $-\frac{1}{2}(\sqrt{3}-i)$ (B) $-\frac{1}{2}(1-i\sqrt{3})$
(C) $\frac{1}{2}(1-i\sqrt{3})$ (D) $\frac{1}{2}(\sqrt{3}+i)$

Section B

Q.21. If the shortest distance between the

$$\frac{x+\sqrt{6}}{2} = \frac{y-\sqrt{6}}{3} = \frac{z-\sqrt{6}}{4}$$
 and

 $\frac{x-\lambda}{3} = \frac{y-2\sqrt{6}}{4} = \frac{z+2\sqrt{6}}{5}$ is 6, then the square of

sum of all possible values of $\boldsymbol{\lambda}$ is

lines

- **Q. 22.** Three urns A, B and C contain 4 red, 6 black; 5 red, 5 black; and λ red, 4 black balls respectively. One of the urns is selected at random and a ball is drawn. If the ball drawn is red and the probability that it is drawn from urn C is 0.4 then the square of the length of the side of the largest equilateral triangle, inscribed in the parabola $y^2 = \lambda x$ with one vertex at the vertex of the parabola, is
- **Q.23.** Let $S = \{ \theta \in [0, 2\pi) : \tan(\pi \cos \theta) + \tan(\pi \sin \theta) = 0 \}$

Then
$$\sum_{\theta \in s} \sin^2 \left(\theta + \frac{\pi}{4} \right)$$
 is equal to

- **Q. 24.** If $\frac{1^3 + 2^3 + 3^3 + \dots$ up to *n* terms $\frac{9}{5'}$ then the value of *n* is
- **Q. 25.** Let the sum of the coefficients of the first three terms in the expansion of $\left(x \frac{3}{x^2}\right)^n$, $x \neq 0, n \in \mathbb{N}$,

be 376. Then the coefficient of x^4 is

- **Q.26.** The equations of the sides AB, BC and CA of a triangle ABC are : 2x + y = 0, x + py = 21a, $(a \neq 0)$ and x y = 3 respectively. Let P(2, *a*) be the centroid of \triangle ABC. Then (BC)² is equal to
- **Q. 27.** Let $\vec{a} = \hat{i} + 2\hat{j} + \lambda\hat{k}, \vec{b} = 3\hat{i} 5\hat{j} \lambda\hat{k},$

 $\vec{a}.\vec{c} = 7, 2\vec{b}.\vec{c} + 43 = 0, \quad \vec{a} \times \vec{c} = \vec{b} \times \vec{c}.$

Then $|\vec{a}.\vec{b}|$ is equal to

- **Q.28.** The minimum number of elements that must be added to the relation $R = \{(a, b), (b, c), (b, d)\}$ on the set $\{a, b, c, d\}$ so that it is an equivalence relation, is
- **Q.29.** If the area of the region bounded by the curves $y^2 2y = -x$, x + y = 0 is A, then 8 A is equal to
- **Q.30.** Lef *f* be a differentiable function defined on $\left[0, \frac{\pi}{2}\right]$ such that f(x) > 0 and

$$f(x) + \int_0^x f(t) \sqrt{1 - (\log_e f(t))^2} dt = e, \forall x \in \left[0, \frac{\pi}{2}\right]$$

Then $\left(6\log_e f\left(\frac{\pi}{6}\right)\right)^2$ is equal to

Answer Key

Q. No.	Answer	Topic Name	Chapter Name	
1	В	Higher Order Derivatives	Differential Calculus	
2	C	System of linear equations	Matrices and Determinants	
3	А	Algebra of Functions	Function	
4	А	Scalar and Vector Products	Vector Algebra	
5	А	Linear Differential Equations	Differential Equations	
6	В	Interaction between Circle and a Line	Circle	
7	A	Quadratic Equation and its Solution	Quadratic Equations	
8	В	Adjoint of a Matrix	Matrices and Determinants	
9	А	Basics of Definite Integration	Definite Integration	
10	D	Permutations	Permutation and Combination	
11	D	Properties of Binomial Coefficients	Binomial Theorem	
12	В	Plane and a Point	Three Dimensional Geometry	
13	D	Geometric Progressions	Sequences and Series	
14	А	Measures of Dispersion	Statistics	
15	D	Tangent to a Parabola	Parabola	
16	С	Logical Operations	Mathematical Reasoning	
17	D	Algebra of Limits	Limits	
18	D	Lines in 3D	Three Dimensional Geometry	
19	А	Permutations	Permutations and Combinations	
20	А	Representation of Complex Numbers	Complex Numbers	
21	[384]	Skew Lines	Three Dimensional Geometry	
22	[432]	Bayes' Theorem	Probability	
23	[2]	Trigonometric Equations	Trigonometric Equations and Inequalities	
24	[5]	Series of Natural Numbers and other	Sequences and Series	
		Miscellaneous Series		
25	[405]	Binomial Theorem for Positive Integral Index	Binomial Theorem	
26	[122]	Interaction between Two Lines	Point and Straight Line	
27	[8]	Scalar and Vector Products	Vector Algebra	
28	[13]	Algebra of Relations	Set Theory and Relations	
29	[36]	Area Bounded by Curves	Area under Curves	
30	[27]	Variable Separable Form	Differential Equations	

JEE (Main) MATHEMATICS SOLVED PAPER

2023 24th Jan Shift 2

Solutions

Section A

1. Option (B) is correct. Given, $f(x) = x^3 - x^2 f'(1) + x f''(2) - f'''(3), x \in \mathbb{R}$ Let f'(1) = p, f''(2) = q and f'''(3) = r $\Rightarrow f(x) = x^3 - px^2 + qx - r$ $\Rightarrow f'(x) = 3x^2 - 2px + q$ $\Rightarrow f''(x) = 6x - 2p$ $\Rightarrow f'''(x) = 6$ So, f'''(3) = 6 = rNow, $f'(1) = 3(1)^2 - 2p(1) + q$ $\Rightarrow p = 3 - 2p + q$ $\Rightarrow 3p = 3 + q$...(i) And f''(2) = 6(2) - 2p $\Rightarrow q = 12 - 2p$ $\Rightarrow 2p + q = 12$...(ii) On solving equation (i) and equation (ii), we get p = 3, q = 6 $\therefore f(x) = x^3 - 3x^2 + 6x - 6$ So, f(0) = -6, f(1) = -2, f(2) = 2, f(3) = 12Now, 2f(0) - f(1) + f(3) = 2(-6) - (-2) + 12= 2 = f(2)

HINT:

Find f'(x), f''(x) and f'''(x) using $\frac{d}{dx}(x^n) = nx^{n-1}$ and solve further.

