## JEE (Main) MATHEMATICS SOLVED PAPER

## 2023 <br> $10^{\text {th }}$ April Shift 1

## Section A

Q.1. An arc $P Q$ of a circle subtends a right angle at its centre $O$. The mid point of the arc $P Q$ is $R$. $\overrightarrow{\mathrm{OP}}=\vec{u}, \overrightarrow{\mathrm{OR}}=\vec{v}$ and $\overrightarrow{\mathrm{OQ}}=\alpha \vec{u}+\beta \vec{v}$, then $\alpha, \beta^{2}$ are the roots of the equation
(1) $3 x^{2}-2 x-1=0$
(2) $3 x^{2}+2 x-1=0$
(3) $x^{2}-x-2=0$
(4) $x^{2}+x-2=0$
Q. 2. A square piece of tin of side 30 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. If the volume of the box is maximum, then its surface area (in $\mathrm{cm}^{2}$ ) is equal to :
(1) 800
(2) 1025
(3) 900
(4) 675
Q.3. Let $O$ be the origin and the position vector of the point P be $-\hat{i}-2 \hat{j}+3 \hat{k}$. If the position vectors of the $\mathrm{A}, \mathrm{B}$ and C are $2 \hat{i}+\hat{j}-3 \hat{k},-2 \hat{i}+4 \hat{j}-2 \hat{k}$ and $-4 \hat{i}+2 \hat{j}-\hat{k}$ respectively, then the projection of the vector $\overrightarrow{\mathrm{OP}}$ on a vector perpendicular to the vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ is :
(1) $\frac{10}{3}$
(2) $\frac{8}{3}$
(3) $\frac{7}{3}$
(4) 3
Q.4. If $A$ is a $3 \times 3$ matrix and $|A|=2$, then $\mid 3 \operatorname{adj}(\mid 3 A$ $\left.\mid A^{2}\right) \mid$ is equal to :
(1) $3^{12} \cdot 6^{10}$
(2) $3^{11} \cdot 6^{10}$
(3) $3^{12} \cdot 6^{11}$
(4) $3^{10} .6^{11}$
Q. 5. Let two vertices of a triangle $A B C$ be $(2,4,6)$ and $(0,-2,-5)$, and its centroid be $(2,1,-1)$. If the image of the third vertex in the plane $x+2 y+4 z$ $=11$ is $(\alpha, \beta, \gamma)$, then $\alpha \beta+\beta \gamma+\gamma \alpha$ is equal to :
(1) 76
(2) 74
(3) 70
(4) 72
Q.6. The negation of the statement:
$(p \vee q) \wedge(q \vee(\sim r))$ is
(1) $((\sim p) \vee r)) \wedge(\sim q)$
(2) $((\sim p) \vee(\sim q)) \wedge(\sim r)$
(3) $((\sim p) \vee(\sim q)) \vee(\sim r)$
(4) $(p \vee r) \wedge(\sim q)$
Q. 7. The shortest distance between the lines $\frac{x+2}{1}=\frac{y}{-2}=\frac{z-5}{2}$ and $\frac{x-4}{1}=\frac{y-1}{2}=\frac{z+3}{0}$ is:
(1) 8
(2) 7
(3) 6
(4) 9
Q. 8. If the coefficient of $x^{7}$ in $\left(a x-\frac{1}{b x^{2}}\right)^{13}$ and the coefficient of $x^{-5}$ in $\left(a x+\frac{1}{b x^{2}}\right)^{13}$ are equal, then $a^{4} b^{4}$ is equal to :
(1) 22
(2) 44
(3) 11
(4) 33
Q.9. A line segment $A B$ of length $\lambda$ moves such that the points $A$ and $B$ remain on the periphery of a circle of radius $\lambda$. Then the locus of the point, that divides the line segment $A B$ in the ratio $2: 3$, is a circle of radius :
(1) $\frac{2}{3} \lambda$
(2) $\frac{\sqrt{19}}{7} \lambda$
(3) $\frac{3}{5} \lambda$
(4) $\frac{\sqrt{19}}{5} \lambda$
Q. 10. For the system of linear equations
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$,
which of the following is NOT correct ?
(1) The system in inconsistent for $\alpha=-5$ and $\beta$ $=8$
(2) The system has infinitely many solutions for $\alpha=-6$ and $\beta=9$
(3) The system has a unique solution for $\alpha \neq-5$ and $\beta=8$
(4) The system has infinitely many solutions for $\alpha=-5$ and $\beta=9$
Q. 11. Let the first term $a$ and the common ratio $r$ of a geometric progression be positive integers. If the sum of squares of its first three is 33033 , then the sum of these terms is equal to :
(1) 210
(2) 220
(3) 231
(4) 241
Q. 12. Let $P$ be the point of intersection of the line $\frac{x+3}{3}=\frac{y+2}{1}=\frac{1-z}{2}$ and the plane $x+y+z=$
2. If the distance of the point $P$ from the plane $3 x$ $-4 y+12 z=32$ is $q$, then $q$ and $2 q$ are the roots of the equation :
(1) $x^{2}+18 x-72=0$
(2) $x^{2}+18 x+72=0$
(3) $x^{2}-18 x-72=0$
(4) $x^{2}-18 x+72=0$
Q. 13. Let $f$ be a differentiable function such that $x^{2} f(x)$ $-x=4 \int_{0}^{x} t f(t) d t, f(1)=\frac{2}{3}$. Then $18 f(3)$ is equal to:
(1) 180
(2) 150
(3) 210
(4) 160
Q. 14. Let N denote the sum of the numbers obtained when two dice are rolled. If the probability that $2^{\mathrm{N}}<\mathrm{N}!$ is $\frac{m}{n}$. where $m$ and $n$ are coprime, then $4 m-3 n$ equal to :
(1) 12
(2) 8
(3) 10
(4) 6
Q. 15. If $\mathrm{I}(x)=\int e^{\sin ^{2} x}(\cos x \sin 2 x-\sin x) d x$ and $\mathrm{I}(0)=$ 1 , then $\mathrm{I}\left(\frac{\pi}{3}\right)$ is equal to:
(1) $e^{\frac{3}{4}}$
(2) $-e^{\frac{3}{4}}$
(3) $\frac{1}{2} e^{\frac{3}{4}}$
(4) $-\frac{1}{2} e^{\frac{3}{4}}$
Q. 16. $96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$
(1) 4
(2) 2
(3) 3
(4) 1
Q.17. Let the complex number $z=x+i y$ be such that $\frac{2 z-3 i}{2 z+i}$ is purely imaginary. If $x+y^{2}=0$, then $y^{4}$ $+y^{2}-y$ is equal to:
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{4}{3}$
(4) $\frac{3}{4}$
Q. 18. If $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _{e}(123)}{x \log _{e}(1234)-\left(\tan 1^{\circ}\right)}, x>0$ then the least value of $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ is:
(1) 2
(2) 4
(3) 8
(4) 0
Q. 19. The slope of tangent at any point $(x, y)$ on a curve $y=y(x)$ is $\frac{x^{2}+y^{2}}{2 x y} \cdot x>0$. If $y(2)=0$, then a value of $y(8)$ is :
(1) $4 \sqrt{3}$
(2) $-4 \sqrt{2}$
(3) $-2 \sqrt{3}$
(4) $2 \sqrt{3}$
Q. 20. Let the ellipse $\mathrm{E}: x^{2}+9 y^{2}=9$ intersect the positive $x$-and $y$-axis at the points A and B respectively. Let the major axis of E be a diameter of the circle $C$. Let the line passing through A and B meet the circle $C$ at the point $P$. If the area of the triangle with vertices $\mathrm{A}, \mathrm{P}$ and the origin O is $\frac{m}{n}$, where $m$ and $n$ are coprime, then $m-n$ is equal to :
(1) 16
(2) 15
(3) 18
(4) 17

