JEE (Main) MATHEMATICS SOLVED PAPER

Section A

Q.1. Let $\alpha x=\exp \left(x^{\beta} y^{\gamma}\right)$ be the solution of the differential equation $2 x^{2} y d y-\left(1-x y^{2}\right) d x=0$, $x>0, y(2)=\sqrt{\log _{e} 2}$. Then $\alpha+\beta-\gamma$ equals :
(1) 1
(2) -1
(3) 3
(4) 0
Q.2. The sum $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n+4}{(2 n)!}$ is equal to:
(1) $\frac{13 e}{4}+\frac{5}{4 e}$
(2) $\frac{11 e}{2}+\frac{7}{2 e}-4$
(3) $\frac{11 e}{2}+\frac{7}{2 e}$
(4) $\frac{13 e}{4}+\frac{5}{4 e}-4$
Q.3. Let $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}+5 \hat{k}$ be two vectors. Then which one of the following statements is TRUE ?
(1) Projection of \vec{a} on \vec{b} is $\frac{17}{\sqrt{35}}$ and the direction of the projection vector is same as of \vec{b}
(2) Projection of \vec{a} on \vec{b} is $\frac{17}{\sqrt{35}}$ and the direction of the projection vector is opposite to the direction of \vec{b}
(3) Projection of \vec{a} on \vec{b} is $\frac{-17}{\sqrt{35}}$ and the direction of the projection vector is same as of \vec{b}
(4) Projection of \vec{a} on \vec{b} is $\frac{-17}{\sqrt{35}}$ and the direction of the projection vector is opposite to the direction of \vec{b}
Q. 4. Let $\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+\hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$ and $\vec{r} \cdot \vec{b}=0$, then $|\vec{r}|$ is equal to:
(1) $\frac{11}{5} \sqrt{2}$
(2) $\frac{\sqrt{914}}{7}$
(3) $\frac{11}{7} \sqrt{2}$
(4) $\frac{11}{7}$
Q. 5. Let $f: \mathrm{R}-0,1 \rightarrow \mathrm{R}$ be a function such that $f(x)+f\left(\frac{1}{1-x}\right)=1+x$. Then $f(2)$ is equal to
(1) $\frac{9}{2}$
(2) $\frac{7}{4}$
(3) $\frac{9}{4}$
(4) $\frac{7}{3}$
Q. 6. Let $\mathrm{P}(\mathrm{S})$ denote the power set of $\mathrm{S}=\{1,2,3$,
\qquad $10\}$. Define the relations R_{1} and R_{2} on
$\mathrm{P}(\mathrm{S})$ as $\mathrm{AR}_{1} \mathrm{~B}$ if $\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}\right) \cup\left(\mathrm{B} \cap \mathrm{A}^{\mathrm{c}}\right)=\phi$ and $\mathrm{AR}_{2} \mathrm{~B}$ if $A \cup B^{C}=B \cup A^{C} . \forall A, B \in P(S)$. Then:
(1) only R_{1} is an equivalence relation
(2) only R_{2} is an equivalence relation
(3) both R_{1} and R_{2} are equivalence relations
(4) both R_{1} and R_{2} are not equivalence relations
Q.7. The area of the region given by $\{(x, y): x y \leq 8$, $\left.1 \leq y \leq x^{2}\right\}$ is:
(1) $16 \log _{e} 2+\frac{7}{3}$
(2) $16 \log _{e} 2-\frac{14}{3}$
(3) $8 \log _{e} 2-\frac{13}{3}$
(4) $8 \log _{e} 2+\frac{7}{6}$
Q. 8. If $A=\frac{1}{2}\left[\begin{array}{cc}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{array}\right]$ then:
(1) $A^{30}+A^{25}+A=I$
(2) $A^{30}=A^{25}$
(3) $\mathrm{A}^{30}+\mathrm{A}^{25}-\mathrm{A}=\mathrm{I}$
(4) $A^{30}-A^{25}=2 I$
Q.9. Which of the following statements is a tautology?
(1) $p \vee(p \wedge q)$
(2) $(p \wedge(p \rightarrow q)) \rightarrow \sim q$
(3) $(p \wedge q) \rightarrow(\sim(p) \rightarrow q)$
(4) $p \rightarrow(p \wedge(p \rightarrow q))$
Q. 10. The sum of the absolute maximum and minimum values of the function $f(x)=\left|x^{2}-5 x+6\right|-3 x+2$ in the itnerval $[-1,3]$ is equal to:
(1) 12
(2) 13
(3) 10
(4) 24
Q.11. Let the plane P pass through the intersection of the planes $2 x+3 y-z=2$ and $x+2 y+3 z=6$ and be perpendicular to the plane $2 x+y-z=0$. If d is the distance of P form the point $(-7,1,1$,$) then$ d^{2} is equal to :
(1) $\frac{250}{83}$
(2) $\frac{250}{82}$
(3) $\frac{15}{53}$
(4) $\frac{25}{83}$
Q. 12. The number of integral values of k, for which one root of the equation $2 x^{2}-8 x+k=0$ lies in the interval $(1,2)$ and its other root lies in the interval $(2,3)$, is :
(1) 3
(2) 0
(3) 2
(4) 1
Q. 13. Let $\mathrm{P}\left(x_{0}, y_{0}\right)$ be the point on the hyperbola $3 x^{2}-$ $4 y^{2}=36$, which is nearest to the line $3 x+2 y=1$. Then $\sqrt{2}\left(y_{0}-x_{0}\right)$ is equal to :
(1) -9
(2) -3
(3) 3
(4) 9
Q. 14. Two dice are thrown independently. Let A be the event that the number appeared on the $1^{\text {st }}$ die is less than the number appeared on the $2^{\text {nd }}$ die, B be the event that the number appeared on the $1^{\text {st }}$ die is even and that on the second die is odd, and C be the event that the number appeared on the $1^{\text {st }}$ die is odd and that on the $2^{\text {nd }}$ is even. Then :
(1) The number of favourable cases of the events A, B and C are 15,6 and 6 respectively
(2) The number of favourable cases of the event $(A \cup B) \cap C$ is 6
(3) B and C are independent
(4) A and B are mutually exclusive
Q. 15. If $y(x)=x^{x}, x>0$, then $y^{\prime \prime}(2)-2 y^{\prime}(2)$ is equal to:
(1) $4 \log _{e} 2+2$
(2) $8 \log _{e} 2-2$
(3) $4\left(\log _{e} 2\right)^{2}+2$
(4) $4\left(\log _{e} 2\right)^{2}-2$
Q.16. Let

$$
S=\left\{x \in: 0<x<1 \text { and } 2 \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right\}
$$

