JEE (Main) MATHEMATICS SOLVED PAPER

General Instructions :

1. In mathematics Section, there are 30 Questions (Q. no. 1 to 30).
2. In mathematics, Section A consists of 20 single choice questions \mathcal{E} Section B consists of 10 numerical value type questions. In Section B, candidates have to attempt any five questions out of 10.
3. There will be only one correct choice in the given four choices in Section A. For each question for Section A, 4 marks will be awarded for correct choice, 1 mark will be deducted for incorrect choice question and zero mark will be awarded for unattempted question.
4. For Section B questions, 4 marks will be awarded for correct answer and zero for unattempted and incorrect answer.
5. Any textual, printed or written material, mobile phones, calculator etc. are not allowed for the students appearing for the test.
6. All calculations / written work should be done in the rough sheet provided with Question Paper.

Section A

Q. 1. If, $f(x)=x^{3}-x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)-f^{\prime \prime \prime}(3), x \in \mathbb{R}$ then
(A) $f(1)+f(2)+f(3)=f(0)$
(B) $2 f(0)-f(1)+f(3)=f(2)$
(C) $3 f(1)+f(2)=f(3)$
(D) $f(3)-f(2)=f(1)$
Q.2. If the system of equations

$$
\begin{aligned}
& x+2 y+3 z=3 \\
& 4 x+3 y-4 z=4 \\
& 8 x+4 y-\lambda z=9+\mu
\end{aligned}
$$

has infinitely many solutions, then the ordered pair (λ, μ) is equal to:
(A) $\left(-\frac{72}{5}, \frac{21}{5}\right)$
(B) $\left(-\frac{72}{5},-\frac{21}{5}\right)$
(C) $\left(\frac{72}{5},-\frac{21}{5}\right)$
(D) $\left(\frac{72}{5}, \frac{21}{5}\right)$
Q. 3. If, $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in \mathrm{R}$, then $f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots+f\left(\frac{2022}{2023}\right)$ is equal to
(A) 1011
(B) 2010
(C) 1010
(D) 2011
Q.4. Let $\vec{\alpha}=4 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}$. Let $\vec{\beta}_{1}$ be parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ be perpendicular to $\vec{\alpha}$.If $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, then the value of $5 \vec{\beta}_{2} \cdot(\hat{i}+\hat{j}+\hat{k})$ is
(A) 7
(B) 9
(C) 6
(D) 11
Q. 5. Let $y=y(x)$ be the solution of the differential equation $\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0, y(1)=1$. Then $6 y^{2}(e)$ is equal to
(A) $2 e^{2}$
(B) $3 e^{2}$
(C) e^{2}
(D) $\frac{3}{2} e^{2}$
Q.6. The locus of the mid points of the chords of the circle $C_{1}:(x-4)^{2}+(y-5)^{2}=4$ which subtend an angle θ_{1} at the centre of the circle C_{1}, is a circle of radius r_{i}. If $\theta_{1}=\frac{\pi}{3}, \theta_{3}=\frac{2 \pi}{3}$ and $r_{1}^{2}=r_{2}^{2}+r_{3}^{2}$, then θ_{2} is equal to
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{6}$
(D) $\frac{3 \pi}{4}$
Q.7. The number of real solutions of the equation $3\left(x^{2}+\frac{1}{x^{2}}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is
(A) 0
(B) 3
(C) 4
(D) 2
Q. 8. Let A be a 3×3 matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|$ $=12^{4}$ Then $\left|\mathrm{A}^{-1} \operatorname{adj} \mathrm{~A}\right|$ is equal to
(A) $\sqrt{6}$
(B) $2 \sqrt{3}$
(C) 12
(D) 1
Q. 9. $\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 x^{2}}} d x$
(A) 2π
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$
Q. 10. The number of square matrices of order 5 with entries form the set $\{0,1\}$, such that the sum of all the elements in each row is 1 and the sum of all the elements in each column is also 1 , is
(A) 125
(B) 225
(C) 150
(D) 120
Q. 11. If $\left({ }^{30} \mathrm{C}_{1}\right)^{2}+2\left({ }^{30} \mathrm{C}_{2}\right)^{2}+3\left({ }^{30} \mathrm{C}_{3}\right)^{2}+\ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^{2}$
$=\frac{\alpha 60!}{(30!)^{2}}$ then α is equal to:
(A) 30
(B) 10
(C) 60
(D) 15
Q.12. Let the plane containing the line of intersection of the planes $P_{1}: x+(\lambda+4) y+z=1$ and $\mathrm{P}_{2}: 2 x+y+z=2$ pass through the points $(0,1,0)$ and $(1,0,1)$. Then the distance of the point $(2 \lambda, \lambda$, $-\lambda$) from the plane P_{2} is
(A) $4 \sqrt{6}$
(B) $3 \sqrt{6}$
(C) $5 \sqrt{6}$
(D) $2 \sqrt{6}$
Q. 13. Let $f(x)$ be a function such that $f(x+y)=f(x)$.
$f(y)$ for all, $x, y \in \mathrm{~N}$. If $f(1)=3$ and $\sum_{k=1}^{n} f(k)=3279$, then the value of n is
(A) 9
(B) 6
(C) 8
(D) 7
Q. 14. Let the six numbers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$, be in A.P. and $a_{1}+a_{3}=10$. If the mean of these six numbers is $\frac{19}{2}$ and their variance is σ^{2}, then $8 \sigma^{2}$ is equal to:
(A) 210
(B) 220
(C) 200
(D) 105
Q.15. The equations of the sides $A B$ and $A C$ of a triangle ABC are $(\lambda+1) x+\lambda y=4$ and $\lambda x+(1-\lambda)$ $y+\lambda=0$ respectively. Its vertex A is on the y-axis and its orthocentre is $(1,2)$. The length of the tangent from the point C to the part of the parabola $y^{2}=6 x$ in the first quadrant is :
(A) 4
(B) 2
(C) $\sqrt{6}$
(D) $2 \sqrt{2}$
Q. 16. Let p and q be two statements. Then $\sim(p \wedge(p \Rightarrow$ $\sim q)$) is equivalent to
(A) $p \vee(p \wedge q)$
(B) $p \vee(p \wedge(\sim q))$
(C) $(\sim p) \vee q$
(D) $p \vee((\sim p) \wedge q)$
Q. 17. The set of all values of a for which $\lim _{x \rightarrow a}([x-5]$ $-[2 x+2])=0$, where $[\alpha]$ denotes the greatest integer less than or equal to α is equal to
(A) $[-7.5,-6.5)$
(B) $[-7.5,-6.5]$
(C) $(-7.5,-6.5]$
(D) $(-7.5,-6.5)$
Q.18. If the foot of the perpendicular drawn from (1, $9,7)$ to the line passing through the point $(3,2$, 1) and parallel to the planes $x+2 y+z=0$ and $3 y-z=3$ is (α, β, γ), then $\alpha+\beta+\gamma$ is equal to
(A) 3
(B) 1
(C) -1
(D) 5
Q. 19. The number of integers, greater than 7000 that can be formed, using the digits $3,5,6,7,8$ without repetition, is
(A) 168
(B) 220
(C) 120
(D) 48
Q. 20. The value of $\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}-i \cos \frac{2 \pi}{9}}\right)^{3}$
(A) $-\frac{1}{2}(\sqrt{3}-i)$
(B) $-\frac{1}{2}(1-i \sqrt{3})$
(C) $\frac{1}{2}(1-i \sqrt{3})$
(D) $\frac{1}{2}(\sqrt{3}+i)$