## Section B

Q. 21. Some couples participated in a mixed doubles badminton tournament. If the number of matches
played, so that no couple in a match, is 840 , then the total numbers of persons, who participated in the tournament, is $\qquad$ .
Q. 22. The number of elements in the set $\left\{n \in \mathrm{Z}: \mid n^{2}-\right.$ $10 n+19 \mid<6\}$ is $\qquad$ -.
Q.23. The number of permutations of the digits $1,2,3$, ...., 7 without repetition, which neither contain the string 153 nor the string 2467 , is $\qquad$ .
Q. 24. Let $f:(-2,2) \rightarrow R$ be defined by
$f(x)=\left\{\begin{array}{cc}x[x], & -2<x<0 \\ (x-1)[x], & 0 \leq x<2\end{array}\right.$
where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number of points in $(-2,2)$ at which $y=|f(x)|$ is not continuous and not differentiable, then $m+n$ is equal to $\qquad$ -.
Q.25. Let a common tangent to the curves $y^{2}=4 x$ and $(x-4)^{2}+y^{2}=16$ touch the curves at the points $P$ and Q . Then (PQ) ${ }^{2}$ is equal to $\qquad$ :
Q. 26. If the mean of the frequency distribution

| Class | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 2 | 3 | $x$ | 5 | 4 |

is 28 , then its variance is $\qquad$ -.
Q. 27. The coefficient of $x^{7}$ in $\left(\overline{-x+2} x^{3}\right)^{10}$ is $\qquad$ .
Q. 28. Let $y=p(x)$ be the parabola passing through the points $(-1,0),(0,1)$ and $(1,0)$. If the area of the region $\left\{(x, y):(x+1)^{2}+(y-1)^{2} \leq p(x)\right\}$ is A , then $12(\pi-4 \mathrm{~A})$ is equal to $\qquad$ _:
Q.29. Let $a, b, c$ be three distinct positive real numbers such that $(2 a)^{\log _{e} a}=(b c)^{\log _{e} b}$ and $b^{\log _{e} 2}=a^{\log _{e} c}$. Then $6 a+5 b c$ is equal to $\qquad$ -.
Q.30. The sum of all those terms, of the arithmetic progression $3,8,13, \ldots .373$, which are not divisible by 3 , is equal to $\qquad$ .