If $n(\mathrm{~S})$ denotes the number of elements in S then :
(1) $n(S)=2$ and only one element in S is less then $\frac{1}{2}$
(2) $n(\mathrm{~S})=1$ and the element in S is more then $\frac{1}{2}$
(3) $n(S)=0$
(4) $n(\mathrm{~S})=1$ and the element in S is less than $\frac{1}{2}$
Q. 17. The value of the integral $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x+\frac{\pi}{4}}{2-\cos 2 x} d x$ is :
(1) $\frac{\pi^{2}}{12 \sqrt{3}}$
(2) $\frac{\pi^{2}}{6 \sqrt{3}}$
(3) $\frac{\pi^{2}}{6}$
(4) $\frac{\pi^{2}}{3 \sqrt{3}}$
Q. 18. For the system of linear equations $\alpha x+y+z=1$, $x+\alpha y+z=1, x+y+\alpha z=\beta$, which one of the following statements is NOT correct ?
(1) It has infinitely many solutions if $\alpha=2$ and $\beta=-1$
(2) It has no solution if $\alpha=-2$ and $\beta=1$
(3) $x+y+z=\frac{3}{4}$ if $\alpha=2$ and $\beta=1$
(4) It has infinitely many solutions if $\alpha=1$ and $\beta=1$
Q. 19. Let $9=x_{1}<x_{2}<\ldots . .<x_{7}, \ldots . . . x_{7}$ be in an A.P. with common difference d. If the standard deviation of $x_{1}, x_{2} \ldots . ., x_{7}$ is 4 and mean is \bar{x}, then $\bar{x}+x_{6}$ is equal to:
(1) $2\left(9+\frac{8}{\sqrt{7}}\right)$
(2) $18\left(1+\frac{1}{\sqrt{3}}\right)$
(3) 25
(4) 34
Q. 20. Let a, b be two real numbers such that $a b<0$. If the complex number $\frac{1+a i}{b+i}$ is of unit modulus and $a+i b$ lies on the circle $|z-1|=|2 z|$, then a possible value of $\frac{1+[a]}{4 b}$, where $[t]$ is greatest integer function, is :
(1) $-\frac{1}{2}$
(2) -1
(3) 1
(4) $\frac{-(1+\sqrt{7})}{4}$

Section B

Q. 21. Let $\alpha x+\beta y+\gamma z=1$ be the equation of a plane through the point $(3,-2,5)$ and perpendicular to the line joning the points $(1,2,3)$ and $(-2,3,5)$. Then the value of $\alpha \beta y$ is equal to
Q.22. If the term without x in the expansion of $\left(x^{\frac{2}{3}}+\frac{a}{x^{3}}\right)^{22}$ is 7315 , then $|\alpha|$ is equal to
Q. 23. If the x-intercept of a focal chord of the parabola $y^{2}=8 x+4 y+4$ is 3 , then the length of this chord is equal to
Q.24. Let the sixth term in the binomial expansion of $\left(\sqrt{2^{\log _{2}\left(10-3^{x}\right)}}+\sqrt[5]{2^{x-2 \log _{2} 3}}\right)^{m}$, in the increasing
powers of $2^{(x-2) \log _{2} 3}$, be 21 . If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of A.P., then the sum of the squares of all possible values of x is
Q. 25. The point of intersection C of the plane $8 x+y+2 z$ $=0$ and the line joining the point $\mathrm{A}(-3,-6,1)$ and $B(2,4,-3)$ divides the line segment $A B$ internally in the ratio k :. If $a, b, c(|a|,|b|,|c|)$ are coprime are the direction ratios of the perpendicular form the point C on the line $\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$, then $|a+b+c|$ is equal to
Q.26. The line $x=8$ is the directrix of the ellipse $\mathrm{E}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with the corresponding focus $(2,0)$. If the tangent to E at the point P in the first quadrant passes through the point $(0,4 \sqrt{3})$ and intersects that x-axis at Q then $(3 \mathrm{PQ})^{2}$ equal to
Q. 27. The total number of six digit numbers, formed using the digits $4,5,9$ only and divisible by 6 , is
Q. 28. Number of integral solutions to the equation $x+$ $y+z=21$, where $x \geq 1, y \geq 3, z \geq 4$, is equal to
Q.29. The sum of the common terms of the following three arithmetic progressions.
3, 7, 11, 15,.....,399
$2,5,8,11, \ldots \ldots, 359$ and
$2,7,12,17, \ldots \ldots ., 197$
is equal to
Q. 30. If
$\int \frac{5^{\cos x}\left(1+\cos x \cos 3 x+\cos ^{2} x+\cos ^{3} x \cos 3 x\right) d x}{1+5^{\cos x}}$
$=\frac{k \pi}{16}$, then k is equal to