Section B

Q.21. If the shortest distance between the lines $\quad \frac{x+\sqrt{6}}{2}=\frac{y-\sqrt{6}}{3}=\frac{z-\sqrt{6}}{4} \quad$ and $\frac{x-\lambda}{3}=\frac{y-2 \sqrt{6}}{4}=\frac{z+2 \sqrt{6}}{5}$ is 6 , then the square of sum of all possible values of λ is
Q. 22. Three urns A, B and C contain 4 red, 6 black; 5 red, 5 black; and λ red, 4 black balls respectively. One of the urns is selected at random and a ball is drawn. If the ball drawn is red and the probability that it is drawn from urn C is 0.4 then the square of the length of the side of the largest equilateral triangle, inscribed in the parabola $y^{2}=\lambda x$ with one vertex at the vertex of the parabola, is
Q. 23. Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)$ $=0\}$
Then $\sum_{\theta \in S} \sin ^{2}\left(\theta+\frac{\pi}{4}\right)$ is equal to
Q.24. If $\frac{1^{3}+2^{3}+3^{3}+\ldots \text { up to } n \text { terms }}{1.3+2.5+3.7+\ldots \text { up to } n \text { terms }}=\frac{9}{5}$, then the value of n is
Q. 25. Let the sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{n}, x \neq 0, n \in \mathrm{~N}$, be 376 . Then the coefficient of x^{4} is
Q.26. The equations of the sides $A B, B C$ and $C A$ of a triangle ABC are : $2 x+y=0, x+p y=21 a$, $(a \neq 0)$ and $x-y=3$ respectively. Let $\mathrm{P}(2, a)$ be the centroid of $\triangle \mathrm{ABC}$. Then (BC) ${ }^{2}$ is equal to
Q. 27. Let $\vec{a}=\hat{i}+2 \hat{j}+\lambda \hat{k}, \vec{b}=3 \hat{i}-5 \hat{j}-\lambda \hat{k}$,
$\vec{a} \cdot \vec{c}=7,2 \vec{b} \cdot \vec{c}+43=0, \quad \vec{a} \times \vec{c}=\vec{b} \times \vec{c}$.
Then $|\vec{a} \cdot \vec{b}|$ is equal to
Q.28. The minimum number of elements that must be added to the relation $\mathrm{R}=\{(a, b),(b, c),(b, d)\}$ on the set $\{a, b, c, d\}$ so that it is an equivalence relation, is
Q.29. If the area of the region bounded by the curves $y^{2}-2 y=-x, x+y=0$ is A , then 8 A is equal to
Q.30. Lef f be a differentiable function defined on $\left[0, \frac{\pi}{2}\right]$ such that $f(x)>0$ and
$f(x)+\int_{0}^{x} f(t) \sqrt{1-\left(\log _{e} f(t)\right)^{2}} d t=e, \forall x \in\left[0, \frac{\pi}{2}\right]$
Then $\left(6 \log _{e} f\left(\frac{\pi}{6}\right)\right)^{2}$ is equal to

Answer Key

Q. No.	Answer	Topic Name	Chapter Name
1	B	Higher Order Derivatives	Differential Calculus
2	C	System of linear equations	Matrices and Determinants
3	A	Algebra of Functions	Function
4	A	Scalar and Vector Products	Vector Algebra
5	A	Linear Differential Equations	Differential Equations
6	B	Interaction between Circle and a Line	Circle
7	A	Quadratic Equation and its Solution	Quadratic Equations
8	B	Adjoint of a Matrix	Matrices and Determinants
9	A	Basics of Definite Integration	Definite Integration
10	D	Permutations	Permutation and Combination
11	D	Properties of Binomial Coefficients	Binomial Theorem
12	B	Plane and a Point	Three Dimensional Geometry
13	D	Geometric Progressions	Sequences and Series
14	A	Measures of Dispersion	Statistics
15	D	Tangent to a Parabola	Parabola
16	C	Logical Operations	Mathematical Reasoning
17	D	Algebra of Limits	Limits
18	D	Lines in 3D	Three Dimensional Geometry
19	A	Permutations	Permutations and Combinations
20	A	Representation of Complex Numbers	Complex Numbers
21	[384]	Skew Lines	Three Dimensional Geometry
22	[432]	Bayes' Theorem	Probability
23	[2]	Trigonometric Equations	Trigonometric Equations and Inequalities
24	[5]	Series of Natural Numbers and other Miscellaneous Series	Sequences and Series
25	[405]	Binomial Theorem for Positive Integral Index	Binomial Theorem
26	[122]	Interaction between Two Lines	Point and Straight Line
27	[8]	Scalar and Vector Products	Vector Algebra
28	[13]	Algebra of Relations	Set Theory and Relations
29	[36]	Area Bounded by Curves	Area under Curves
30	[27]	Variable Separable Form	Differential Equations

JEE (Main) MATHEMATICS SOLVED PAPER

2023
 $24^{\text {th }}$ Jan Shift 2

Solutions

Section A

1. Option (B) is correct.

Given, $f(x)=x^{3}-x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)-f^{\prime \prime \prime}(3), x \in \mathbb{R}$
Let $f^{\prime}(1)=p, f^{\prime \prime}(2)=q$ and $f^{\prime \prime \prime}(3)=r$
$\Rightarrow f(x)=x^{3}-p x^{2}+q x-r$
$\Rightarrow f^{\prime}(x)=3 x^{2}-2 p x+q$
$\Rightarrow f^{\prime \prime}(x)=6 x-2 p$
$\Rightarrow f^{\prime \prime \prime}(x)=6$
So, $f^{\prime \prime \prime}(3)=6=r$
Now, $f^{\prime}(1)=3(1)^{2}-2 p(1)+q$
$\Rightarrow p=3-2 p+q$
$\Rightarrow 3 p=3+q$
And $f^{\prime \prime}(2)=6(2)-2 p$
$\Rightarrow q=12-2 p$
$\Rightarrow 2 p+q=12$
On solving equation (i) and equation (ii), we get $p=3, q=6$
$\therefore f(x)=x^{3}-3 x^{2}+6 x-6$
So, $f(0)=-6, f(1)=-2, f(2)=2, f(3)=12$
Now, $2 f(0)-f(1)+f(3)=2(-6)-(-2)+12$
$=2=f(2)$

HINT:

Find $f^{\prime}(x), f^{\prime \prime}(x)$ and $f^{\prime \prime \prime}(x)$ using $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ and solve further.
2. Option (C) is correct.

Given: System of equations

$$
x+2 y+3 z=3
$$

$$
4 x+3 y-4 z=4
$$

$$
8 x+4 y-\lambda z=9+\mu
$$

As we know for infinite many solutions, $\Delta=\Delta_{1}=\Delta_{2}$ $=\Delta_{3}=0$
Now, $\Delta=\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 3 & -4 \\ 8 & 4 & -\lambda\end{array}\right|=0$
$\Rightarrow 1(-3 \lambda+16)-2(-4 \lambda+32)+3(16-24)=0$
$\Rightarrow-3 \lambda+16+8 \lambda-64-24=0$
$\Rightarrow 5 \lambda-72=0$
$\Rightarrow \lambda=\frac{72}{5}$
Now, $\Delta_{3}=\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 3 & 4 \\ 8 & 4 & 9+\mu\end{array}\right|=0$
$\Rightarrow 1(27+3 \mu-16)-2(36+4 \mu-32)+3(16-24)=0$
$\Rightarrow 11+3 \mu-8 \mu-8-24=0$
$\Rightarrow-5 \mu-21=0$
$\Rightarrow \mu=-\frac{21}{5}$

HINT:

Consider, $a_{1} x+b_{1} y+c_{1} z=d_{1}$
$a_{2} x+b_{2} y+c_{2} z=d_{2}$
$a_{3} x+b_{3} y+c_{3} z=d_{3}$
To solve this system we first define the following determinants
$\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|$
System of linear equations have infinite solutions if $\Delta=\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
3. Option (A) is correct.

$$
\begin{aligned}
& \text { Given: } f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in \mathrm{R} \\
& \Rightarrow f(x)=\frac{4^{x}}{4^{x}+2} \\
& \text { Now, } f(1-x)=\frac{4^{(1-x)}}{4^{(1-x)}+2} \\
& \Rightarrow f(1-x)=\frac{4}{4+2.4^{x}} \\
& \Rightarrow f(1-x)=\frac{2}{2+4^{x}} \\
& \text { So, } f(x)+f(1-x)=\frac{4^{x}}{4^{x}+2}+\frac{2}{4^{x}+2}=1 \\
& \text { Let } \mathrm{A}=f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots .+f\left(\frac{2022}{2023}\right) \\
& \Rightarrow \mathrm{A}=f\left(\frac{1}{2023}\right)+f\left(\frac{2022}{2023}\right)+f\left(\frac{2}{2023}\right)+f\left(\frac{2021}{2023}\right)+\ldots . \\
& \Rightarrow \mathrm{A}=1+1+1+\ldots . \text { up to } 1011 \text { terms } \\
& \{\because f(x)+f(1-x)=1\} \\
& \Rightarrow \mathrm{A}=1011
\end{aligned}
$$

HINT:

Use $f(x)+f(1-x)=1$ and solve further.
4. Option (A) is correct.