Answer Key

| Q. No. | Answer | Topic name |  |
| :---: | :---: | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{( 3 )}$ | Operation on vectors | Chapter name |
| $\mathbf{2}$ | $\mathbf{( 1 )}$ | Maxima and minima | Application of derivatives |
| $\mathbf{3}$ | $\mathbf{( 4 )}$ | Projection of a vector | Vector |
| $\mathbf{4}$ | $\mathbf{( 2 )}$ | Adjoint of a matrix | Matrix |
| $\mathbf{5}$ | $\mathbf{( 2 )}$ | Point and plane | 3D |
| $\mathbf{6}$ | $\mathbf{( 1 )}$ | Compound statement | Mathematical reasoning |
| $\mathbf{7}$ | $\mathbf{( 4 )}$ | Shortest distance b/w lines | 3D |
| $\mathbf{8}$ | $\mathbf{( 1 )}$ | General therm | Binomial theorem |
| $\mathbf{9}$ | $\mathbf{( 4 )}$ | Cosine rule | Properties of triangle |
| $\mathbf{1 0}$ | $\mathbf{( 4 )}$ | Elementary transformation | Matrix |
| $\mathbf{1 1}$ | $\mathbf{( 3 )}$ | Geometric progression | Sequence and series |
| $\mathbf{1 2}$ | $\mathbf{( 4 )}$ | Point and plane | 3D |
| $\mathbf{1 3}$ | $\mathbf{( 4 )}$ | Linear differential equation | Differential equation |
| $\mathbf{1 4}$ | $\mathbf{( 2 )}$ | Binomial distribution | Probability |


| Q. No. | Answer | Topic name | Chapter name |
| :---: | :---: | :---: | :---: |
| 15 | (3) | Integration by parts | Indefinite integral |
| 16 | (3) | Cosine series | Trigonometry |
| 17 | (4) | Locus related problem | Complex number |
| 18 | (2) | Relation b/w A.M. \& G.M. | Sequence and series |
| 19 | (1) | Homogeneous differential equation | Differential equation |
| 20 | (4) | Circle and ellipse | Ellipse |
| 21 | [16] | Combination | Permutation and combination |
| 22 | [9] | Modulus | Function |
| 23 | [4898] | Permutation | Permutation and combination |
| 24 | [4] | Differentiability | Continuity and differentiability |
| 25 | [32] | Circle and parabola | Parabola |
| 26 | [151] | Mean and variance | Statistics |
| 27 | [960] | Multinomial theorem | Binomial theorem |
| 28 | [16] | Area b/w two curves | Area under curves |
| 29 | [11] | Logarithmic indices | Basic mathematics |
| 30 | [9525] | Arithmetic progression | Sequence and series |

## Solutions

## Section A

1. Option (3) is correct. Since arc PQ subtends right angle at center, So it can be taken as
$\overrightarrow{\mathrm{OP}}=\vec{u}=\hat{i}$ and
$\overrightarrow{\mathrm{OQ}}=\alpha \vec{u}+\beta \vec{v}=\hat{j}$
Also $R$ is mid point of
 $\operatorname{arc} P Q$
So $\overrightarrow{\mathrm{OR}}=\vec{v}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j} \Rightarrow \vec{v}=\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
$\Rightarrow \sqrt{2} \vec{v}=\vec{u}+\alpha \vec{u}+\beta \vec{v}$
$\Rightarrow \sqrt{2} \vec{v}=(1+\alpha) \vec{u}+\beta \vec{v}$
On comparing, we get
$1+\alpha=0$ and $\beta=\sqrt{2}$
$\Rightarrow \alpha=-1$ and $\beta^{2}=2$
so $\alpha$ and $\beta^{2}$ are the roots of
$x^{2}-\left(\alpha+\beta^{2}\right) x+\alpha \times \beta^{2}=0$
$\Rightarrow x^{2}-x-2=0$
2. Option (1) is correct.