2. Option (C) is correct. Given: System of equations x + 2y + 3z = 34x + 3y - 4z = 4 $8x + 4y - \lambda z = 9 + \mu$ As we know for infinite many solutions, $\Delta = \Delta_1 = \Delta_2$ $= \Delta_3 = 0$ 1 2 3 Now, $\Delta = \begin{vmatrix} 4 & 3 & -4 \end{vmatrix} = 0$ $8 4 -\lambda$ $\Rightarrow 1 (-3\lambda + 16) - 2 (-4\lambda + 32) + 3 (16 - 24) = 0$ $\Rightarrow -3\lambda + 16 + 8\lambda - 64 - 24 = 0$ $\Rightarrow 5\lambda - 72 = 0$ 72 $\Rightarrow \lambda = 1$ 5 3 1 2 Now, $\Delta_3 = \begin{vmatrix} 4 & 3 & 4 \end{vmatrix} = 0$ $8 \ 4 \ 9 + \mu$ $\Rightarrow 1 (27 + 3\mu - 16) - 2 (36 + 4\mu - 32) + 3 (16 - 24) = 0$ $\Rightarrow 11 + 3\mu - 8\mu - 8 - 24 = 0$ $\Rightarrow -5\mu - 21 = 0$ $\Rightarrow \mu = -\frac{21}{5}$

HINT:

Consider, $a_1x + b_1y + c_1z = d_1$ $a_2x + b_2y + c_2z = d_2$ $a_3x + b_3y + c_3z = d_3$ To solve this system we first define the following determinants $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, \Delta_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}, \Delta_2 = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$ $\Delta_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$ System of linear equations have infinite solutions if

3. Option (A) is correct.

 $\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$

Given:
$$f(x) = \frac{2^{2x}}{2^{2x} + 2}, x \in \mathbb{R}$$

 $\Rightarrow f(x) = \frac{4^x}{4^x + 2}$
Now, $f(1 - x) = \frac{4^{(1 - x)}}{4^{(1 - x)} + 2}$
 $\Rightarrow f(1 - x) = \frac{4}{4 + 2.4^x}$
 $\Rightarrow f(1 - x) = \frac{2}{2 + 4^x}$
So, $f(x) + f(1 - x) = \frac{4^x}{4^x + 2} + \frac{2}{4^x + 2} = 1$
Let $A = f\left(\frac{1}{2023}\right) + f\left(\frac{2}{2023}\right) + \dots + f\left(\frac{2022}{2023}\right)$
 $\Rightarrow A = f\left(\frac{1}{2023}\right) + f\left(\frac{2022}{2023}\right) + f\left(\frac{2}{2023}\right) + f\left(\frac{2021}{2023}\right) + \dots + f\left(\frac{1011}{2023}\right) + f\left(\frac{1012}{2023}\right)$
 $\Rightarrow A = 1 + 1 + 1 + \dots$ up to 1011 terms
 $\Rightarrow A = 1011$

HINT:

Use f(x) + f(1 - x) = 1 and solve further.

4. Option (A) is correct.

Given: $\vec{\alpha} = 4\hat{i} + 3\hat{j} + 5\hat{k}$ $\vec{\beta} = \hat{i} + 2\hat{j} - 4\hat{k}$ $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$ $\therefore \vec{\beta}_1$ is parallel to $\vec{\alpha}$ $\Rightarrow \beta_1 = \mu(4\hat{i} + 3\hat{j} + 5\hat{k}); \mu \in \mathbb{R}$ Also given that $\vec{\beta}_2$ is perpendicular to α $\Rightarrow \vec{\beta}_2 \alpha = 0$ Since, $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$ $\Rightarrow \vec{\beta} = \mu \vec{\alpha} + \vec{\beta}_2$ $\Rightarrow \vec{\beta}.\vec{\alpha} = \mu |\vec{\alpha}^2| + \vec{\beta}_2.\vec{\alpha}$ $\Rightarrow (4\hat{i} + 3\hat{j} + 5\hat{k}).(\hat{i} + 2\hat{j} - 4\hat{k}) = \mu(\sqrt{16 + 9 + 25})^2 + 0$ $\Rightarrow 4 + 6 - 20 = \mu(50)$ $\Rightarrow \mu = -\frac{1}{5}$ Now, $\vec{\beta} = -\frac{1}{5}\vec{\alpha} + \vec{\beta}_2$ $\Rightarrow 5\vec{\beta}_2 = 5\vec{\beta} + \vec{\alpha}$ $\Rightarrow 5\vec{\beta}_2 = 5(\hat{i}+2\hat{j}-4\hat{k}) + (4\hat{i}+3\hat{j}+5\hat{k})$ $\Rightarrow 5\vec{\beta}_2 = 9\hat{i} + 13\hat{j} - 15\hat{k}$ Now, $5\vec{\beta}_2 \cdot (\hat{i} + \hat{j} + \hat{k}) = 9 + 13 - 15 = 7$

HINT:

- Use if *ā* is parallel to *b*, then *b* = k*ā*; k ∈ R
 Use if *ū* is perpendicular to *v*, then *ū*.*v* = 0
 If *ā* = a₁*i* + a₂*j* + a₃*k* and *b* = b₁*i* + b₂*j* + b₃*k*, then *ā*.*b* = a₁b₁ + a₂b₂ + a₃b₃
- 5. Option (A) is correct. Given, differential equation $(x^2 - 3y^2) dx + 3xy dy = 0$, y(1) = 1

$$\Rightarrow 3xy \frac{dy}{dx} - 3y^2 = -x^2$$

$$\Rightarrow y \frac{dy}{dx} - \frac{y^2}{x} = -\frac{x}{3}$$

$$\Rightarrow 2y \frac{dy}{dx} - \frac{2y^2}{x} = -\frac{2x}{3}$$

Let $y^2 = v$

$$\Rightarrow 2y \frac{dy}{dx} = \frac{dv}{dx}$$

So, $\frac{dv}{dx} - \frac{2v}{x} = \frac{-2x}{3}$ which is linear differential equation
Now, I.F. = $e^{\int -\frac{2}{x} dx}$

$$\Rightarrow I.F. = e^{-2\ln x}$$

 \Rightarrow I.F. = $e^{\ln x^{-2}} \Rightarrow$ I.F. = $\frac{1}{r^2}$

Now, solution of linear differential equation is

$$v (I.F.) = \int \frac{-2x}{3} (I.F.) dx + c$$

$$\Rightarrow v \frac{(1)}{(x^2)} = \int \frac{-2x}{3} \times \frac{1}{x^2} dx + c$$

$$\Rightarrow \frac{v}{x^2} = -\frac{2}{3} \int \frac{1}{x} dx + c$$

$$\Rightarrow \frac{v}{x^2} = -\frac{2}{3} \ln x + c$$

$$\Rightarrow \frac{y^2}{x^2} = -\frac{2}{3} \ln x + c$$

$$\Rightarrow c = 1$$

So, $\frac{y^2}{x^2} = -\frac{2}{3} \ln x + 1$

$$\Rightarrow y^2 = -\frac{2}{3} x^2 \ln x + x^2$$

$$\Rightarrow y^2(e) = -\frac{2}{3} e^2 \ln e + e^2$$

$$\Rightarrow y^2(e) = \frac{e^2}{3}$$

$$\Rightarrow 6y^2(e) = 2e^2$$

HINT:

- (1) Convert given differential equation into linear differential equation by substituting $y^2 = v$.
- (2) Solution of linear differential equation $\frac{dy}{dx} + Px = Q$ is given by $y(I.F.) = \int Q(I.F.)dx + c$, where $I.F. = e^{\int Pdx}$
- 6. Option (B) is correct. Given: Circle c_1 : $(x - 4)^2 + (y - 5)^2 = 4$ \Rightarrow Centre = (4, 5) and radius = 2 Also given that $\theta_1 = \frac{\pi}{3}, \theta_3 = \frac{2\pi}{3}$ and $r_1^2 = r_2^2 + r_3^2$ (4, 5) $2, \frac{\theta}{2}$ (4, 5) $2, \frac{\theta}{2}$ r rSo, $\cos\left(\frac{\theta_i}{2}\right) = \frac{r_i}{2}$ $\Rightarrow r_1 = 2\cos\left(\frac{\theta_i}{2}\right)$ [$\because r_1^2 = r_2^2 + r_3^2$] $\Rightarrow \cos^2\frac{\theta_1}{2} = \cos^2\frac{\theta_2}{2} + \cos^2\frac{\theta_3}{2}$

$$\Rightarrow \cos^{2}\left(\frac{\pi}{6}\right) = \cos^{2}\left(\frac{\theta_{2}}{3}\right) + \cos^{2}\left(\frac{\pi}{3}\right)$$
$$\Rightarrow \frac{3}{4} = \frac{1}{4} + \cos^{2}\frac{\theta_{2}}{2}$$
$$\Rightarrow \cos^{2}\frac{\theta_{2}}{2} = \frac{1}{2}$$
$$\Rightarrow \frac{\theta_{2}}{2} = \frac{\pi}{4}$$
$$\Rightarrow \theta_{2} = \frac{\pi}{2}$$

HINT:

- (1) Use radius of locus will be perpendicular from centre of the circle to chord.
- (2) Use perpendicular drawn from centre to the chord bisects the chord.

7. Option (A) is correct.

Given:
$$3\left(x^{2} + \frac{1}{x^{2}}\right) - 2\left(x + \frac{1}{x}\right) + 5 = 0$$

$$\Rightarrow 3\left[\left(x + \frac{1}{x}\right)^{2} - 2\right] - 2\left(x + \frac{1}{x}\right) + 5 = 0$$

Let $x + \frac{1}{x} = v$

$$\Rightarrow 3\left[v^{2} \cdot x - 2\right] - 2v + 5 = 0$$

$$\Rightarrow 3v^{2} - 2v - 1 = 0$$

$$\Rightarrow (3v + 1)(v - 1) = 0$$

$$\Rightarrow v = 1, -\frac{1}{3}$$

As we know $x + \frac{1}{x} \ge 2$ or $x + \frac{1}{x} \le -2$
But $x + \frac{1}{x} = v = 1, -\frac{1}{3}$

So, no real solution of the given equation is possible.

HINT:

- Convert given equation into quadratic equation by substituting x + 1/x = v and solve further.
 Use x + 1/x ∈ (-∞, -2] ∪ [2,∞)
- 8. Option (B) is correct. Given $|\operatorname{adj} (\operatorname{adj} (\operatorname{adj} A))| = 12^4$ $\Rightarrow |A|^{(n-1)^3} = 12^4$ $\Rightarrow |A|^{(2)^3} = 12^4$ $\Rightarrow |A|^8 = 12^4$ $\Rightarrow |A| = \sqrt{12}$ Now, $|A^{-1}\operatorname{adj}A| = |A^{-1}| |\operatorname{adj} A|$ $= \frac{1}{|A|} |A|^2$ {:: $|\operatorname{adj} A| = |A|^{n-1}$;

$$=|A| = \sqrt{12} = 2\sqrt{3}$$

HINT:

- (1) Use $|adj (adj (adj A))| = |A|^{(n-1)^3}$; where n = order of square matrix.
- (2) Use $|adj A| = |A|^{n-1}$; where n = order of square matrix.
- (3) Use |AB| = |A| |B|
- 9. Option (A) is correct.

Let I =
$$\frac{\frac{3\sqrt{3}}{4}}{\int_{4}^{4}} \frac{48}{\sqrt{9 - 4x^2}} dx$$

As we know $\int \frac{1}{\sqrt{a^2 - (bx)^2}} dx = \frac{1}{b} \sin^{-1} \left(\frac{bx}{a}\right)$
 $48 \left[-\frac{1}{2} - \frac{1}{2} \left(\frac{2x}{a}\right) \right]^{\frac{3\sqrt{3}}{4}}$

$$\Rightarrow I = \frac{1}{2} \left[\sin^{-1} \left(\frac{\sqrt{3}}{3} \right) \right]_{\frac{3\sqrt{2}}{4}}$$
$$\Rightarrow I = 24 \left[\sin^{-1} \left(\frac{\sqrt{3}}{2} \right) - \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) \right]$$
$$\Rightarrow I = 24 \left[\frac{\pi}{3} - \frac{\pi}{4} \right] \Rightarrow I = 24 \left[\frac{\pi}{12} \right] \Rightarrow I = 2\pi$$

HINT:

(1) Use
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
,
where $\int f(x)dx = F(x) + c$
(2) Use $\int \frac{1}{\sqrt{a^2 - (bx)^2}} dx = \frac{1}{b} \sin^{-1}\left(\frac{bx}{a}\right)$

10. Option (D) is correct.

-	-	-	-	-
-	_	_	_	-
_	_	_	_	_
_	_	_	_	_
_	_	_	_	_
L				

 \because Sum of all the elemetrs in each row and in each column is 1

 \therefore In every row and every column there would be exactly one 1 and four zeroes.

So, number of required matrices = ${}^{5}C_{1} \times {}^{4}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{1} \times {}^{1}C_{1}$

$$= 5 \times 4 \times 3 \times 2 \times 1 = 120$$

HINT:

- (1) In every row and every column there would be exactly one 1 and four zeroes.
- (2) Recall multiplication principle of counting.
- 11. Option (D) is correct.

where n =order of matrix A}

Given,
$${}^{(3)}C_{1}{}^{2} + 2({}^{(3)}C_{2}{}^{2} + 3({}^{(3)}C_{3}{}^{2} + ... + 30({}^{(3)}C_{30}{}^{2})^{2}$$

$$= \frac{\alpha 60!}{(30!)^{2}}$$
Let P = 0 $({}^{(3)}C_{0}{}^{2} + 1({}^{(3)}C_{1}{}^{2} + 2({}^{(3)}C_{2}{}^{2} + ... + 30({}^{(3)}C_{30}{}^{2} - ...(i))$
P = 30 $({}^{(3)}C_{30}{}^{2} + 29({}^{(3)}C_{29}{}^{2} + 28({}^{(3)}C_{28}{}^{2} + ... + 0({}^{(3)}C_{0}{}^{2} - ...(i))$
Adding equation (i) and equation (ii), we get
$$2P = 30\left[\left({}^{(3)}C_{0}^{2}\right) + \left({}^{(3)}C_{1}^{2}\right) + \left({}^{(3)}C_{2}^{2}\right) + ... + \left({}^{(3)}C_{30}^{2}\right)\right]$$
As we know $\sum_{r=0}^{n} ({}^{n}C_{r})^{2} = {}^{2n}C_{n}$
So, P = 15 ${}^{60}C_{30}$
 $\Rightarrow P = 15 \frac{60!}{(30!)^{2}}$

 $\Rightarrow \alpha = 15$

HINT:

(1) Let P = $0 ({}^{30}C_0)^2 + 1 ({}^{30}C_1)^2 + ... + 30 ({}^{30}C_{30})^2$ and make another equation by reversing the term and add both the equations.