Given: $\vec{\alpha}=4 \hat{i}+3 \hat{j}+5 \hat{k}$
$\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}$
$\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$
$\because \vec{\beta}_{1}$ is parallel to $\vec{\alpha}$
$\Rightarrow \beta_{1}=\mu(4 \hat{i}+3 \hat{j}+5 \hat{k}) ; \mu \in R$
Also given that $\vec{\beta}_{2}$ is perpendicular to α
$\Rightarrow \vec{\beta}_{2} \alpha=0$
Since, $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$
$\Rightarrow \vec{\beta}=\mu \vec{\alpha}+\vec{\beta}_{2}$
$\Rightarrow \vec{\beta} \cdot \vec{\alpha}=\mu\left|\vec{\alpha}^{2}\right|+\vec{\beta}_{2} \cdot \vec{\alpha}$
$\Rightarrow(4 \hat{i}+3 \hat{j}+5 \hat{k}) \cdot(\hat{i}+2 \hat{j}-4 \hat{k})=\mu(\sqrt{16+9+25})^{2}+0$
$\Rightarrow 4+6-20=\mu(50)$
$\Rightarrow \mu=-\frac{1}{5}$
Now, $\vec{\beta}=-\frac{1}{5} \vec{\alpha}+\vec{\beta}_{2}$
$\Rightarrow 5 \vec{\beta}_{2}=5 \vec{\beta}+\vec{\alpha}$
$\Rightarrow 5 \vec{\beta}_{2}=5(\hat{i}+2 \hat{j}-4 \hat{k})+(4 \hat{i}+3 \hat{j}+5 \hat{k})$
$\Rightarrow 5 \vec{\beta}_{2}=9 \hat{i}+13 \hat{j}-15 \hat{k}$
Now, $5 \vec{\beta}_{2} \cdot(\hat{i}+\hat{j}+\hat{k})=9+13-15=7$

HINT:

(1) Use if \vec{a} is parallel to \vec{b}, then $\vec{b}=k \vec{a} ; k \in \mathrm{R}$
(2) Use if \vec{u} is perpendicular to \vec{v}, then $\vec{u} \cdot \vec{v}=0$
(3) If $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$, then $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
5. Option (A) is correct.

Given, differential equation $\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0$, $y(1)=1$
$\Rightarrow 3 x y \frac{d y}{d x}-3 y^{2}=-x^{2}$
$\Rightarrow y \frac{d y}{d x}-\frac{y^{2}}{x}=-\frac{x}{3}$
$\Rightarrow 2 y \frac{d y}{d x}-\frac{2 y^{2}}{x}=-\frac{2 x}{3}$
Let $y^{2}=v$
$\Rightarrow 2 y \frac{d y}{d x}=\frac{d v}{d x}$
So, $\frac{d v}{d x}-\frac{2 v}{x}=\frac{-2 x}{3}$ which is linear differential equation
Now, I.F. $=e^{\int-\frac{2}{x} d x}$
\Rightarrow I.F. $=e^{-2 \ln x}$
\Rightarrow I.F. $=e^{\ln x^{-2}} \Rightarrow$ I.F. $=\frac{1}{x^{2}}$

Now, solution of linear differential equation is
v (I.F.) $=\int \frac{-2 x}{3}($ I.F. $) d x+c$
$\Rightarrow v \frac{(1)}{\left(x^{2}\right)}=\int \frac{-2 x}{3} \times \frac{1}{x^{2}} d x+c$
$\Rightarrow \frac{v}{x^{2}}=-\frac{2}{3} \int \frac{1}{x} d x+c$
$\Rightarrow \frac{v}{x^{2}}=-\frac{2}{3} \ln x+c$
$\Rightarrow \frac{y^{2}}{x^{2}}=-\frac{2}{3} \ln x+c$
$\because y(1)=1$
$\Rightarrow c=1$
So, $\frac{y^{2}}{x^{2}}=-\frac{2}{3} \ln x+1$
$\Rightarrow y^{2}=-\frac{2}{3} x^{2} \ln x+x^{2}$
$\Rightarrow y^{2}(e)=-\frac{2}{3} e^{2} \ln e+e^{2}$
$\Rightarrow y^{2}(e)=\frac{e^{2}}{3}$
$\Rightarrow 6 y^{2}(e)=2 e^{2}$

HINT:

(1) Convert given differential equation into linear differential equation by substituting $y^{2}=v$.
(2) Solution of linear differential equation $\frac{d y}{d x}+\mathrm{P} x=\mathrm{Q}$ is given by y (I.F.) $=\int \mathrm{Q}($ I.F. $) d x+c$, where I.F. $=$ $e^{\int P d x}$
6. Option (B) is correct.

Given: Circle $c_{1}:(x-4)^{2}+(y-5)^{2}=4$
\Rightarrow Centre $=(4,5)$ and radius $=2$
Also given that $\theta_{1}=\frac{\pi}{3}, \theta_{3}=\frac{2 \pi}{3}$ and $r_{1}^{2}=r_{2}^{2}+r_{3}^{2}$

So, $\cos \left(\frac{\theta_{i}}{2}\right)=\frac{r_{i}}{2}$

$$
\begin{array}{ll}
\Rightarrow r_{\mathrm{i}}=2 \cos \left(\frac{\theta_{i}}{2}\right) & {\left[\because r_{1}^{2}=r_{2}^{2}+r_{3}^{2}\right]} \\
\Rightarrow \cos ^{2} \frac{\theta_{1}}{2}=\cos ^{2} \frac{\theta_{2}}{2}+\cos ^{2} \frac{\theta_{3}}{2} &
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \cos ^{2}\left(\frac{\pi}{6}\right)=\cos ^{2}\left(\frac{\theta_{2}}{3}\right)+\cos ^{2}\left(\frac{\pi}{3}\right) \\
& \Rightarrow \frac{3}{4}=\frac{1}{4}+\cos ^{2} \frac{\theta_{2}}{2} \\
& \Rightarrow \cos ^{2} \frac{\theta_{2}}{2}=\frac{1}{2} \\
& \Rightarrow \frac{\theta_{2}}{2}=\frac{\pi}{4} \\
& \Rightarrow \theta_{2}=\frac{\pi}{2}
\end{aligned}
$$

HINT:

(1) Use radius of locus will be perpendicular from centre of the circle to chord.
(2) Use perpendicular drawn from centre to the chord bisects the chord.
7. Option (A) is correct.

Given: $3\left(x^{2}+\frac{1}{x^{2}}\right)-2\left(x+\frac{1}{x}\right)+5=0$
$\Rightarrow 3\left[\left(x+\frac{1}{x}\right)^{2}-2\right]-2\left(x+\frac{1}{x}\right)+5=0$
Let $x+\frac{1}{x}=v$
$\Rightarrow 3\left[v^{2}-2\right]-2 v+5=0$
$\Rightarrow 3 v^{2}-2 v-1=0$
$\Rightarrow(3 v+1)(v-1)=0$
$\Rightarrow v=1,-\frac{1}{3}$
As we know $x+\frac{1}{x} \geq 2$ or $x+\frac{1}{x} \leq-2$
But $x+\frac{1}{x}=v=1,-\frac{1}{3}$
So, no real solution of the given equation is possible.

HINT:

(1) Convert given equation into quadratic equation by
substituting $x+\frac{1}{x}=v$ and solve further.
(2) Use $x+\frac{1}{x} \in(-\infty,-2] \cup[2, \infty)$
8. Option (B) is correct.