Answer Key

Q. No.	Answer	Topic Name	
$\mathbf{1}$	$\mathbf{(1)}$	Linear differential equation	Chapter Name
$\mathbf{2}$	$\mathbf{(4)}$	Special series	Sequence and series
$\mathbf{3}$	$\mathbf{(3)}$	Projection of a vector	Vector algebra
$\mathbf{4}$	$\mathbf{(3)}$	Magnitude of a vector	Vector algebra
$\mathbf{5}$	$\mathbf{(3)}$	Value of a function	Set, relations and functions
$\mathbf{6}$	$\mathbf{(3)}$	Equivalence relation	Set, relations and functions
$\mathbf{7}$	$\mathbf{(2)}$	Area between the curves	Integral calculus
$\mathbf{8}$	$\mathbf{(3)}$	Multiplication of matrix	Matrices and determinant
$\mathbf{9}$	$\mathbf{(3)}$	Tautology	Mathematical reasoning
$\mathbf{1 0}$	$\mathbf{(4)}$	Maxima, minima	Limit, continuity and differentiability
$\mathbf{1 1}$	$\mathbf{(1)}$	Intersection of two planes	Three dimensional geometry
$\mathbf{1 2}$	$\mathbf{(4)}$	Shortest distance	Limit, continuity and differentiability
$\mathbf{1 3}$	$\mathbf{(1)}$	Extreme values	Limit, continuity and differentiability
$\mathbf{1 4}$	$\mathbf{(2)}$	Hyperbola	Coordinate geometry
$\mathbf{1 5}$	$\mathbf{(4)}$	Derivative	Limit, continuity and differentiability
$\mathbf{1 6}$	$\mathbf{(1)}$	Inverse trigonometry	Trigonometry
$\mathbf{1 7}$	$\mathbf{(2)}$	Definite integrals	Integral calculus
$\mathbf{1 8}$	$\mathbf{(4)}$	System of equations	Matrices and determinant
$\mathbf{1 9}$	$\mathbf{(4)}$	Variance	Statistics and probability
$\mathbf{2 0}$	$\mathbf{(4)}$	Modulus	Complex number and quadratic equations
$\mathbf{2 1}$	$[6]$	Equation of plane	Three dimensional geometry
$\mathbf{2 2}$	$[\mathbf{1]}$	General term	Binomial theorem
$\mathbf{2 3}$	$[16]$	Parabola	Coordinate geometry
$\mathbf{2 4}$	$[4]$	General term	Binomial theorem
$\mathbf{2 5}$	$[10]$	Section formula	Three dimensional geometry
$\mathbf{2 6}$	$[39]$	Ellipse	Coordinate geometry
$\mathbf{2 7}$	$[81]$	Number of ways	Permutation and combinations
$\mathbf{2 8}$	$[\mathbf{1 0 5]}$	Combination	Sequence and series
$\mathbf{2 9}$	$[321]$	A.P., G.P.	Integral calculus
$\mathbf{3 0}$	$[\mathbf{1 3]}$	Definite integrals	

Solutions

Section A

1. Option (1) is correct.

The given d.e. is :

$$
\begin{aligned}
& 2 x^{2} y \frac{d y}{d x}-\left(1-x y^{2}\right)=0 \\
& \Rightarrow 2 y \frac{d y}{d x}-\frac{1}{x^{2}}+\frac{y^{2}}{x}=0
\end{aligned}
$$

Let $y^{2}=u \Rightarrow 2 y \frac{d y}{d x}=\frac{d u}{d x}$
So, $\frac{d u}{d x}+\frac{u}{x}=\frac{1}{x^{2}}$ (linear d.e)
I.F. $=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$
\therefore The solution is
$u \times x=\int \frac{1}{x^{2}} \times x d x$
$\Rightarrow u x=\log _{e} x+\mathrm{C} \Rightarrow y^{2} x=\log _{e} x+\mathrm{C}$
Now, using $y(2)=\sqrt{\log _{e} 2}$, we get
$2 \log _{e} 2=\log _{e} 2+\mathrm{C} \Rightarrow \mathrm{C}=\log _{e} 2$
\therefore The solution is:
$y^{2} x=\ln x+\ln 2=\ln 2 x \Rightarrow 2 x=\exp \left(x y^{2}\right)$
On comparing with $\alpha x=\exp \left(x^{\beta} y^{\gamma}\right)$, we get
$\alpha=2, \beta=1, \gamma=2$
$\therefore \alpha+\beta-\gamma=2+1-2=1$

HINT:

Substitute $y^{2}=u$ and make a linear differential equation.
2. Option (4) is correct.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{2 n^{2}+3 n+4}{(2 n)!} \\
& \text { Let } t=2 n \Rightarrow n=\frac{t}{2} \\
& \Rightarrow \sum_{t \rightarrow \text { even }} \frac{2\left[\frac{t^{2}}{4}\right]+3\left[\frac{t}{2}\right]+4}{2 t!} \\
& \Rightarrow \sum_{t \rightarrow \text { even }} \frac{\frac{t^{2}}{2}+\frac{3 t}{2}+4}{t!} \\
& =\frac{1}{2} \sum_{t \rightarrow \text { even }} \frac{t^{2}+3 t+8}{t!} \\
& =\frac{1}{2}\left\{\sum_{t \rightarrow \text { even }} \frac{t+1-1}{(t-1)!}+\frac{3}{(t-1)!}+\frac{8}{t!}\right\} \\
& =\frac{1}{2}\left\{\sum_{t \rightarrow \text { even }} \frac{1}{(t-2)!}+\frac{1}{(t-1)!}+\frac{3}{(t-1)!}+\frac{8}{t!}\right\} \\
& =\frac{1}{2}\left\{\frac{e+\frac{1}{e}}{2}+4\left[\frac{e-\frac{1}{e}}{2}\right]+8\left[\frac{e+\frac{1}{e}}{2}\right]-8\right\} \\
& =\frac{1}{4}\left\{e+\frac{1}{e}+4 e-\frac{4}{e}+8 e+\frac{8}{e}-16\right\} \\
& =\frac{1}{4}\left\{13 e+\frac{5}{e}-16\right\} \\
& =\frac{13 e}{4}+\frac{5}{4 e}-4
\end{aligned}
$$

3. Option (3) is correct.
$\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$
$\vec{b}=\hat{i}+3 \hat{j}+5 \hat{k}$
Projection of \vec{a} or $\vec{b}=\frac{(5)(1)+(-1)(3)+(-3)(5)}{\sqrt{1+9+25}}$
$=\frac{5-3-15}{\sqrt{35}}=\frac{-13}{\sqrt{35}}$

4. Option (3) is correct.

Given $\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}$
$\vec{b}=\hat{i}+\hat{k} ; \vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$
Since, $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$
$\Rightarrow \vec{r}=\vec{c}+\lambda \vec{a}$
$\Rightarrow \vec{r} \cdot \vec{b}=\vec{c} \cdot \vec{b}+\lambda \vec{a} \cdot \vec{b}$
$\Rightarrow(1+0-3)+\lambda(2+0+5)=0$
$\Rightarrow-2+7 \lambda=0 \Rightarrow \lambda=\frac{2}{7}$
$\therefore \vec{r}=(\hat{i}+2 \hat{j}-3 \hat{k})+\frac{2}{7}(2 \hat{i}-7 \hat{j}+5 \hat{k})$
$=\frac{11}{7} \hat{i}+0 \hat{j}+\frac{11}{7} \hat{k}=\frac{11}{7}(\hat{i}+\hat{k})$
$\Rightarrow|\vec{r}|=\frac{11}{7} \sqrt{1+1}=\frac{11}{7} \sqrt{2}$
5. Option (3) is correct.