(2) Use
$$\sum_{r=0}^{n} ({}^{n}C_{r})^{2} = {}^{2n}C_{r}$$

12. Option (B) is correct.

Given planes P_1 : $x + (\lambda + 4) y + z = 1$ $P_2: 2x + y + z = 2$ Equation of plane containing the line of intersection of the plane P₁ and P₂ is given by $P: [x + (\lambda + 4) y + z - 1] + k [2x + y + z - 2] = 0$ \therefore Plane P passes through (0, 1, 0) $\Rightarrow \lambda + 4 - 1 + k (1 - 2) = 0$ $\Rightarrow \lambda - k + 3 = 0$...(i) Plane P also passes through (1, 0, 1) $\Rightarrow 1 + k (2 + 1 - 2) = 0$ $\Rightarrow k = -1$ Put the value of k = -1 in equation (i), we get $\lambda = -4$ So, point $(2\lambda, \lambda, -\lambda) = (-8, -4, 4)$ Now, distance of (-8, -4, 4) from plane P₂ is $d = \left| \frac{2(-8) - 4 + 4 - 2}{\sqrt{2^2 + 1^2 + 1^2}} \right|$

$$\Rightarrow d = \left| \frac{-18}{\sqrt{6}} \right|$$
$$\Rightarrow d = 3\sqrt{6}$$

HINT:

- (1) Equation of plane containing the line of intersection of the plane P_1 and P_2 is given by $P_1 + \lambda P_2 = 0$.
- (2) Perpendicular distance of point (x_1, y_1, z_1) from plane ax + by + cz + d = 0 is given by

D =
$$\left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$

13. Option (D) is correct.

Given:
$$f(x + y) = f(x)$$
. $f(y)$

$$\Rightarrow f(x) = p^{x} \qquad [\because f(1) = 3]$$

$$\Rightarrow p = 3$$
So, $f(x) = 3^{x}$
Also given that $\sum_{k=1}^{n} f(k) = 3279$

$$\Rightarrow f(1) + f(2) + \dots + f(n) = 3279$$

$$\Rightarrow 3 + 3^{2} + \dots + 3^{n} = 3279$$

$$\Rightarrow \frac{3(3^{n} - 1)}{3 - 1} = 3279$$

$$\Rightarrow 3^{n} = 2187$$

$$\Rightarrow 3^{n} = 3^{7}$$

$$\Rightarrow n = 7$$

HINT:

- Consider f(x) = P^x and find the value of P by given condition.
 Sum of GP whose first term is *a*, common ratio = r
- is given by S = $\frac{a(r^n 1)}{r 1}$; r > 1 where n = number of terms.
- 14. Option (A) is correct.

Given $a_1, a_2, a_3, a_4, a_5, a_6$ are in A.P. and $a_1 + a_3 = 10$ And mean of $a_1, a_2, a_3, a_4, a_5, a_6 = \frac{19}{2}$ So, $\frac{a_1 + a_2 + a_3 + a_4 + a_5 + a_6}{6} = \frac{19}{2}$ $\Rightarrow a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 57$ Let common difference of AP be d. So, $\frac{6}{2}(2a_1+5d) = 57$ { :: Sum of *n* terms of AP is given by $\frac{n}{2}[2a + (n-1)d]$ where a =first term and d =common difference} $\Rightarrow 2a_1 + 5d = 19$...(i) $\begin{bmatrix} \because a_1^{+} + a_3 = 10 \end{bmatrix}$ $\Rightarrow a_1 + a_1 + 2d = 10$ $\Rightarrow 2a_1 + 2d = 10$ $\Rightarrow a_1 + d = 5$...(ii) On solving equation (i) and equation (ii), we get $a_1 = 2$ and d = 3Now, variance = $\sigma^2 = \frac{\Sigma x_i^2}{n} - (\overline{x})^2$ $\Rightarrow \sigma^{2} = \frac{2^{2} + 5^{2} + 8^{2} + 11^{2} + 14^{2} + 17^{2}}{6} - \left(\frac{19}{2}\right)^{2}$ $\Rightarrow \sigma^2 = \frac{699}{6} - \frac{361}{4}$ $\Rightarrow \sigma^2 = \frac{105}{4} \Rightarrow 8\sigma^2 = 210$

HINT:

(1) mean of $a_1, a_2, a_3, ..., a_n$ is given by $x = \frac{a_1 + a_2 + a_3 + ... + a_n}{n}$ (2) Sum of *n* terms of AP is given by $S_n = \frac{n}{2}[2a + (n-1)d]$; where a = first term and d =common difference (3) Variance = $\sum x_i^2 - (\vec{x})^2$

15. Option (D) is correct.

Given: Equation of AB : $(\lambda + 1) x + \lambda y = 4$ $AC : \lambda x + (1 - \lambda) y + \lambda = 0$ H(1, 2) В C :: Vertex A lies on *y*-axis \therefore *x*-coordinate of point A = 0

So,
$$x = 0$$
 will satisfy the equation of AB and AC

So, from equation of AB, $y = \frac{4}{3}$

And from equation of AC, $y = \frac{\lambda}{\lambda - 1}$

So,
$$\frac{4}{\lambda} = \frac{\lambda}{\lambda - 1}$$

 $\Rightarrow 4\lambda - 4 = \lambda^2$
 $\Rightarrow (\lambda - 2)^2 = 0$
 $\Rightarrow \lambda = 2$
So, $A = (0, 2)$
Now, $AB : 3x + 2y = 4$ and $AC : 2x - y = -2$
Slope of AB , $m_{AB} = -\frac{3}{2}$
 $\therefore \mu(1, 2)$ is orthocentre of $\triangle ABC$
 $\therefore m_{CH} \cdot m_{AB} = -1$

$$\Rightarrow m_{\rm CH} = \frac{2}{3}$$

Let the coordinates of point C be (P, 2P + 2)

$$\Rightarrow \frac{2P+2-2}{P-1} = \frac{2}{3}$$
$$\Rightarrow P = -\frac{1}{2}$$
$$\therefore C = \left(-\frac{1}{2}, 1\right)$$

Given equation of parabola is $y^2 = 6x$

Now, equation of tangent to the parabola $y^2 = 6x$ in parametric form is given by $ty = x + \frac{3}{2}t^2$.