Given $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|=12^{4}$
$\Rightarrow|\mathrm{A}|^{(n-1)^{3}}=12^{4}$
$\Rightarrow|\mathrm{A}|^{(2)^{3}}=12^{4}$
$\Rightarrow|\mathrm{A}|^{8}=12^{4}$
$\Rightarrow|A|=\sqrt{12}$
Now, $\left|\mathrm{A}^{-1} \operatorname{adj} \mathrm{~A}\right|=\left|\mathrm{A}^{-1}\right||\operatorname{adj} \mathrm{A}|$
$=\frac{1}{|A|}|A|^{2}$

$$
\{\because \mid \operatorname{adj} \mathrm{A}\}=|\mathrm{A}|^{\mathrm{n}-1} ;
$$ where $n=$ order of matrix $A\}$

$$
=|\mathrm{A}|=\sqrt{12}=2 \sqrt{3}
$$

HINT:

(1) Use $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|=|\mathrm{A}|^{(n-1)^{3}}$; where $n=$ order of square matrix.
(2) Use $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{n-1}$; where $n=$ order of square matrix.
(3) Use $|\mathrm{AB}|=|\mathrm{A}||\mathrm{B}|$
9. Option (A) is correct.

Let $\mathrm{I}=\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 x^{2}}} d x$
As we know $\int \frac{1}{\sqrt{a^{2}-(b x)^{2}}} d x=\frac{1}{b} \sin ^{-1}\left(\frac{b x}{a}\right)$
$\Rightarrow I=\frac{48}{2}\left[\sin ^{-1}\left(\frac{2 x}{3}\right)\right] \frac{\frac{3 \sqrt{3}}{4}}{\frac{3 \sqrt{2}}{4}}$
$\Rightarrow I=24\left[\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right]$
$\Rightarrow \mathrm{I}=24\left[\frac{\pi}{3}-\frac{\pi}{4}\right] \Rightarrow \mathrm{I}=24\left[\frac{\pi}{12}\right] \Rightarrow \mathrm{I}=2 \pi$

HINT:

(1) Use $\int_{a}^{b} f(x) d x=\mathrm{F}(b)-\mathrm{F}(a)$,
where $\int f(x) d x=\mathrm{F}(x)+c$
(2) Use $\int \frac{1}{\sqrt{a^{2}-(b x)^{2}}} d x=\frac{1}{b} \sin ^{-1}\left(\frac{b x}{a}\right)$
10. Option (D) is correct.

\because Sum of all the elemetns in each row and in each column is 1
\therefore In every row and every column there would be exactly one 1 and four zeroes.
So, number of required matrices
$={ }^{5} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1} \times{ }^{1} \mathrm{C}_{1}$
$=5 \times 4 \times 3 \times 2 \times 1=120$

HINT:

(1) In every row and every column there would be exactly one 1 and four zeroes.
(2) Recall multiplication principle of counting.

11. Option (D) is correct.

Given, $\left({ }^{30} \mathrm{C}_{1}\right)^{2}+2\left({ }^{30} \mathrm{C}_{2}\right)^{2}+3\left({ }^{30} \mathrm{C}_{3}\right)^{2}+\ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^{2}$
$=\frac{\alpha 60!}{(30!)^{2}}$
Let $\mathrm{P}=0\left({ }^{30} \mathrm{C}_{0}\right)^{2}+1\left({ }^{30} \mathrm{C}_{1}\right)^{2}+2\left({ }^{30} \mathrm{C}_{2}\right)^{2}+\ldots .+30\left({ }^{30} \mathrm{C}_{30}\right)^{2}$
$\mathrm{P}=30\left({ }^{30} \mathrm{C}_{30}\right)^{2}+29\left({ }^{30} \mathrm{C}_{29}\right)^{2}+28\left({ }^{30} \mathrm{C}_{28}\right)^{2}+\ldots .+0\left({ }^{30} \mathrm{C}_{0}\right)^{2}$
Adding equation (i) and equation (ii), we get
$2 \mathrm{P}=30\left[\left({ }^{30} \mathrm{C}_{0}^{2}\right)+\left({ }^{30} \mathrm{C}_{1}^{2}\right)+\left({ }^{30} \mathrm{C}_{2}^{2}\right)+\ldots .+\left({ }^{30} \mathrm{C}_{30}^{2}\right)\right]$
As we know $\sum_{r=0}^{n}\left({ }^{n} \mathrm{C}_{r}\right)^{2}={ }^{2 n} \mathrm{C}_{n}$
So, $\mathrm{P}=15{ }^{60} \mathrm{C}_{30}$

$$
\begin{aligned}
& \Rightarrow P=15 \frac{60!}{(30!)^{2}} \\
& \Rightarrow \alpha=15
\end{aligned}
$$

HINT:

(1) Let $\mathrm{P}=0\left({ }^{30} \mathrm{C}_{0}\right)^{2}+1\left({ }^{30} \mathrm{C}_{1}\right)^{2}+\ldots+30\left({ }^{30} \mathrm{C}_{30}\right)^{2}$ and make another equation by reversing the term and add both the equations.
(2) Use $\sum_{r=0}^{n}\left({ }^{n} \mathrm{C}_{r}\right)^{2}={ }^{2 n} \mathrm{C}_{n}$

12. Option (B) is correct.

Given planes $\mathrm{P}_{1}: x+(\lambda+4) y+z=1$
$\mathrm{P}_{2}: 2 x+y+z=2$
Equation of plane containing the line of intersection of the plane P_{1} and P_{2} is given by
$\mathrm{P}:[x+(\lambda+4) y+z-1]+k[2 x+y+z-2]=0$
\because Plane P passes through $(0,1,0)$
$\Rightarrow \lambda+4-1+k(1-2)=0$
$\Rightarrow \lambda-k+3=0$
Plane P also passes through $(1,0,1)$
$\Rightarrow 1+k(2+1-2)=0$
$\Rightarrow k=-1$
Put the value of $k=-1$ in equation (i), we get
$\lambda=-4$
So, point $(2 \lambda, \lambda,-\lambda)=(-8,-4,4)$
Now, distance of $(-8,-4,4)$ from plane P_{2} is

$$
\begin{aligned}
& d=\left|\frac{2(-8)-4+4-2}{\sqrt{2^{2}+1^{2}+1^{2}}}\right| \\
& \Rightarrow d=\left|\frac{-18}{\sqrt{6}}\right| \\
& \Rightarrow d=3 \sqrt{6}
\end{aligned}
$$

HINT:

(1) Equation of plane containing the line of intersection of the plane P_{1} and P_{2} is given by $\mathrm{P}_{1}+\lambda \mathrm{P}_{2}=0$.
(2) Perpendicular distance of point (x_{1}, y_{1}, z_{1}) from plane $a x+b y+c z+d=0$ is given by
$\mathrm{D}=\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$
13. Option (D) is correct.

Given: $f(x+y)=f(x) . f(y)$
$\Rightarrow f(x)=p^{x}$
$\Rightarrow p=3$
$[\because f(1)=3]$
So, $f(x)=3^{x}$
Also given that $\sum_{k=1}^{n} f(k)=3279$

$$
\begin{aligned}
& \Rightarrow f(1)+f(2)+\ldots . .+f(n)=3279 \\
& \Rightarrow 3+3^{2}+\ldots .+3^{n}=3279 \\
& \Rightarrow \frac{3\left(3^{n}-1\right)}{3-1}=3279 \\
& \Rightarrow 3^{n}=2187 \\
& \Rightarrow 3^{n}=3^{7} \\
& \Rightarrow n=7
\end{aligned}
$$

HINT:

(1) Consider $f(x)=\mathrm{P}^{x}$ and find the value of P by given condition.
(2) Sum of GP whose first term is a, common ratio $=r$ is given by $\mathrm{S}=\frac{a\left(r^{n}-1\right)}{r-1} ; r>1$ where $n=$ number of terms.
14. Option (A) is correct.