Since, $f(x)+f\left(\frac{1}{1-x}\right)=1+x$
Let $x=2 \Rightarrow f(2)+f(-1)=3$
Let $x=-1 \Rightarrow f(-1)+f\left(\frac{1}{2}\right)=0$
Let $x=\frac{1}{2} \Rightarrow f\left(\frac{1}{2}\right)+f(2)=\frac{3}{2}$
Adding A, B \& C, we get
$2\left[f(2)+f(-1)+f\left(\frac{1}{2}\right)\right]=3+\frac{3}{2}$
$f(2)+0=\frac{1}{2}\left[\frac{9}{2}\right]=\frac{9}{4}$
$\Rightarrow f(2)=\frac{9}{4}$

HINT:

Use $x \rightarrow \frac{1}{1-x}$ and $x \rightarrow \frac{x-1}{x}$ and then put $x=2$
6. Option (3) is correct.
$S=\{1,2,3, \ldots .10\}$
$\mathrm{AR}_{1} \mathrm{~B} \Rightarrow\left(\mathrm{~A} \cap \mathrm{~B}^{\prime}\right) \cup\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)=\phi$
$\therefore \mathrm{R}_{1}$ is reflexive \& symmetric Also, $\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)=\phi$
$\Rightarrow \mathrm{A}=\mathrm{B}$
$\left(\mathrm{B} \cap \mathrm{C}^{\prime}\right) \cup\left(\mathrm{B}^{\prime} \cap \mathrm{C}\right)=\phi$
 $\Rightarrow B=C$
$\therefore \mathrm{A}=\mathrm{C}$
So, R_{1} is equivalence.
$\mathrm{R}_{2}=\mathrm{A} \cup \mathrm{B}^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}$

$\therefore \mathrm{R}_{2}$ is reflexive and symmetric
$\left(\mathrm{A} \cup \mathrm{B}^{\prime}\right)=\left(\mathrm{A}^{\prime} \cup \mathrm{B}\right)$
$\Rightarrow\{a, c, d\}=\{b, c, d\}$
$\Rightarrow\{a\}=\{b\}$
$\Rightarrow A=B$
Similarly,
$\left(B \cup C^{\prime}\right)=\left(B^{\prime} \cup C\right)$
$\Rightarrow B=C$
$\therefore \mathrm{A}=\mathrm{C}$
So, R_{2} is an equivalence relation.
7. Option (2) is correct.

Required area $=\int_{1}^{2}\left(x^{2}-1\right) d x+\int_{2}^{8}\left(\frac{8}{x}-1\right) d x$
$=\left[\frac{x^{3}}{3}-x\right]_{1}^{2}+[8 \ln x-x]_{2}^{8}$
$=\left[\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-1\right)\right]+[(8 \ln 8-8)-8 \ln 2+2]$
$=\left[\frac{2}{3}+\frac{2}{3}\right]+[24 \ln 2-8-8 \ln 2+2]$
$\left[\frac{4}{3}+16 \ln 2-6\right]=16 \ln 2-\frac{14}{3}$
8. Option (3) is correct.

$$
\begin{aligned}
& A=\frac{1}{2}\left[\begin{array}{cc}
1 & \sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \text { for } \theta=\frac{\pi}{3} \\
& \Rightarrow A^{2}=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right] \\
& \text { and } A^{3}=\left[\begin{array}{cc}
\cos 3 \theta & \sin 3 \theta \\
-\sin 3 \theta & \cos 3 \theta
\end{array}\right] \\
& A^{25}=\left[\begin{array}{cc}
\cos 25 \theta & \sin 25 \theta \\
-\sin 25 \theta & \cos 25 \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{-\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & \sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right]=\mathrm{A} \\
& \mathrm{~A}^{30}=\left[\begin{array}{cc}
\cos 30 \theta & \sin 30 \theta \\
-\sin 30 \theta & \cos 30 \theta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathrm{I} \\
& \therefore \mathrm{~A}^{30}+\mathrm{A}^{25}-\mathrm{A}=\mathrm{I}+\mathrm{A}-\mathrm{A}=\mathrm{I}
\end{aligned}
$$

HINT:

Using the multiplication of matrix, find the general value of A^{n}.
9. Option (3) is correct.

$$
\begin{aligned}
& (p \wedge q) \rightarrow(\sim p \rightarrow q) \\
& \equiv \sim(p \wedge q) \vee(p \vee q) \\
& \equiv(\sim p \vee \sim q) \vee(p \vee q) \\
& \equiv(\sim p \vee p) \vee(\sim q \vee q) \\
& \equiv \mathrm{T} \vee \mathrm{~T} \equiv \mathrm{~T}
\end{aligned}
$$

10. Option (4) is correct.

$$
f(x)=\left|x^{2}-5 x+6\right|-3 x+2
$$

$x \in[-1,3]$

$$
\begin{aligned}
& =|(x-2)(x-3)|-3 x+2 \quad x \in[-1,3] \\
& = \begin{cases}x^{2}-5 x+6-3 x+2 & -1 \leq x \leq 2 \\
-\left(x^{2}-5 x+6\right)-3 x+2 & x \in(2,3)\end{cases} \\
& = \begin{cases}x^{2}-8 x+8 & -1 \leq x \leq 2 \\
-x^{2}+2 x-4 & 2<x<3\end{cases}
\end{aligned}
$$

\therefore Maximum value $=|f(-1)|=17$
Minimum value $=|f(3)|=7$
\therefore Sum $=17+7=24$
11. Option (1) is correct.