$$\therefore \text{ Tangent is passing through } C\left(-\frac{1}{2},1\right)$$

$$\therefore t = -\frac{1}{2} + \frac{3}{2}t^2$$

$$\Rightarrow 3t^2 - 2t - 1 = 0$$

$$\Rightarrow (3t + 1) (t - 1) = 0 \Rightarrow t = 1$$

So, coordinates of point of contact N = $(at^2, 2at)$

$$= \left(\frac{3}{2},3\right)$$

Now, NC = $\sqrt{\left(\frac{3}{2} + \frac{1}{2}\right)^2 + (3 - 1)^2}$

$$\Rightarrow NC = \sqrt{4 + 4} = 2\sqrt{2}$$

HINT:

- (1) Find the coordinates of point A by using the condition of vertex A lies on y-axis.
- (2)Find the coordinates of point B and C by using the
- (2) Find the cost and cost point b and cost asing the definition of orthocentre. (3) Equation of tangent to parabola $y^2 = 4ax$ in parametric form is given by $ty = x + at^2$

16. Option (C) is correct.

As we know $A \Rightarrow B = \sim A \lor B$ So, $p \Rightarrow \sim q = \sim p \lor \sim q$ Now, $p \land (p \Rightarrow \sim q) = p \land (\sim p \lor \sim q)$ $= (p \land \sim p) \lor (p \land \sim q) = F \lor (p \land \sim q)$ Now, $\sim [p \land (p \Rightarrow \sim q)] = \sim [F \lor (p \land \sim q)]$ $= \sim F \land \sim (p \land \sim q) = T \land (\sim p \lor q) = \sim p \lor q$

HINT:

(1) Use
$$A \Rightarrow B = \sim A \lor B$$

(2) Use $A \land (B \lor C) = (A \land B) \lor (A \land C)$

17. Option (D) is correct.
Given,
$$\lim_{x \to a} ([x-5]-[2x+2]) = 0$$

⇒ $[a-5]-[2a+2] = 0$
⇒ $[a]-5-[2a]-2 = 0$
⇒ $[a]-[2a] = 7$...(i)
If $a \in z$, we have $a = -7$
For $a \in (-7.5, -7)$, $[a]-[2a] = -8 + 15 = 7$
So, $a \in (-7.5, -7)$ satisfy the given equation.
For $a \in (-7, -6.5)$, $[a]-[2a] = -7 + 14 = 7$
So, $a \in (-7, -6.5)$ satisfy the given equation
At $a = -7.5$
 $[a]-[2a] = -8 + 15 = 7$
So, $a = -7.5$ satisfy the equation (i)
Now, at $a = -6.5$
 $[a]-[2a] = -7 + 13 = 6$
So, $a = -6.5$ doesn't satisfy the equation (i)
 $\therefore x \to a$
 $\therefore a \neq -6.5$ or -7.5
So, $a \in (-7.5, -6.5)$

HINT:

Solve given limit using the definition of greatest integer function.

18. Option (D) is correct.

Let the normals of the plane x + 2y + z = 0 and 3y - z = 3 be $\vec{n}_1 \& \vec{n}_2$

 $\Rightarrow \vec{n}_1 = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{n}_2 = 3\hat{j} - \hat{k}$ $\begin{vmatrix} \hat{i} & \hat{j} \end{vmatrix}$ And the direction ratio of the line = $\begin{vmatrix} 1 & 2 & 1 \end{vmatrix}$ 0 3 -1

$$= \hat{i}(-2-3) - \hat{j}(-1+0) + \hat{k}(3-0) = -5\hat{i} + \hat{j} + 3\hat{j}$$

So the equation of the line passing through (3, 2, 1) is

Let the coordinates of point Q be (-5k + 3, k + 2, 3k + 2, 31)

Now, direction ratios of PQ = -5k + 3 - 1, k + 2 - 9,

3k + 1 - 7= -5k + 2, k - 7, 3k - 6 \therefore PQ \perp Line So, (-5k + 2)(-5) + (k - 7)(1) + (3k - 6) = 0 $\Rightarrow 35 k = 35$ $\Rightarrow k = 1$ \therefore Foot of perpendicular Q = (-5 + 3, 1 + 2, 3 + 1) = (-2, 3, 4)So, $\alpha + \beta + \gamma = -2 + 3 + 4 = 5$

HINT:

(1) Direction ratio of the line will be $\vec{n}_1 \times \vec{n}_2$; where \vec{n}_1 and \vec{n}_2 are normal vectors of given planes.

19. Option (A) is correct.

Given digits : 3, 5, 6, 7, 8 All five digits number is greater than 7000 So, number of five digits number = 5! = 120For 4 digits number greater than 7000 For 1000th place we can take only 7 or 8 from given digits and for remaining places we can take any digit from given digits. So, number of 4 digits number greater than 7000 $= 2 \times 4 \times 3 \times 2 = 48$

... Number of integer, greater than 7000

= 120 + 48 = 168

HINT:

First find number of 5 digits numbers and then find 4 digit numbers of taking 7 or 8 on 1000th place using the fundamental principle of counting.

20. Option (A) is correct.

Let A =
$$\left(\frac{1+\sin\left(\frac{2\pi}{9}\right)+i\cos\left(\frac{2\pi}{9}\right)}{1+\sin\left(\frac{2\pi}{9}\right)-i\cos\left(\frac{2\pi}{9}\right)}\right)^{3}$$

$$\Rightarrow A = \left(\frac{1+\cos\left(\frac{\pi}{2}-\frac{2\pi}{9}\right)+i\sin\left(\frac{\pi}{2}-\frac{2\pi}{9}\right)}{1+\cos\left(\frac{\pi}{2}-\frac{2\pi}{9}\right)-i\sin\left(\frac{\pi}{2}-\frac{2\pi}{9}\right)}\right)^{3}$$

$$\Rightarrow A = \left(\frac{1+\cos\left(\frac{5\pi}{18}\right)+i\sin\left(\frac{5\pi}{18}\right)}{1+\cos\left(\frac{5\pi}{18}\right)-i\sin\left(\frac{5\pi}{18}\right)}\right)^{3}$$

$$\Rightarrow A = \left(\frac{2\cos^{2}\frac{5\pi}{36}+2i\sin\left(\frac{5\pi}{36}\right)\cos\left(\frac{5\pi}{36}\right)}{2\cos^{2}\frac{5\pi}{36}-2i\sin\left(\frac{5\pi}{36}\right)\cos\left(\frac{5\pi}{36}\right)}\right)^{3}$$

$$\Rightarrow A = \left(\frac{\cos\frac{5\pi}{36}+i\sin\frac{5\pi}{36}}{\cos\frac{5\pi}{36}-i\sin\frac{5\pi}{36}}\right)^{3}$$

$$\Rightarrow A = \left(\frac{e^{i\frac{5\pi}{36}}}{e^{i\frac{5\pi}{36}}}\right)^{3} \Rightarrow A = e^{i\frac{5\pi}{6}}$$

$$\Rightarrow A = \cos\frac{5\pi}{6}+i\sin\left(\frac{5\pi}{6}\right)$$

$$\Rightarrow A = -\frac{\sqrt{3}}{2}+i\frac{1}{2}$$

HINT:

- (1) Simplify given expression using trigonometric identities and try to convert given expression as $\cos \theta + i \sin \theta$ in numerator and denominator and then solve further using Euler form.
- (2) Use $e^{i\theta} = \cos\theta + i\sin\theta$

21. The correct answer is (384).

Given lines
$$L_1: \frac{x+\sqrt{6}}{2} = \frac{y-\sqrt{6}}{3} = \frac{z-\sqrt{6}}{4}$$

$$\Rightarrow L_1: \vec{r} = (-\sqrt{6}\hat{i} + \sqrt{6}\hat{j} + \sqrt{6}\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$$

$$x = \lambda - y - 2\sqrt{6} - z + 2\sqrt{6}$$

And L₂:
$$\frac{x - \lambda}{3} = \frac{y - 2\sqrt{6}}{4} = \frac{z + 2\sqrt{6}}{5}$$

 \Rightarrow L₂: $\vec{r} = (\lambda \hat{i} + 2\sqrt{6}\hat{j} - 2\sqrt{6}\hat{k}) + \mu(3\hat{i} + 4\hat{j} + 5\hat{k})$

As we know shortest distance between two lines

$$\vec{r} = \vec{a} + \lambda \vec{p} \text{ and } \vec{r} = \vec{b} + \mu \vec{q} \text{ is given by}$$
$$d = \left| \frac{(\vec{b} - \vec{a}).(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \right|$$

So,
$$\vec{a} = -\sqrt{6\hat{i}} + \sqrt{6\hat{j}} + \sqrt{6\hat{k}}$$

 $\vec{b} = \lambda\hat{i} + 2\sqrt{6\hat{j}} - 2\sqrt{6\hat{k}}$
 $\vec{p} = 2\hat{i} + 3\hat{j} + 4\hat{k}$
 $\vec{q} = 3\hat{i} + 4\hat{j} + 5\hat{k}$
Now, $\vec{b} - \vec{a} = (\lambda + \sqrt{6})\hat{i} + \sqrt{6\hat{j}} - 3\sqrt{6}\hat{k}$
 $\vec{p} \times \vec{q} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{vmatrix}$
 $\Rightarrow \vec{p} \times \vec{q} = -\hat{i} + 2\hat{j} - \hat{k}$
 $\Rightarrow |\vec{p} \times \vec{q}| = \sqrt{1 + 4 + 1} = \sqrt{6}$
Now, $(\vec{b} - \vec{a}) \cdot (\vec{p} \times \vec{q}) = -\lambda - \sqrt{6} + 2\sqrt{6} + 3\sqrt{6} = -\lambda + 4\sqrt{6}$
So, shortest distance $= \left|\frac{-\lambda + 4\sqrt{6}}{\sqrt{6}}\right| = 6$
 $\Rightarrow |-\lambda + 4\sqrt{6}| = 6\sqrt{6}$
 $\Rightarrow -\lambda + 4\sqrt{6} = \pm 6\sqrt{6}$
 $\Rightarrow \lambda = 4\sqrt{6} \mp 6\sqrt{6}$
Sum of all possible values of $\lambda = -2\sqrt{6} + 10\sqrt{6} = 8\sqrt{6}$

Sum of all possible values of $\lambda = -2\sqrt{6} + 10\sqrt{6} =$ $\therefore (8\sqrt{6})^2 = 384$

HINT:

(1) Write the given equation of line vector form and use distance between two lines $\vec{r} = \vec{a} + \lambda \vec{p}$ and $\vec{r} = \vec{b} + \mu \vec{q}$ is given by $d = \left| \frac{(\vec{b} - \vec{a}).(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|} \right|$ (2) If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ then $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

22. The correct answer is (432). Given, Urn A contains 4 Red, 6 Black Urn B contains 5 Red, 5 Black Urn C contains λ Red, 4 Black Also P(Red ball from urn C) = 0.4

$$\Rightarrow \frac{\frac{1}{3} \times \frac{\lambda}{\lambda+4}}{\frac{1}{3} \times \frac{4}{10} + \frac{1}{3} \times \frac{5}{10} + \frac{1}{3} \times \frac{\lambda}{\lambda+4}} = \frac{4}{10}$$
$$\Rightarrow \frac{\frac{\lambda}{\lambda+4}}{\frac{2}{10} + \frac{\lambda}{\lambda+4}} = \frac{4}{10} \Rightarrow 24\lambda = 144 \Rightarrow \lambda = 6$$

So, equation of parabola is $y^2 = 6x$

Let parametric coordinates of point P be $\left(\frac{3}{2}t^2, 3t\right)$ Now, slope of PR = tan30°

$$\Rightarrow \frac{3t}{\frac{3}{2}t^2} = \frac{1}{\sqrt{3}} \Rightarrow t = 2\sqrt{3}$$

$$\therefore \text{ Coordinates of P} = (18, 6\sqrt{3})$$

Now, PR = $\sqrt{(18)^2 + (6\sqrt{3})^2}$

$$\Rightarrow PR = \sqrt{432} \Rightarrow (PR)^2 = 432$$

HINT:

- (1) Find the value of λ using Bayes theorem.
- (2) Bayes Theorem: Let ε₁, ε₂, ε_n be a set of events associated with a sample space S, where all the events ε₁, ε₂,... ε_n have non zero probability of occurence and they form a partition of S. Let B be any event associated with S, then according to Bayes theorem.

$$P\left(\frac{\varepsilon_i}{B}\right) = \frac{P(\varepsilon_i).P(B \mid \varepsilon_i)}{\sum_{k=1}^{n} P(\varepsilon_k)P(A \mid \varepsilon_k)}; k = 1, 2, ..., n$$

- (3) Parametric coordinates of any point on parabola $y^2 = 4ax$ is $(at^2, 2at)$
- 23. The correct answer is (2).

Given: $S = \{\theta \in [0, 2\lambda); \tan(\pi \cos \theta) + \tan(\pi \sin \theta)\}$ = 0So, $\tan(\pi \cos \theta) = -\tan(\pi \sin \theta)$ $\Rightarrow \tan(\pi \cos \theta) = \tan(-\pi \sin \theta)$ As we know if $\tan \theta = \tan \alpha$, then $\theta = n\pi + \alpha$; $n \in I$ $\therefore \pi \cos \theta = n\pi - \pi \sin \theta; n \in \mathbf{I}$ $\Rightarrow \pi \cos \theta + \pi \sin \theta = n\pi$ $\Rightarrow \cos \theta + \sin \theta = n$ Since, $-\sqrt{2} \le \cos\theta + \sin\theta \le \sqrt{2}$:. n = -1, 0, 1**Case 1:** If *n* = -1 $\cos \theta + \sin \theta = -1$ $\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$ $\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$ $\Rightarrow \theta - \frac{\pi}{4} = 2k\pi \pm \frac{3\pi}{4}$ $\Rightarrow \theta = 2k \pi + \pi \text{ or } \theta = 2k\pi - \frac{\pi}{2}$