Given $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ are in A.P. and $a_{1}+a_{3}=10$
And mean of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}=\frac{19}{2}$
So, $\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}}{6}=\frac{19}{2}$
$\Rightarrow a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=57$
Let common difference of AP be d.
So, $\frac{6}{2}\left(2 a_{1}+5 d\right)=57$
$\left\{\because\right.$ Sum of n terms of AP is given by $\frac{n}{2}[2 a+(n-1) d]$
where $a=$ first term and $d=$ common difference $\}$
$\Rightarrow 2 a_{1}+5 d=19$
$\left[\because a_{1}+a_{3}=10\right]$
$\Rightarrow a_{1}+a_{1}+2 d=10$
$\Rightarrow 2 a_{1}+2 d=10$
$\Rightarrow a_{1}+d=5$
On solving equation (i) and equation (ii), we get $a_{1}=2$ and $d=3$
Now, variance $=\sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-(\bar{x})^{2}$

$$
\begin{aligned}
& \Rightarrow \sigma^{2}=\frac{2^{2}+5^{2}+8^{2}+11^{2}+14^{2}+17^{2}}{6}-\left(\frac{19}{2}\right)^{2} \\
& \Rightarrow \sigma^{2}=\frac{699}{6}-\frac{361}{4} \\
& \Rightarrow \sigma^{2}=\frac{105}{4} \Rightarrow 8 \sigma^{2}=210
\end{aligned}
$$

HINT:

(1) mean of $a_{1}, a_{2}, a_{3}, \ldots ., a_{n}$ is given by

$$
x=\frac{a_{1}+a_{2}+a_{3}+\ldots .+a_{n}}{n}
$$

(2) Sum of n terms of AP is given by $\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] ;$ where $a=$ first term and $d=$ common difference
(3) Variance $=\frac{\sum x_{i}^{2}}{n}-(\vec{x})^{2}$
15. Option (D) is correct.

Given: Equation of $\mathrm{AB}:(\lambda+1) x+\lambda y=4$
$\mathrm{AC}: \lambda x+(1-\lambda) y+\lambda=0$

\because Vertex A lies on y-axis
$\therefore x$-coordinate of point $\mathrm{A}=0$
So, $x=0$ will satisfy the equation of AB and AC
So, from equation of $\mathrm{AB}, y=\frac{4}{\lambda}$
And from equation of AC, $y=\frac{\lambda}{\lambda-1}$
So, $\frac{4}{\lambda}=\frac{\lambda}{\lambda-1}$
$\Rightarrow 4 \lambda-4=\lambda^{2}$
$\Rightarrow(\lambda-2)^{2}=0$
$\Rightarrow \lambda=2$
So, $\mathrm{A}=(0,2)$
Now, $\mathrm{AB}: 3 x+2 y=4$ and $\mathrm{AC}: 2 x-y=-2$
Slope of $\mathrm{AB}, m_{\mathrm{AB}}=-\frac{3}{2}$
$\because \mu(1,2)$ is orthocentre of $\triangle \mathrm{ABC}$
$\therefore m_{\mathrm{CH}} \cdot m_{\mathrm{AB}}=-1$
$\Rightarrow m_{\mathrm{CH}}=\frac{2}{3}$
Let the coordinates of point C be ($\mathrm{P}, 2 \mathrm{P}+2$)
$\Rightarrow \frac{2 \mathrm{P}+2-2}{\mathrm{P}-1}=\frac{2}{3}$
$\Rightarrow \mathrm{P}=-\frac{1}{2}$
$\therefore \mathrm{C}=\left(-\frac{1}{2}, 1\right)$
Given equation of parabola is $y^{2}=6 x$

Now, equation of tangent to the parabola $y^{2}=6 x$ in parametric form is given by $t y=x+\frac{3}{2} t^{2}$.
\because Tangent is passing through $C\left(-\frac{1}{2}, 1\right)$
$\therefore t=-\frac{1}{2}+\frac{3}{2} t^{2}$
$\Rightarrow 3 t^{2}-2 t-1=0$
$\Rightarrow(3 t+1)(t-1)=0 \Rightarrow t=1$
So, coordinates of point of contact $\mathrm{N}=\left(a t^{2}, 2 a t\right)$
$=\left(\frac{3}{2}, 3\right)$
Now, NC $=\sqrt{\left(\frac{3}{2}+\frac{1}{2}\right)^{2}+(3-1)^{2}}$
$\Rightarrow \mathrm{NC}=\sqrt{4+4}=2 \sqrt{2}$

HINT:

(1) Find the coordinates of point A by using the condition of vertex A lies on y-axis.
(2) Find the coordinates of point B and C by using the definition of orthocentre.
(3) Equation of tangent to parabola $y^{2}=4 a x$ in parametric form is given by $t y=x+a t^{2}$
16. Option (C) is correct.

As we know $\mathrm{A} \Rightarrow \mathrm{B}=\sim \mathrm{A} \vee \mathrm{B}$
So, $p \Rightarrow \sim q=\sim p \vee \sim q$
Now, $p \wedge(p \Rightarrow \sim q)=p \wedge(\sim p \vee \sim q)$
$=(p \wedge \sim p) \vee(p \wedge \sim q)=\mathrm{F} \vee(p \wedge \sim q)$
Now, $\sim[p \wedge(p \Rightarrow \sim q)]=\sim[F \vee(p \wedge \sim q)]$
$=\sim \mathrm{F} \wedge \sim(p \wedge \sim q)=\mathrm{T} \wedge(\sim p \vee q)=\sim p \vee q$

HINT:

(1) Use $A \Rightarrow B=\sim A \vee B$
(2) Use $A \wedge(B \vee C)=(A \wedge B) \vee(A \wedge C)$

17. Option (D) is correct.

Given, $\lim _{x \rightarrow a}([x-5]-[2 x+2])=0$
$\Rightarrow[a-5]-[2 a+2]=0$
$\Rightarrow[a]-5-[2 a]-2=0$
$\Rightarrow[a]-[2 a]=7$
If $a \in z$, we have $a=-7$
For $a \in(-7.5,-7),[a]-[2 a]=-8+15=7$
So, $a \in(-7.5,-7)$ satisfy the given equation.
For $a \in(-7,-6.5)$, $[a]-[2 a]=-7+14=7$
So, $a \in(-7,-6.5)$ satisfy the given equation
At $a=-7.5$
$[a]-[2 a]=-8+15=7$
So, $a=-7.5$ satisfy the equation (i)
Now, at $a=-6.5$
$[a]-[2 a]=-7+13=6$
So, $a=-6.5$ doesn't satisfy the equation (i)
$\because x \rightarrow a$
$\therefore a \neq-6.5$ or -7.5
So, $a \in(-7.5,-6.5)$

HINT:

Solve given limit using the definition of greatest integer function.
18. Option (D) is correct.

Let the normals of the plane $x+2 y+z=0$ and $3 y-z=3$ be $\vec{n}_{1} \& \vec{n}_{2}$

$$
\begin{aligned}
& \Rightarrow \vec{n}_{1}=\hat{i}+2 \hat{j}+\hat{k} \text { and } \vec{n}_{2}=3 \hat{j}-\hat{k} \\
& \text { And the direction ratio of the line }=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 1 \\
0 & 3 & -1
\end{array}\right| \\
& =\hat{i}(-2-3)-\hat{j}(-1+0)+\hat{k}(3-0)=-5 \hat{i}+\hat{j}+3 \hat{k}
\end{aligned}
$$

So the equation of the line passing through $(3,2,1)$ is

$$
\begin{aligned}
& \frac{x-3}{-5}=\frac{y-2}{1}=\frac{z-1}{3}=k \\
& \frac{\square}{\mathrm{Q}(1,9,7)} \\
& \frac{\square}{-5}=\frac{x-2}{1}=\frac{z-1}{3}
\end{aligned}
$$

Let the coordinates of point Q be $(-5 k+3, k+2,3 k+$ 1)

Now, direction ratios of $\mathrm{PQ}=-5 k+3-1, k+2-9$, $3 k+1-7$
$=-5 k+2, k-7,3 k-6$
$\because \mathrm{PQ} \perp$ Line
So, $(-5 k+2)(-5)+(k-7)(1)+(3 k-6) 3=0$
$\Rightarrow 35 k=35$
$\Rightarrow k=1$
\therefore Foot of perpendicular $\mathrm{Q}=(-5+3,1+2,3+1)$
$=(-2,3,4)$
So, $\alpha+\beta+\gamma=-2+3+4=5$