The two planes are
$2 x+3 y-z=2$
and $x+2 y+3 z=6$
Let the general equation of plane through the intersection of above plane is :
$(2 x+3 y-z-2)+\lambda(x+2 y+3 z-6)=0$
$\Rightarrow x(2+\lambda)+y(3+2 \lambda)+z(-1+3 \lambda)-2-6 \lambda=0$
Since plane in equation (i) is perpendicular to the plane $2 x+y-z=0$
$\therefore(2)(2+\lambda)+(1)(3+2 \lambda)+(-1)(-1+3 \lambda)=0$
$\Rightarrow 4+2 \lambda+3+2 \lambda+1-3 \lambda=0$
$\Rightarrow \lambda=-8$
So, required equation of plane is
$x(2-8)+y(3-16)+z(-1-24)-2+48=0$
$\Rightarrow-6 x-13 y-25 z+46=0$
Now, distance of above plane from the point($-7,1,1$) is :
$d=\left|\frac{(-7)(-6)+(1)(-13)+(1)(-25)+46}{\sqrt{(-6)^{2}+(-13)^{2}+(-25)^{2}}}\right|$
$=\left|\frac{42-13-25+46}{\sqrt{36+169+625}}\right|=\left|\frac{50}{\sqrt{830}}\right|$ units
So, $d^{2}=\frac{2500}{830}=\frac{250}{83}$ units
12. Option (4) is correct.

The given equation is
$f(x)=2 x^{2}-8 x+k=0$
Hence, $f(1)=2(1)^{2}-8(1)+k>0$
$\Rightarrow k>6$
$f(2)<0$
$\Rightarrow 2(2)^{2}-8(2)+k<0$
$\Rightarrow 8-16+k<0$
$\Rightarrow k<8$
$f(3)>0$

$$
\begin{aligned}
& \Rightarrow 2(3)^{2}-8(3)+k>0 \\
& \Rightarrow 18-24+k>0 \\
& \Rightarrow k>6
\end{aligned}
$$

So, $k \in(6,8)$
\therefore The integral value of k is 7 .

HINT:

Find the value of function at the extreme points.

13. Option (1) is correct.

The given hyperbola is :
$3 x^{2}-4 y^{2}=36$
Equation of line is
$3 x+2 y=1$
$\Rightarrow 2 y=1-3 x \Rightarrow y=\frac{-3}{2} x+\frac{1}{2}$
So, $m=\frac{-3}{2}$
and $m=\frac{3 \sec \theta}{\sqrt{12} \tan \theta}$
$\therefore \frac{3 / \cos \theta}{\sqrt{12} \frac{\sin \theta}{\cos \theta}}=\frac{-3}{2}$
$\Rightarrow \frac{3}{\sqrt{12} \sin \theta}=\frac{-3}{2} \Rightarrow \sin \theta=\frac{-1}{\sqrt{3}}$
$\therefore\left(x_{0}, y_{0}\right) \equiv(\sqrt{12} \sec \theta, 3 \tan \theta)$
$=\left(\sqrt{12} \times \frac{\sqrt{3}}{\sqrt{2}}, \frac{-3 \times 1}{\sqrt{2}}\right)=\left(\frac{6}{\sqrt{2}}, \frac{-3}{\sqrt{2}}\right)$
$\therefore \sqrt{2}\left(y_{0}-x_{0}\right)=\sqrt{2}\left[\frac{-9}{\sqrt{2}}\right]=-9$

HINT:

Find the slope of given curves and compare them.

14. Option (2) is correct.

Here,
$A=\{(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5)$, $(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)\}$
$\therefore n(\mathrm{~A})=15$
$B=\{(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3)$,
$(6,5)\}$
$\therefore n(\mathrm{~B})=9$
$C=\{(1,2),(1,4),(1,6),(3,2),(3,4),(3,6), 5,2,(5,4)$, $(5,6)$, $\}$
$\therefore n(\mathrm{c})=9$
(1) False, $n(\mathrm{~A})=15, n(\mathrm{~B})=9 \neq 6, n(\mathrm{c})=9 \neq 6$
(2) $(A \cap C)=\{(1,2),(1,4),(1,6),(3,4),(3,6),(5,6)\}$
$\therefore n(\mathrm{~A} \cap \mathrm{C})=6$
$(\mathrm{B} \cap \mathrm{C})=\phi$
$\therefore n(\mathrm{~B} \cap \mathrm{C})=0$
and $n(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})=0$
$\therefore n((\mathrm{~A} \cup \mathrm{~B}) \cap \mathrm{C})=6$
(3) $\mathrm{P}(\mathrm{B})=\frac{9}{36}=\frac{1}{4}, \mathrm{P}(\mathrm{C})=\frac{9}{36}=\frac{1}{4}, \mathrm{P}(\mathrm{B} \cap \mathrm{C})=0$

As, $\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{C}) \neq \mathrm{P}(\mathrm{B} \cap \mathrm{C})$

So, B and C are not independent.
(4) $A s, A \cap B=\{(4,5)\} \neq \phi$

So, A and B are not exclusive events.

HINT:

$n((\mathrm{~A} \cup \mathrm{~B}) \cap \mathrm{C}))=n(\mathrm{~A} \cap \mathrm{C})+n(\mathrm{~B} \cap \mathrm{C})-n(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})$
15. Option (4) is correct.

Given $y(x)=x^{x}, x>0$
Taking \ln both sides,
$\Rightarrow \ln y=x \ln x$
In differentiating, we get
$\frac{1}{y} \times y^{\prime}=x \times \frac{1}{x}+\ln x$
$\Rightarrow y^{\prime}=y[1+\ln x]=x^{x}[1+\ln x]$
Put $x=2$,
$\Rightarrow y^{\prime}(2)=2^{2}[1+\ln 2]$
$=4[1+\ln 2]$
Now, $y^{\prime \prime}=y^{\prime}(1+\ln x)+y\left[0+\frac{1}{x}\right]$
$=y^{\prime}[1+\ln x]+\frac{y}{x}$
$\therefore y^{\prime \prime}(2)=y^{\prime}(2)[1+\ln 2]+\frac{4}{2}$
$=4(1+\ln 2)^{2}+2=4\left[1+(\ln 2)^{2}+2 \ln 2\right]+2$
$=4+4(\ln 2)^{2}+8 \ln 2+2$
$=4(\ln 2)^{2}+8 \ln 2+6$
So, $y^{\prime \prime}(2)-2 y^{\prime}(2)=4(\ln 2)^{2}+3 \ln 2+6-8-\ln 2$
$=4(\ln 2)^{2}-2$
16. Option (1) is correct.