$$\Rightarrow \theta = \pi, \frac{3\pi}{2}$$
Case-2: If $n = 0$
 $\cos \theta + \sin \theta = 0$

$$\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = 0$$

$$\Rightarrow \theta - \frac{\pi}{4} = 2k\pi \pm \frac{\pi}{2}$$

$$\Rightarrow \theta = 2k\pi + \frac{3\pi}{4} \text{ or } \theta = 2k\pi - \frac{\pi}{4}$$

$$\Rightarrow \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$$
Case-3: If $n = 1$
 $\cos \theta + \sin \theta = \frac{1}{\sqrt{2}}$

$$\Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right)$$

$$\Rightarrow \theta - \frac{\pi}{4} = 2k\pi \pm \frac{\pi}{4}$$

$$\Rightarrow \theta = 2k\pi + \frac{\pi}{2} \text{ or } \theta = 2k\pi$$

$$\Rightarrow \theta = \frac{\pi}{2}, 0$$

$$\therefore \theta = \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \frac{3\pi}{4}, \frac{7\pi}{4}\right\}$$
So, $\sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$
Now, $\sum_{\theta \in S} \sin^{2}\left(\theta + \frac{\pi}{4}\right) = \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2} \pm \frac{1}{2} = 2$

(1) General solution of $\tan \theta = \tan \alpha$ is $\theta = n\pi + \alpha$; $\alpha \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] n \in I$ (2) Use $-\sqrt{a^2 + b^2} \le a \sin x + b \cos x \le \sqrt{a^2 + b^2}$

24. The correct answer is (5).

Given:
$$\frac{1^3 + 2^3 + 3^3 + \dots \text{ upto } n \text{ terms}}{1.3 + 2.5 + 3.7 + \dots \text{ upto } n \text{ terms}} = \frac{9}{5}$$

As we know, sum of cubes of n natural numbers

$$= \left\{\frac{n(n+1)}{2}\right\}^{2}$$
$$\Rightarrow \frac{\left\{\frac{n(n+1)}{2}\right\}^{2}}{\sum_{x=1}^{n} x(2x+1)} = \frac{9}{5}$$
$$\Rightarrow \frac{n^{2}(n+1)^{2}}{\sum_{x=1}^{n} (2x^{2}+x)} = \frac{9}{5}$$

$$\Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{2\sum_{x=1}^{n}x^{2} + \sum_{x=1}^{n}x} = \frac{9}{5}$$

$$\Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{2\left\{\frac{n(n+1)(2n+1)}{6}\right\} + \left\{\frac{n(n+1)}{2}\right\}} = \frac{9}{5}$$

$$\{\because \text{Sum of squares of } n \text{ natural numbers}$$

$$= \frac{n(n+1)(2n+1)}{6} \text{ and sum of } n \text{ natural numbers}$$

$$= \frac{n(n+1)}{2}$$

$$\Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{\frac{n(n+1)(2n+1)}{3} + \frac{n(n+1)}{2}} = \frac{9}{5}$$

$$\Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{n(n+1)\left\{\frac{2n+1}{3} + \frac{1}{2}\right\}} = \frac{9}{5}$$

$$\Rightarrow \frac{\frac{n(n+1)}{4}}{\frac{(4n+2+3)}{6}} = \frac{9}{5} \Rightarrow \frac{3n(n+1)}{2(4n+5)} = \left(\frac{9}{5}\right)$$

$$\Rightarrow 5n^{2} + 5n = 24n + 30$$

$$\Rightarrow 5n^{2} + 5n = 24n + 30$$

$$\Rightarrow 5n^{2} + 6n - 25n - 30 = 0$$

$$\Rightarrow n (5n + 6) - 5 (5n + 6) = 0$$

$$\Rightarrow n = 5$$

HINT:

- (1) Use $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ (2) Use $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ (3) Use $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$
- 25. The correct answer is (405). Given: Sum of coefficients of first 3 terms of $\left(x - \frac{3}{2}\right)^n = 376$

$$\left(x - \frac{3}{x^2}\right) = 376$$

General term of given expansion is

$$T_{r+1} = {}^{n}C_{r} x^{n-r} \left(\frac{-3}{x^{2}}\right)^{r}.$$

So, coefficients of first three terms are ${}^{n}\mathrm{C}_{0}$, – $3^{n}\mathrm{C}_{1},$ $9^{n}\mathrm{C}_{2}$

$$∴ {}^{n}C_{0} - 3^{n}C_{1} + 9^{n}C_{2} = 376$$

$$\Rightarrow 1 - 3n + \frac{9n(n-1)}{2} = 376$$

$$\Rightarrow 3n^{2} - 5n - 250 = 0$$

$$\Rightarrow (3n + 25) (n - 10) = 0$$

$$\Rightarrow n = 10, \frac{-25}{3} \text{ (not possible)}$$

For coefficient of $x^4, n - 3r = 4$

$$\Rightarrow 10 - 3r = 4$$

$$\Rightarrow r = 2$$

$$\therefore \text{ Coefficient of } x^4 = {}^{10}\text{C}_2(-3)^2 = \frac{10 \times 9}{2 \times 1} \times 9 = 405$$

HINT:

General term of binomial expansion $(a + b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r} b^r$

26.	The correct answer is (122).	
	AB $\cdot 2x + y = 0$	(i)
	BC: x + py = 21a	(ii)
	CA: x - y = 3	(ìii)
	Centroid of $\triangle ABC = P(2, a)$	
	A	
	× (2, a)	
	B $r + m = 21a$ C	

B x + py = 21a C On solving equation (i) and equation (iii), we get A = (1, -2)Let the coordinates of point B be (m, -2m) and coordinates of point C be (n + 3, n) \therefore Centroid of \triangle ABC = (2, a) $\Rightarrow \frac{m + n + 3 + 1}{3} = 2$ and $\frac{n - 2m - 2}{3} = a$ $\Rightarrow m + n = 2$...(iv)

& n - 2m = 3a + 2...(v) Put n = 2 - m from equation (iv) to (v), we get m = -aPoint B satisfy the equation of BC So, m - 2mp = 21a $\Rightarrow m (1 - 2p) = 21a$ $\Rightarrow 2p-1=21$ $\Rightarrow p = 11$ Point C also satisfy the equation of BC So, n + 3 + p(n) = 21a $\Rightarrow 12n + 3 = -21m$ \Rightarrow 12 n + 21 m + 3 = 0 ...(vi) On solving equation (iv) and equation (vi), we get m = -3, n = 5 \therefore B = (-3, 6) and C = (8, 5) Now, BC = $\sqrt{(11)^2 + 1^2}$ \Rightarrow BC = $\sqrt{122}$ $\Rightarrow BC^2 = 122$

HINT:

- (1) Find the coordinates of A by solving equation of side AB and AC.
- (2) Find the coordinates of B and C using given condition and solve further.