HINT:

(1) Direction ratio of the line will be $\vec{n}_{1} \times \vec{n}_{2}$; where \vec{n}_{1} and \vec{n}_{2} are normal vectors of given planes.
(2)

Assume coordinates of point Q on the line in parametric form and find the value of unknown using $\mathrm{PQ} \perp$ line

19. Option (A) is correct.

Given digits : 3, 5, 6, 7, 8
All five digits number is greater than 7000
So, number of five digits number $=5!=120$
For 4 digits number greater than 7000
For $1000^{\text {th }}$ place we can take only 7 or 8 from given digits and for remaining places we can take any digit from given digits.
So, number of 4 digits number greater than 7000
$=2 \times 4 \times 3 \times 2=48$
\therefore Number of integer, greater than 7000
$=120+48=168$

HINT:

First find number of 5 digits numbers and then find 4 digit numbers of taking 7 or 8 on $1000^{\text {th }}$ place using the fundamental principle of counting.
20. Option (A) is correct.

$$
\begin{aligned}
& \text { Let } A=\left(\frac{1+\sin \left(\frac{2 \pi}{9}\right)+i \cos \left(\frac{2 \pi}{9}\right)}{1+\sin \left(\frac{2 \pi}{9}\right)-i \cos \left(\frac{2 \pi}{9}\right)}\right)^{3} \\
& \Rightarrow A=\left(\frac{1+\cos \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)+i \sin \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)}{1+\cos \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)-i \sin \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)}\right)^{3} \\
& \Rightarrow A=\left(\frac{1+\cos \left(\frac{5 \pi}{18}\right)+i \sin \left(\frac{5 \pi}{18}\right)}{1+\cos \left(\frac{5 \pi}{18}\right)-i \sin \left(\frac{5 \pi}{18}\right)}\right)^{3} \\
& \Rightarrow \mathrm{~A}=\left(\frac{2 \cos ^{2} \frac{5 \pi}{36}+2 i \sin \left(\frac{5 \pi}{36}\right) \cos \left(\frac{5 \pi}{36}\right)}{2 \cos ^{2} \frac{5 \pi}{36}-2 i \sin \left(\frac{5 \pi}{36}\right) \cos \left(\frac{5 \pi}{36}\right)}\right)^{3} \\
& \Rightarrow \mathrm{~A}=\left(\frac{\cos \frac{5 \pi}{36}+i \sin \frac{5 \pi}{36}}{\cos \frac{5 \pi}{36}-i \sin \frac{5 \pi}{36}}\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{A}=\cos \frac{5 \pi}{6}+i \sin \left(\frac{5 \pi}{6}\right) \\
& \Rightarrow \mathrm{A}=-\frac{\sqrt{3}}{2}+i \frac{1}{2}
\end{aligned}
$$

HINT:

(1) Simplify given expression using trigonometric identities and try to convert given expression as $\cos \theta+i \sin \theta$ in numerator and denominator and then solve further using Euler form.
(2) Use $e^{i \theta}=\cos \theta+i \sin \theta$
21. The correct answer is (384).

Given lines $\mathrm{L}_{1}: \frac{x+\sqrt{6}}{2}=\frac{y-\sqrt{6}}{3}=\frac{z-\sqrt{6}}{4}$
$\Rightarrow \mathrm{L}_{1}: \vec{r}=(-\sqrt{6} \hat{i}+\sqrt{6} \hat{j}+\sqrt{6} \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$
And $\mathrm{L}_{2}: \frac{x-\lambda}{3}=\frac{y-2 \sqrt{6}}{4}=\frac{z+2 \sqrt{6}}{5}$
$\Rightarrow \mathrm{L}_{2}: \vec{r}=(\lambda \hat{i}+2 \sqrt{6} \hat{j}-2 \sqrt{6} \hat{k})+\mu(3 \hat{i}+4 \hat{j}+5 \hat{k})$
As we know shortest distance between two lines
$\vec{r}=\vec{a}+\lambda \vec{p}$ and $\vec{r}=\vec{b}+\mu \vec{q}$ is given by
$d=\left|\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|}\right|$

So, $\vec{a}=-\sqrt{6} \hat{i}+\sqrt{6} \hat{j}+\sqrt{6} \hat{k}$
$\vec{b}=\lambda \hat{i}+2 \sqrt{6} \hat{j}-2 \sqrt{6} \hat{k}$
$\vec{p}=2 \hat{i}+3 \hat{j}+4 \hat{k}$
$\vec{q}=3 \hat{i}+4 \hat{j}+5 \hat{k}$
Now, $\vec{b}-\vec{a}=(\lambda+\sqrt{6}) \hat{i}+\sqrt{6} \hat{j}-3 \sqrt{6} \hat{k}$
$\vec{p} \times \vec{q}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|$
$\Rightarrow \vec{p} \times \vec{q}=-\hat{i}+2 \hat{j}-\hat{k}$
$\Rightarrow|\vec{p} \times \vec{q}|=\sqrt{1+4+1}=\sqrt{6}$
Now, $(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{q})=-\lambda-\sqrt{6}+2 \sqrt{6}+3 \sqrt{6}=-\lambda+4 \sqrt{6}$
So, shortest distance $=\left|\frac{-\lambda+4 \sqrt{6}}{\sqrt{6}}\right|=6$

$$
\begin{aligned}
& \Rightarrow|-\lambda+4 \sqrt{6}|=6 \sqrt{6} \\
& \Rightarrow-\lambda+4 \sqrt{6}= \pm 6 \sqrt{6} \\
& \Rightarrow \lambda=4 \sqrt{6} \mp 6 \sqrt{6} \\
& \Rightarrow \lambda=-2 \sqrt{6}, 10 \sqrt{6}
\end{aligned}
$$

Sum of all possible values of $\lambda=-2 \sqrt{6}+10 \sqrt{6}=8 \sqrt{6}$ $\therefore(8 \sqrt{6})^{2}=384$

HINT:

(1) Write the given equation of line vector form and use distance between two lines $\vec{r}=\vec{a}+\lambda \vec{p}$ and $\vec{r}=\vec{b}+\mu \vec{q}$ is given by
$d=\left|\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|}\right|$
(2) If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ then
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
22. The correct answer is (432).

Given, Urn A contains 4 Red, 6 Black
Urn B contains 5 Red, 5 Black
Urn C contains λ Red, 4 Black
Also $\mathrm{P}($ Red ball from urn C$)=0.4$

$$
\begin{aligned}
& \Rightarrow \frac{\frac{1}{3} \times \frac{\lambda}{\lambda+4}}{\frac{1}{3} \times \frac{4}{10}+\frac{1}{3} \times \frac{5}{10}+\frac{1}{3} \times \frac{\lambda}{\lambda+4}}=\frac{4}{10} \\
& \Rightarrow \frac{\frac{\lambda}{\lambda+4}}{\frac{2}{10}+\frac{\lambda}{\lambda+4}}=\frac{4}{10} \Rightarrow 24 \lambda=144 \Rightarrow \lambda=6
\end{aligned}
$$

So, equation of parabola is $y^{2}=6 x$

Let parametric coordinates of point P be $\left(\frac{3}{2} t^{2}, 3 t\right)$
Now, slope of $P R=\tan 30^{\circ}$
$\Rightarrow \frac{3 t}{\frac{3}{2} t^{2}}=\frac{1}{\sqrt{3}} \Rightarrow t=2 \sqrt{3}$
\therefore Coordinates of $P=(18,6 \sqrt{3})$
Now, $\mathrm{PR}=\sqrt{(18)^{2}+(6 \sqrt{3})^{2}}$
$\Rightarrow \mathrm{PR}=\sqrt{432} \Rightarrow(\mathrm{PR})^{2}=432$

HINT:

(1) Find the value of λ using Bayes theorem.
(2) Bayes Theorem: Let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{n}$ be a set of events associated with a sample space S, where all the events $\varepsilon_{1}, \varepsilon_{2}, . . \varepsilon_{n}$ have non zero probability of occurence and they form a partition of S. Let B be any event associated with S, then according to Bayes theorem.
$\mathrm{P}\left(\frac{\varepsilon_{i}}{\mathrm{~B}}\right)=\frac{\mathrm{P}\left(\varepsilon_{i}\right) \cdot \mathrm{P}\left(\mathrm{B} \mid \varepsilon_{i}\right)}{\sum_{k=1}^{n} \mathrm{P}\left(\varepsilon_{k}\right) \mathrm{P}\left(\mathrm{A} \mid \varepsilon_{k}\right)} ; k=1,2, \ldots, n$
(3) Parametric coordinates of any point on parabola $y^{2}=4 a x$ is $\left(a t^{2}, 2 a t\right)$
23. The correct answer is (2).