Let $x=\tan \theta ; 0<\theta<\frac{\pi}{4}$
$\therefore 2 \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$=2 \tan ^{-1}\left[\frac{1-\tan \theta}{1+\tan \theta}\right]=\cos ^{-1}\left[\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right]$
$=2 \tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\theta\right)\right)=\cos ^{-1}(\cos 2 \theta)$
$\Rightarrow 2\left(\frac{\pi}{4}-\theta\right)=2 \theta \Rightarrow \frac{\pi}{4}-\theta=\theta$
$\Rightarrow 2 \theta=\frac{\pi}{4} \Rightarrow \theta=\frac{\pi}{8} \Rightarrow x=\tan \frac{\pi}{8}$
$=\sqrt{2}-1<\frac{1}{2}$
17. Option (2) is correct.

Let $\mathrm{I}=\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{x+\frac{\pi}{4}}{2-\cos 2 x} d x$
$\mathrm{I}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left[\frac{-x+\frac{\pi}{4}}{2-\cos 2 x}\right] d x$

On adding, we get
$2 \mathrm{I}=\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{\pi}{2(2-\cos 2 x)} d x$
$\Rightarrow 2 \mathrm{I}=2 \int_{0}^{\frac{\pi}{4}} \frac{\pi d x}{2\left[2-\left(\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right)\right]}$
$\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \frac{\pi}{2}\left\{\frac{1+\tan ^{2} x}{2+2 \tan ^{2} x-1+\tan ^{2} x}\right\} d x$
$=\frac{\pi}{2} \int_{0}^{\frac{\pi}{4}}\left[\frac{1+\tan ^{2} x}{1+3 \tan ^{2} x}\right] d x$
Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
$\Rightarrow\left(1+\tan ^{2} x\right) d x=d x$
$\Rightarrow \mathrm{I}=\frac{\pi}{2} \int_{0}^{1} \frac{d t}{1+3 t^{2}}=\frac{\pi}{2}\left[\frac{\tan ^{-1} \sqrt{3} t}{\sqrt{3}}\right]_{0}^{1}$
$=\frac{\pi}{2}\left[\frac{\tan ^{-1} \sqrt{3}}{\sqrt{3}}-\frac{\tan ^{-1} 0}{\sqrt{3}}\right]$
$=\frac{\pi}{2}\left(\frac{\pi}{3 \sqrt{3}}-0\right)=\frac{\pi^{2}}{6 \sqrt{3}}$
18. Option (4) is correct.
$\therefore \Delta=\left|\begin{array}{lll}\alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{array}\right|=0$
$\Rightarrow \alpha\left(\alpha^{2}-1\right)-1(\alpha-1)+(1-\alpha)=0$
$\Rightarrow \alpha^{3}-\alpha-\alpha+1+1-\alpha=0$
$\Rightarrow \alpha^{3}-3 \alpha+2=0 \Rightarrow 2,1,-2$
(1) If $\alpha=2 \Rightarrow \Delta \neq 0$
\therefore Unique solution exist
(2) If $\alpha=-2, \beta=1$
$\Rightarrow \Delta=0$ and $\Delta_{n} \neq 0$
\therefore No solution exist
(3) If $\alpha=2, \beta=1$
$\therefore 2 x+y+z=1$
$x+2 y+z=1$
$x+y+2 z=1$
On adding, we get
$4(x+y+z)=3$
$\Rightarrow x+y+z=\frac{3}{4}$
(4) For $\alpha=1, \beta=1$, it has inifinite solutions.
19. Option (4) is correct.
$\bar{x}=\frac{\sum_{i=1}^{n} X_{i}}{7}=\frac{\frac{7}{2}[2 a+(7-1) d]}{7}$

$$
\begin{aligned}
& =\frac{2}{2}(a+3 d)=a+3 d=x_{4} \\
& \text { variance }=16 \\
& \therefore \sum_{i=1}^{7} \frac{\left(x_{i}-\bar{x}\right)^{2}}{7}=16=\sum_{i=1}^{7} \frac{\left(x_{i}-x_{4}\right)^{2}}{7}=16 \\
& \Rightarrow \frac{9 d^{2}+4 d^{2}+d^{2}+0+d^{2}+4 d^{2}+9 a^{2}}{7}=16 \\
& \Rightarrow 28 d^{2}=112 \Rightarrow d^{2}=4 \Rightarrow d=2 \\
& \therefore \bar{x}+x_{6}=x_{4}+x_{6} \\
& =9+3(2)+9+5(2)=9+6+9+10=34
\end{aligned}
$$

HINT:

Use the mean and variance to find the common difference.
Also, variance $=(S D)^{2}$
20. Option (4) is correct.

$$
\begin{aligned}
& \text { Since, }|1+a i|=|b+i| \\
& \Rightarrow a^{2}+1=b^{2}+1 \Rightarrow a^{2}=b^{2} \\
& \text { And }|a+i b-1|=|2 a+2 b i| \mid \\
& \Rightarrow a^{2}+1-2 a+b^{2}=4 a^{2}+4 b^{2} \\
& \Rightarrow 3 a^{2}+3 b^{2}+2 a-1=0 \\
& \Rightarrow 6 a^{2}+2 a-1 \\
& \Rightarrow a=\frac{-2 \pm \sqrt{4+24}}{12} \\
& =\frac{-2 \pm 2 \sqrt{7}}{12}=\frac{-1 \pm \sqrt{7}}{6} \\
& \therefore(a, b) \equiv\left(\frac{-1+\sqrt{7}}{6}, \frac{1-\sqrt{7}}{6}\right) \text { or }\left(\frac{-1-\sqrt{7}}{6}, \frac{1+\sqrt{7}}{6}\right) \\
& \Rightarrow[a]=0 \\
& \frac{1+[a]}{4 b}=0 \text { or } \frac{-(1+\sqrt{7})}{4}
\end{aligned}
$$