27. The correct answer is (8).

Given: $\vec{a} = \hat{i} + 2\hat{j} + \lambda\hat{k}$ $\vec{b} = 3\hat{i} - 5\hat{j} - \lambda\hat{k}$ $\vec{a}.\vec{c}=7$ $2\vec{b}.\vec{c}+43=0$ and $\vec{a}\times\vec{c}=\vec{b}\times\vec{c}$ $\therefore \vec{a} \times \vec{c} = \vec{b} \times \vec{c}$ $\Rightarrow (\vec{a} - \vec{b}) \times \vec{c} = 0$ $\Rightarrow (\vec{a} - \vec{b}) | | \vec{c}$ $\Rightarrow \vec{c} = k(\vec{a} - \vec{b}) \Rightarrow \vec{c} = k(-2\hat{i} + 7\hat{j} + 2\lambda\hat{k})$ $\therefore \vec{a}.\vec{c}=7$ $\Rightarrow k(-2 + 14 + 2\lambda^2) = 7$ $\Rightarrow k (2\lambda^2 + 12) = 7$...(i) Also, $2\vec{b}.\vec{c} = -43$ $\Rightarrow 2k(-6-35-2\lambda^2) = -43$ $\Rightarrow 2k (-41 - 2\lambda^2) = -43$...(ii) From equation (i) and equation (ii), we get $2\lambda^{2} + 12$ 7 $\frac{1}{2(41+2\lambda^2)} = \frac{1}{43}$ $\Rightarrow 43 (\lambda^2 + 6) = 7 (2\lambda^2 + 41)$ $\Rightarrow 29\lambda^2 = 29$ $\Rightarrow \lambda^2 = 1$ Now, $\vec{a}.\vec{b} = 3 - 10 - \lambda^2 = -8$

$\Rightarrow |\vec{a}.\vec{b}| = 8$ HINT:

Use if *ā* is parallel to *b*, then *ā* = k*b*; k ∈ R
 If *ā* = *ā*₁*î* + *a*₂*ĵ* + *a*₃*k* and *b* = *b*₁*î* + *b*₂*ĵ* + *b*₃*k*, then *ā*.*b* = *a*₁*b*₁ + *a*₂*b*₂ + *a*₃*b*₃

28. The correct answer is (13).

Given: Relation $R = \{(a, b), (b, c), (b, d)\}$ on set $\{a, b, c, d\}$ *d*} for a relation to be equivalence relation, it must be reflexive, symmetric and transitive. For reflexive relation, (a, a), (b, b), (c, c), (d, d) must be added in relation R. So, R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (b, d)} For symmetric relation, if $(x, y) \in \mathbb{R} \Rightarrow (y, x) \in \mathbb{R}$ Now, as $(a, b) \in \mathbb{R} \Rightarrow (b, a) \in \mathbb{R}$ and $(b, c) \in \mathbb{R} \Rightarrow (c, b) \in \mathbb{R}$ and $(b, d) \in \mathbb{R} \Rightarrow (d, b) \in \mathbb{R}$ So, $\mathbf{R} = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (b, d), (b, a), (b, a),$ (c, b), (d, b)For transitive relation, if $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$ $\Rightarrow (x, z) \in \mathbb{R}$ So, $\mathbf{R} = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (b, d), (b, a), (b, a), (b, c), (b, d), (b, a), (b, a), (b, c), (b, c), (b, d), (b, c), (b, c),$ (c, b), (d, b), (a, c), (a, d), (c, a), (c, d), (d, c), (d, a)So, total number of elements added = 13

HINT:

- (1) For a relation to be equivalence relation, it must be reflexive, symmetric and transitive.
- (2) For reflexive relation, $(x, x) \in \mathbb{R}$.

- (3) For symmetric relation, if (x, y) ∈ R ⇒ (y, x) ∈ R
 (4) For transitive relation, if (x, y) ∈ R & (y, z) R ⇒ (x, z) ∈ R
- 29. The correct answer is (36). Given curves $y^2 - 2y = -x$ and x + y = 0Now, $y^2 - 2y + 1 = -x + 1$ $\Rightarrow (y - 1)^2 = -(x - 1)$...(i) Let's find intersecting points of both curves $y^2 - 2y - y = 0$ $\Rightarrow y^2 - 3y = 0$ $\Rightarrow y = 0, 3$ $\Rightarrow x = 0, -3$

 \therefore Intersecting points are (0, 0) and (-3, 3)

So, required area =
$$\int_{0}^{3} \{(2y - y^{2}) - (-y)\} dy$$
$$\Rightarrow A = \int_{0}^{3} (3y - y^{2}) dy$$
$$\Rightarrow A = \left[\frac{3y^{2}}{2} - \frac{y^{3}}{3}\right]_{0}^{3}$$
$$\Rightarrow A = \frac{27}{2} - 9$$
$$\Rightarrow A = \frac{9}{2}$$
$$\Rightarrow 8A = 36$$

HINT:

Draw the figure of both curves and identify the bounded region and use the concept of vertical strip and solve further.

30. The correct answer is (27).

Given:
$$f(x) + \int_0^x f(t) \sqrt{1 - (\log_e f(t))^2} dt = e, \forall x \in \left\lfloor 0, \frac{\pi}{2} \right\rfloor$$
...(i)

Differentiate the above equation, we get

$$f(x) + f(x) \sqrt{1 - [\log_e f(x)]^2} = 0$$

$$\Rightarrow \frac{dy}{dx} + y\sqrt{1 - (\log_e y)^2} = 0$$

$$\Rightarrow \frac{dy}{dx} = -y\sqrt{1 - \log_e^2 y}$$

$$\Rightarrow \int \frac{dy}{y\sqrt{1 - \log_e^2 y}} = \int -1dx$$

Let $\log_e y = u$

$$\Rightarrow \frac{1}{y}dy = du$$

$$\Rightarrow \int \frac{du}{\sqrt{1 - u^2}} = -x + c$$

$$\Rightarrow \sin^{-1}u = -x + c$$

$$\Rightarrow \sin^{-1}\log_e y = -x + c$$

Put $x = 0$ in equation (i), we get
 $f(0) = e$ i.e., $y(0) = e$
So, at $x = 0$, $\sin^{-1}(1) = c$

$$\Rightarrow c = \frac{\pi}{2}$$

$$\therefore \sin^{-1}\log_e y = -x + \frac{\pi}{2}$$

$$\Rightarrow \log_e y = \sin\left(\frac{\pi}{2} - x\right)$$

$$\Rightarrow \log_e y = \cos x$$

At $x = \frac{\pi}{6}$, $\log_e f\left(\frac{\pi}{6}\right) = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$
So, $\left[6\log_e f\left(\frac{\pi}{6}\right)\right]^2 = \left[6 \times \frac{\sqrt{3}}{2}\right]^2 = 27$

HINT:

(1) Differentiate given equation using newton leibnitz rule and solve further differential equation using variable separable form.

(2) If
$$I(x) = \int_{g(x)}^{h(x)} \phi(x) dx$$
, then
 $I'(x) = \phi(h(x))h'(x) - \phi(g(x))g'(x)$