Given: $S=\{\theta \in[0,2 \lambda) ; \tan (\pi \cos \theta)+\tan (\pi \sin \theta)$ $=0\}$
So, $\tan (\pi \cos \theta)=-\tan (\pi \sin \theta)$
$\Rightarrow \tan (\pi \cos \theta)=\tan (-\pi \sin \theta)$
As we know if $\tan \theta=\tan \alpha$, then $\theta=n \pi+\alpha ; n \in \mathrm{I}$
$\therefore \pi \cos \theta=n \pi-\pi \sin \theta ; n \in \mathrm{I}$
$\Rightarrow \pi \cos \theta+\pi \sin \theta=n \pi$
$\Rightarrow \cos \theta+\sin \theta=n$
Since, $-\sqrt{2} \leq \cos \theta+\sin \theta \leq \sqrt{2}$
$\therefore n=-1,0,1$
Case 1: If $n=-1$
$\cos \theta+\sin \theta=-1$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\cos \left(\frac{3 \pi}{4}\right)$
$\Rightarrow \theta-\frac{\pi}{4}=2 k \pi \pm \frac{3 \pi}{4}$
$\Rightarrow \theta=2 k \pi+\pi$ or $\theta=2 k \pi-\frac{\pi}{2}$
$\Rightarrow \theta=\pi, \frac{3 \pi}{2}$
Case-2: If $n=0$
$\cos \theta+\sin \theta=0$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=0$
$\Rightarrow \theta-\frac{\pi}{4}=2 k \pi \pm \frac{\pi}{2}$
$\Rightarrow \theta=2 k \pi+\frac{3 \pi}{4}$ or $\theta=2 k \pi-\frac{\pi}{4}$
$\Rightarrow \theta=\frac{3 \pi}{4}, \frac{7 \pi}{4}$
Case-3: If $n=1$
$\cos \theta+\sin \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)$
$\Rightarrow \theta-\frac{\pi}{4}=2 k \pi \pm \frac{\pi}{4}$
$\Rightarrow \theta=2 k \pi+\frac{\pi}{2}$ or $\theta=2 k \pi$
$\Rightarrow \theta=\frac{\pi}{2}, 0$
$\therefore \theta=\left\{0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, \frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}$
So, $\sin \left(\theta+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}$
Now, $\sum_{\theta \in S} \sin ^{2}\left(\theta+\frac{\pi}{4}\right)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2$

HINT:

(1) General solution of $\tan \theta=\tan \alpha$ is $\theta=n \pi+\alpha$;
$\alpha \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] n \in \mathrm{I}$
(2) Use $-\sqrt{a^{2}+b^{2}} \leq a \sin x+b \cos x \leq \sqrt{a^{2}+b^{2}}$

24. The correct answer is (5).

Given: $\frac{1^{3}+2^{3}+3^{3}+\ldots \text { upto } n \text { terms }}{1.3+2.5+3.7+\ldots . \text { upto } n \text { terms }}=\frac{9}{5}$
As we know, sum of cubes of n natural numbers

$$
\begin{aligned}
& =\left\{\frac{n(n+1)}{2}\right\}^{2} \\
& \Rightarrow \frac{\left\{\frac{n(n+1)}{2}\right\}^{2}}{\sum_{x=1}^{n} x(2 x+1)}=\frac{9}{5} \\
& \Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{\sum_{x=1}^{n}\left(2 x^{2}+x\right)}=\frac{9}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{2 \sum_{x=1}^{n} x^{2}+\sum_{x=1}^{n} x}=\frac{9}{5} \\
& \Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{2\left\{\frac{n(n+1)(2 n+1)}{6}\right\}+\left\{\frac{n(n+1)}{2}\right\}}=\frac{9}{5}
\end{aligned}
$$

$\{\because$ Sum of squares of n natural numbers
$=\frac{n(n+1)(2 n+1)}{6}$ and sum of n natural numbers
$\left.=\frac{n(n+1)}{2}\right\}$
$\Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{\frac{n(n+1)(2 n+1)}{3}+\frac{n(n+1)}{2}}=\frac{9}{5}$
$\Rightarrow \frac{\frac{n^{2}(n+1)^{2}}{4}}{n(n+1)\left\{\frac{2 n+1}{3}+\frac{1}{2}\right\}}=\frac{9}{5}$
$\Rightarrow \frac{\frac{n(n+1)}{4}}{\frac{(4 n+2+3)}{6}}=\frac{9}{5} \Rightarrow \frac{3 n(n+1)}{2(4 n+5)}=\left(\frac{9}{5}\right)$
$\Rightarrow 5 n^{2}+5 n=24 n+30$
$\Rightarrow 5 n^{2}-19 n-30=0$
$\Rightarrow 5 n^{2}+6 n-25 n-30=0$
$\Rightarrow n(5 n+6)-5(5 n+6)=0$
$\Rightarrow(n-5)(5 n+6)=0$
$\Rightarrow n=5$

HINT:

(1) Use $1+2+3+\ldots .+n=\frac{n(n+1)}{2}$
(2) Use $1^{2}+2^{2}+3^{2}+\ldots .+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(3) Use $1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
25. The correct answer is (405).

Given: Sum of coefficients of first 3 terms of $\left(x-\frac{3}{x^{2}}\right)^{n}=376$
General term of given expansion is
$\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r}\left(\frac{-3}{x^{2}}\right)^{r}$.
So, coefficients of first three terms are ${ }^{n} C_{0},-3^{n} C_{1}$, $9^{n} C_{2}$
$\therefore{ }^{n} C_{0}-3^{n} C_{1}+9^{n} C_{2}=376$
$\Rightarrow 1-3 n+\frac{9 n(n-1)}{2}=376$
$\Rightarrow 3 n^{2}-5 n-250=0$
$\Rightarrow(3 n+25)(n-10)=0$
$\Rightarrow n=10, \frac{-25}{3}$ (not possible)
For coefficient of $x^{4}, n-3 r=4$

$$
\begin{aligned}
& \Rightarrow 10-3 r=4 \\
& \Rightarrow r=2
\end{aligned}
$$

\therefore Coefficient of $x^{4}={ }^{10} \mathrm{C}_{2}(-3)^{2}=\frac{10 \times 9}{2 \times 1} \times 9=405$

HINT:

General term of binomial expansion $(a+b)^{n}$ is given by $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}$
26. The correct answer is (122).

Given equation of sides are

$$
\begin{align*}
& \mathrm{AB}: 2 x+y=0 \tag{i}\\
& \mathrm{BC}: x+p y=21 a \tag{ii}\\
& \mathrm{CA}: x-y=3 \tag{iii}
\end{align*}
$$

Centroid of $\triangle \mathrm{ABC}=\mathrm{P}(2, a)$

On solving equation (i) and equation (iii), we get A $=(1,-2)$
Let the coordinates of point B be ($m,-2 m$) and coordinates of point C be $(n+3, n)$
\because Centroid of $\triangle \mathrm{ABC}=(2, a)$
$\Rightarrow \frac{m+n+3+1}{3}=2$ and $\frac{n-2 m-2}{3}=a$
$\Rightarrow m+n=2$
$\& n-2 m=3 a+2$
Put $n=2-m$ from equation (iv) to (v), we get
$m=-a$
Point B satisfy the equation of $B C$
So, $m-2 m p=21 a$
$\Rightarrow m(1-2 p)=21 a$
$\Rightarrow 2 p-1=21$
$\Rightarrow p=11$
Point C also satisfy the equation of $B C$
So, $n+3+p(n)=21 a$
$\Rightarrow 12 n+3=-21 m$
$\Rightarrow 12 n+21 m+3=0$
On solving equation (iv) and equation (vi), we get $m=-3, n=5$
$\therefore \mathrm{B}=(-3,6)$ and $\mathrm{C}=(8,5)$
Now, $B C=\sqrt{(11)^{2}+1^{2}}$
$\Rightarrow \mathrm{BC}=\sqrt{122}$
$\Rightarrow \mathrm{BC}^{2}=122$

HINT:

(1) Find the coordinates of A by solving equation of side $A B$ and $A C$.
(2) Find the coordinates of B and C using given condition and solve further.