Section B

21. Correct answer is [6].

So, equation of plane is
$a(x-3)+b(y+2)+c(z-5)=0$
Now direction ratio of plane
$=<1+2,2-3,3-5>\equiv<3,-1,-2>$
\therefore Equation of plane is:
$3(x-3)-1(y+2)-2(z-5)=0$
$\Rightarrow 3 x-9-y-2-2 z+10=0$
$\Rightarrow 3 x-y-2 z=1$
On comparing, we get
$\alpha=3, \beta=-1, \gamma=-2$
$\therefore \alpha \beta \gamma=(3)(-1)(-2)=6$
22. Correct answer is [1].
$\mathrm{T}_{r+1}={ }^{22} \mathrm{C}_{r}\left((x)^{\frac{2}{3}}\right)^{22-r}\left(\frac{\alpha}{x^{3}}\right)^{r}$
$={ }^{22} C_{r} x^{\frac{2(22-r)}{3}-3 r} \alpha^{r}$
\because Term is independent of x
So, $\frac{2}{3}(22-r)-3 r=0$
$\Rightarrow 44-2 r-9 r=0 \Rightarrow 11 r=44 \Rightarrow r=4$
$\therefore \mathrm{T}_{5}={ }^{22} \mathrm{C}_{4} \alpha^{4}=7315$
$7315 \alpha^{4}=7315$
$\Rightarrow \alpha^{4}=1 \Rightarrow \alpha=1$
23. Correct answer is [16].
$y^{2}=8 x+4 y+4$
$\Rightarrow y^{2}+4-4 y=8 x+4+4$
$\Rightarrow(y-2)^{2}=8(x+1)$
$\therefore a=2, X=x+1, Y=y-2$
\Rightarrow Focus $(1,2)$
Now, equation of chord will be $(y-2)=m(x-1)$
Since, above line passes through $(3,0)$
$\therefore(0-2)=m(3-1)$
$\Rightarrow 2 m=-2 \Rightarrow m=-1$
\Rightarrow Equation of chord is $y-2=-x+1$
$\Rightarrow x+y=3$
Using (1)
$(3-x)^{2}=8 x+4(3-x)+4$
$\Rightarrow 9+x^{2}-6 x=8 x+12-4 x+4$
$\Rightarrow x^{2}-10 x-7=0$
$\Rightarrow x=\frac{10 \pm \sqrt{100+28}}{2}=\frac{10 \pm 8 \sqrt{2}}{2}$
$=5 \pm 4 \sqrt{2} \Rightarrow y=-2 \pm 4 \sqrt{2}$
\therefore Length of focal chord $=\sqrt{4+32+4+32}=16$

HINT:

X intercept means when chord will cut the x-axis
24. Correct answer is [4].

$$
\begin{aligned}
& \mathrm{T}_{6}=\mathrm{T}_{5+1}={ }^{m} \mathrm{C}_{5}\left(10-3^{x}\right)^{\frac{m-5}{2}} \times(3)^{x-2}=21 \\
& \because{ }^{m} \mathrm{C}_{1}{ }^{m} \mathrm{C}_{2}{ }^{m}{ }^{m} \mathrm{C}_{3} \overrightarrow{ } \text { A.P. } \\
& \Rightarrow{ }^{m} \mathrm{C}_{2}=\frac{{ }_{1}+{ }^{m} \mathrm{C}_{3}}{2} \\
& \Rightarrow \frac{2 m!}{2!(m-2)!}=m+\frac{m!}{3!(m-3)!} \\
& \Rightarrow m(m-1)=m+\frac{m(m-1)(m-2)}{6} \\
& \Rightarrow 6(m-1)=6+(m-1)(m-2) \\
& \Rightarrow 6 m-6=6+m^{2}-3 m+2 \\
& \Rightarrow m^{2}-9 m+14=0 \\
& \Rightarrow m^{2}-7 m-2 m+14=0 \\
& \Rightarrow m(m-7)-2(m-7)=0 \\
& \Rightarrow(m-2)(m-7)=0 \\
& m=2,7 \\
& \text { So } m=7 \\
& \therefore \mathrm{~T}_{6}={ }^{7} \mathrm{C}_{5}\left(10-3^{x}\right)^{\frac{7-5}{2}} \times 3^{x-2}=21 \\
& \Rightarrow 21\left(10-3^{x}\right) \times 3^{x-2}=21 \\
& \Rightarrow\left(10-3^{x}\right) 3^{x-2}=1 \Rightarrow 10.3^{x}-\left(3^{x}\right)^{2}=9 \\
& \Rightarrow\left(3^{x}\right)^{2}-10.3^{x}+9=0
\end{aligned}
$$

$m=2$ (rejected)

Let $3^{x}=t$
$\Rightarrow t^{2}-10 t+8=0 \Rightarrow(t-9)(t-1)=0$
$\Rightarrow t=1,9$
So, $3^{x}=1=3^{0}, 3^{x}=9=3^{2}$
$\Rightarrow x=0,2$
So, required value $=0+4=4$
25. Correct answer is [10].

$\therefore \mathrm{C} \equiv\left(\frac{2 k-3}{k+1}, \frac{4 k-6}{k+1}, \frac{-3 k+1}{k+1}\right)$
\because The above point lies on $8 x+y+2 z=0$
$\Rightarrow 8\left(\frac{2 k-3}{k+1}\right)+\left(\frac{4 k-6}{k+1}\right)+2\left(\frac{-3 k+1}{k+1}\right)=0$
$\Rightarrow 16 k-24+4 k-6-6 k+2=0$
$\Rightarrow 14 k=28 \Rightarrow k=2$
So, $C \equiv\left(\frac{1}{3}, \frac{2}{3}, \frac{-5}{3}\right)$
Now given line :
$\frac{x-1}{-1}=\frac{y+4}{2}=\frac{z+2}{3}=t$
$\Rightarrow x=1-t, y=2 t-4, z=3 t-2$
For the condition of perpendicularity

$$
\begin{aligned}
& (-1)\left(1-t-\frac{1}{3}\right)+(2)\left(2 t-4-\frac{2}{3}\right)+(3)\left(3 t-2+\frac{5}{3}\right)=0 \\
& \Rightarrow t-\frac{2}{3}+4 t-\frac{28}{3}+9 t-1=0 \\
& \Rightarrow 14 t=11 \Rightarrow t=\frac{11}{14} \\
& \therefore \overline{\mathrm{CD}}=\left\langle\frac{-5}{42}, \frac{-130}{42}, \frac{85}{42}\right\rangle \\
& \therefore|a+b+c|=|-1-26+17|=10
\end{aligned}
$$

HINT:

Use section formula to find the point which lies on the line joining the point $A \& B$.
26. Correct answer is [39].

Given ellipse is :
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
\because Directric $=8$
$\Rightarrow \frac{a}{e}=8 \& a e=8$
$\Rightarrow 8 e=\frac{2}{e} \Rightarrow e^{2}=\frac{1}{4} \Rightarrow e=\frac{1}{2} \Rightarrow a=4$
Also, $b^{2}=a^{2}\left(1-e^{2}\right)$
$=16\left(1-\frac{1}{4}\right)=12$
$\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 \Rightarrow \frac{x \cos \theta}{4}+\frac{y \sin \theta}{2 \sqrt{3}}=1$
$\therefore \sin \theta=\frac{1}{2} \Rightarrow \theta=30^{\circ}$
Hence, $\mathrm{P} \equiv(2 \sqrt{3}, \sqrt{3}) \& \theta \equiv\left(\frac{8}{\sqrt{3}}, 0\right)$
$(\mathrm{PQ})^{2}=\left(\frac{8}{\sqrt{3}}-2 \sqrt{3}\right)^{2}+(0-\sqrt{3})^{2}$
$=\left(\frac{2}{\sqrt{3}}\right)^{2}+3=\frac{4}{3}+3=\frac{13}{3}$
$\therefore(3 \mathrm{PQ})^{2}=9 \times \frac{13}{3}=39$
27. Correct answer is [81].

Case I: $4 \rightarrow 6$ times
No. of ways $=1$
Case II: $4 \rightarrow 5$ times
No. of ways $=\frac{5!}{3!}=20$
Case III: $4 \rightarrow 3$ times
$5 \rightarrow 3$ times
No. of ways $=\frac{5!}{2!3!}=10$
Case IV: $4 \rightarrow 3$ times
$9 \rightarrow 3$ times
No. of ways $=\frac{5!}{2!3!}=10$
Case V: $4 \rightarrow 2$ times
$5 \rightarrow 2$ times
$9 \rightarrow 2$ times
No. of ways $=\frac{5!}{2!2!}=30$
Case VI: $4 \rightarrow 1$ time
$5 \rightarrow 1$ time
$9 \rightarrow 4$ times
No. of ways $=\frac{5!}{4!}=5$
Case VI: $4 \rightarrow 1$ time
$5 \rightarrow 1$ time
$9 \rightarrow 1$ time
No. of ways $=\frac{5!}{4!}=5$
\therefore Total no of ways $=1+20+10+10+30+5+5$
$=81$
28. Correct answer is [105]

Required no. of solution $={ }^{15} \mathrm{C}_{2}$

$$
=\frac{15!}{2!13!}=\frac{15 \times 14}{2}=105
$$

29. Correct answer is [321].
A.P. $\rightarrow 3,7,11,15, \ldots ., 399$

Common differrence $\left(d_{1}\right)=7-3=4$
A.P. $\rightarrow 2,5,8,11, \ldots ., 359$

Common difference $\left(d_{2}\right)=5-2=3$
A.P. $\rightarrow 2,7,12,17, \ldots ., 197$

Common difference $\left(d_{3}\right)=7-2=5$
Now, $\operatorname{LCM}(4,3,5)=60$
\therefore Common terms are $47,107,167$
\therefore Required sum $=47+107+167=321$
30. Correct answer is [13].

Let

$$
\begin{aligned}
& \mathrm{I}=\int_{0}^{\pi} \frac{5^{\cos x}\left(1+\cos x \cos 3 x+\cos ^{2} x+\cos ^{3} x \cos 3 x\right)}{1+5^{\cos x}} d x \\
& \Rightarrow \mathrm{I}=\int_{0}^{\pi} \frac{5^{-\cos x}\left(1+\cos x \cos 3 x+\cos ^{2} x+\cos ^{3} x \cos 3 x\right) d x}{1+5^{-\cos x}} \\
& \Rightarrow 2 \mathrm{I}=\int_{0}^{\pi}\left[1+\cos x \cos 3 x+\cos ^{2} x+\cos ^{3} x \cos 3 x\right] d x \\
& \Rightarrow \mathrm{I}=\int_{0}^{\pi}\left(1+\cos x \cos 3 x+\cos ^{2} x+\cos ^{3} x \cos 3 x\right) d x
\end{aligned}
$$

$$
=\int_{0}^{\frac{\pi}{2}}\left[1+\frac{1}{2}(\cos 4 x+\cos 2 x)+\frac{1}{2}(\cos 2 x+1)\right.
$$

$$
\left.+\frac{1}{4}(\cos 3 x+3 \cos x) \cos 3 x\right] d x
$$

$$
=\int_{0}^{\frac{\pi}{2}} 1+\frac{1}{2}(\cos 4 x+\cos 2 x)+\frac{1}{2}(\cos 2 x+1)
$$

$$
+\frac{1}{4}\left[\frac{1}{2}(1+\cos 6 x)+\frac{3}{2}(\cos 4 x+\cos 2 x)\right] d x
$$

$$
=\int_{0}^{\frac{\pi}{2}}\left[\cos 4 x\left(\frac{1}{2}+\frac{3}{8}\right)+\cos 2 x\left(\frac{1}{2}+\frac{1}{2}+\frac{3}{8}\right)\right.
$$

$$
\left.+\cos 6 x\left(\frac{1}{8}\right)+\left(\frac{1}{2}+1+\frac{1}{8}\right)\right] d x
$$

$$
=\int_{0}^{\frac{\pi}{2}}\left[\frac{7}{8} \cos 4 x+\frac{11}{8} \cos 2 x+\frac{1}{8} \cos 6 x+\frac{13}{8}\right] d x
$$

$$
=\left[\frac{7}{8} \times \frac{\sin 4 x}{4}+\frac{11}{8} \times \frac{\sin 2 x}{2}+\frac{1}{8} \times \frac{\sin 6 x}{6}+\frac{13 x}{8}\right]_{0}^{\frac{\pi}{2}}
$$

$$
=\frac{7}{32}[(\sin \theta \pi-\sin \theta)]+\frac{11}{16}[\sin \pi-\sin \theta]
$$

$$
+\frac{1}{48}[\sin 3 \pi-\sin 0]+\frac{13}{8}\left[\frac{\pi-0}{2}\right]
$$

$=\frac{13 \pi}{6} \Rightarrow k=13$