27. The correct answer is (8).

Given: $\vec{a}=\hat{i}+2 \hat{j}+\lambda \hat{k}$
$\vec{b}=3 \hat{i}-5 \hat{j}-\lambda \hat{k}$
$\vec{a} \cdot \vec{c}=7$
$2 \vec{b} \cdot \vec{c}+43=0$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{c}$
$\because \vec{a} \times \vec{c}=\vec{b} \times \vec{c}$
$\Rightarrow(\vec{a}-\vec{b}) \times \vec{c}=0$
$\Rightarrow(\vec{a}-\vec{b})|\mid \vec{c}$
$\Rightarrow \vec{c}=k(\vec{a}-\vec{b}) \Rightarrow \vec{c}=k(-2 \hat{i}+7 \hat{j}+2 \lambda \hat{k})$
$\because \vec{a} \cdot \vec{c}=7$
$\Rightarrow k\left(-2+14+2 \lambda^{2}\right)=7$
$\Rightarrow k\left(2 \lambda^{2}+12\right)=7$
Also, $2 \vec{b} \cdot \vec{c}=-43$
$\Rightarrow 2 k\left(-6-35-2 \lambda^{2}\right)=-43$
$\Rightarrow 2 k\left(-41-2 \lambda^{2}\right)=-43$
From equation (i) and equation (ii), we get
$\frac{2 \lambda^{2}+12}{2\left(41+2 \lambda^{2}\right)}=\frac{7}{43}$
$\Rightarrow 43\left(\lambda^{2}+6\right)=7\left(2 \lambda^{2}+41\right)$
$\Rightarrow 29 \lambda^{2}=29$
$\Rightarrow \lambda^{2}=1$
Now, $\vec{a} \cdot \vec{b}=3-10-\lambda^{2}=-8$
$\Rightarrow|\vec{a} \cdot \vec{b}|=8$

HINT:

(1) Use if \vec{a} is parallel to \vec{b}, then $\vec{a}=k \vec{b} ; k \in \mathrm{R}$
(2) If $\vec{a}=\vec{a}_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=\vec{b}_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
28. The correct answer is (13).

Given: Relation $\mathrm{R}=\{(a, b),(b, c),(b, d)\}$ on set $\{a, b, c$, $d\}$ for a relation to be equivalence relation, it must be reflexive, symmetric and transitive.
For reflexive relation, $(a, a),(b, b),(c, c),(d, d)$ must be added in relation R .
So, $\mathrm{R}=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, c),(b, d)\}$
For symmetric relation, if $(x, y) \in \mathrm{R} \Rightarrow(y, x) \in \mathrm{R}$
Now, as $(a, b) \in \mathrm{R} \Rightarrow(b, a) \in \mathrm{R}$
and $(b, c) \in \mathrm{R} \Rightarrow(c, b) \in \mathrm{R}$
and $(b, d) \in \mathrm{R} \Rightarrow(d, b) \in \mathrm{R}$
So, $\mathrm{R}=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, c),(b, d),(b, a)$, $(c, b),(d, b)\}$
For transitive relation, if $(x, y) \in \mathrm{R}$ and $(y, z) \in \mathrm{R}$ $\Rightarrow(x, z) \in \mathrm{R}$
So, $\mathrm{R}=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, c),(b, d),(b, a)$, $(c, b),(d, b),(a, c),(a, d),(c, a),(c, d),(d, c),(d, a)\}$
So, total number of elements added $=13$

HINT:

(1) For a relation to be equivalence relation, it must be reflexive, symmetric and transitive.
(2) For reflexive relation, $(x, x) \in \mathrm{R}$.
(3) For symmetric relation, if $(x, y) \in \mathrm{R} \Rightarrow(y, x) \in \mathrm{R}$
(4) For transitive relation, if $(x, y) \in \mathrm{R} \&(y, z) \mathrm{R} \Rightarrow(x, z)$ $\in \mathrm{R}$
29. The correct answer is (36).

Given curves $y^{2}-2 y=-x$ and $x+y=0$
Now, $y^{2}-2 y+1=-x+1$
$\Rightarrow(y-1)^{2}=-(x-1)$
Let's find intersecting points of both curves
$y^{2}-2 y-y=0$
$\Rightarrow y^{2}-3 y=0$
$\Rightarrow y=0,3$
$\Rightarrow x=0,-3$
\therefore Intersecting points are $(0,0)$ and $(-3,3)$

So, required area $=\int_{0}^{3}\left\{\left(2 y-y^{2}\right)-(-y)\right\} d y$

$$
\begin{aligned}
& \Rightarrow A=\int_{0}^{3}\left(3 y-y^{2}\right) d y \\
& \Rightarrow \mathrm{~A}=\left[\frac{3 y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{3} \\
& \Rightarrow \mathrm{~A}=\frac{27}{2}-9 \\
& \Rightarrow \mathrm{~A}=\frac{9}{2} \\
& \Rightarrow 8 \mathrm{~A}=36
\end{aligned}
$$

HINT:

Draw the figure of both curves and identify the bounded region and use the concept of vertical strip and solve further.
30. The correct answer is (27).

Given: $f(x)+\int_{0}^{x} f(t) \sqrt{1-\left(\log _{e} f(t)\right)^{2}} d t=e, \forall x \in\left[0, \frac{\pi}{2}\right]$
$f^{\prime}(x)+f(x) \sqrt{1-\left[\log _{e} f(x)\right]^{2}}=0$
$\Rightarrow \frac{d y}{d x}+y \sqrt{1-\left(\log _{e} y\right)^{2}}=0$
$\Rightarrow \frac{d y}{d x}=-y \sqrt{1-\log _{e}^{2} y}$
$\Rightarrow \int \frac{d y}{y \sqrt{1-\log _{e}^{2} y}}=\int-1 d x$
Let $\log _{e} y=u$
$\Rightarrow \frac{1}{y} d y=d u$
$\Rightarrow \int \frac{d u}{\sqrt{1-u^{2}}}=-x+c$
$\Rightarrow \sin ^{-1} u=-x+c$
$\Rightarrow \sin ^{-1} \log _{\mathrm{e}} y=-x+c$
Put $x=0$ in equation (i), we get
$f(0)=e$ i.e., $y(0)=e$
So, at $x=0, \sin ^{-1}(1)=c$
$\Rightarrow c=\frac{\pi}{2}$
$\therefore \sin ^{-1} \log _{e} y=-x+\frac{\pi}{2}$
$\Rightarrow \log _{e} y=\sin \left(\frac{\pi}{2}-x\right)$
$\Rightarrow \log _{e} y=\cos x$
At $x=\frac{\pi}{6}, \log _{e} f\left(\frac{\pi}{6}\right)=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
So, $\left[6 \log _{e} f\left(\frac{\pi}{6}\right)\right]^{2}=\left[6 \times \frac{\sqrt{3}}{2}\right]^{2}=27$

HINT:

(1) Differentiate given equation using newton leibnitz rule and solve further differential equation using variable separable form.
(2) If $\mathrm{I}(x)=\int_{g(x)}^{h(x)} \phi(x) d x$, then

$$
\mathrm{I}^{\prime}(x)=\phi(h(x)) h^{\prime}(x)-\phi(g(x)) g^{\prime}(x)
$$

Differentiate the above equation, we get