Let the square of $x \mathrm{~cm}$ length to be cut off for the maximum volume.
So, the length and breadth of the box will be (30-2x) and height will be $x \mathrm{~cm}$.
If $V$ be the volume of the box, So

$\mathrm{V}=l \times b \times h$
$\Rightarrow \mathrm{V}=x(30-2 x)^{2}$
$\frac{d \mathrm{~V}}{d x}=x \times 2(30-2 x)(-2)+(30-2 x)^{2}$
$=(30-2 x)[-4 x+30-2 x]$
$\frac{d \mathrm{~V}}{d x}=(30-2 x)(30-6 x)$
For maxima or minima, putting $\frac{d \mathrm{~V}}{d x}=0$
$\Rightarrow x=15$ or $x=5$
If $x=15$ then $\mathrm{V}=0$ which is not possible and if $x=5$, then
$\frac{d^{2} \mathrm{~V}}{d x^{2}}=(30-2 x)(-6)+(30-6 x)(-2)$
$=-180+12 x-60+12 x=24 x-240$
$\left.\frac{d^{2} \mathrm{~V}}{d x^{2}}\right|_{x=5}=120-240=-120<0$
$\Rightarrow \mathrm{V}$ is maximum, when $x$ is 5
$\Rightarrow$ therefore $l=b=30-2 x=30-2 \times 5=20$
and $h=5$
$\Rightarrow$ Surface area (without top) $=2(l b+b h+h l)-l b$
$=2(20 \times 20+20 \times 5+5 \times 20)-20 \times 20=800 \mathrm{~cm}^{2}$
3. Option (4) is correct.

Given that $\overrightarrow{\mathrm{OP}}=-\hat{i}-2 \hat{j}+3 \hat{k}, \overrightarrow{\mathrm{OA}}=-2 \hat{i}+\hat{j}-3 \hat{k}$
$\overrightarrow{\mathrm{OB}}=2 \hat{i}+4 \hat{j}-2 \hat{k}$, and $\overrightarrow{\mathrm{OC}}=-4 \hat{i}+2 \hat{j}-\hat{k}$
Now $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=4 \hat{i}+3 \hat{j}+\hat{k}$
and $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=-2 \hat{i}+\hat{j}+2 \hat{k}$
and $\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & k \\ 4 & 3 & 1 \\ -2 & 1 & 2\end{array}\right|=5 \hat{i}-10 \hat{j}+10 \hat{k}=\vec{a}$ (say)
Since $\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\vec{a}$, which is perpendicular to both $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ therefore, projection of $\overrightarrow{\mathrm{OP}}$ on $\vec{a}$ is given by $\frac{\overrightarrow{\mathrm{OP}} \cdot \vec{a}}{|\vec{a}|}$
$\frac{\overrightarrow{\mathrm{OP}} \cdot \vec{a}}{|\vec{a}|}=\frac{(-\hat{i}-2 \hat{j}+3 \hat{k}) \cdot(5 \hat{i}-10 \hat{j}+10 \hat{k})}{\sqrt{(5)^{2}+(-10)^{2}+(10)^{2}}}$
$=\frac{-5+20+30}{\sqrt{25+100+100}}=\frac{45}{15}=3$
4. Option (2) is correct.

Given that $A$ is a matrix of order $3 \times 3$ and $|A|=2$

$$
\begin{aligned}
& \Rightarrow|3 \mathrm{~A}|=3^{3}|\mathrm{~A}| \\
& =3^{3} \times 2
\end{aligned}
$$

Now adj $\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)=\operatorname{adj}\left(3^{3} \times 2 \mathrm{~A}^{2}\right)$
$=\left(3^{3} \times 2\right)^{3-1}(\operatorname{adj} A)^{2}$
$=3^{6} \times 2^{2}(\operatorname{adj} A)^{2}$
and $\left|3 \operatorname{adj}\left(|3 \mathrm{~A}| \mathrm{A}^{2}\right)\right|=\left|3 \times 3^{6} \times 2^{2}(\operatorname{adj} \mathrm{~A})^{2}\right|$
$=\left(3^{7} \times 2^{2}\right)^{3}|\operatorname{adj} A|^{2}$
$=\left(3^{7} \times 2^{2}\right)^{3}\left(|\mathrm{~A}|^{2}\right)^{2}$
$=3^{21} \times 2^{6} \times\left(2^{2}\right)^{2}$
$=3^{11} \times 6^{10}$
5. Option (2) is correct.

Given that $A(2,4,6), B(0,-2,-5)$ and centroid $G(2,1$, -1)
Let $\mathrm{C}\left(x_{1}, y_{1}, z_{1}\right)$
Since $G$ is centroid of $\triangle A B C$
therefore

$$
\begin{aligned}
& (2,1,-1) \equiv\left(\frac{2+0+x_{1}}{3}, \frac{4-2+y_{1}}{3}, \frac{6-5+z_{1}}{3}\right) \\
& \Rightarrow \frac{2+x_{1}}{3}=2, \frac{2+y_{1}}{3}=1, \frac{1+z_{1}}{3}=-1 \\
& \Rightarrow x_{1}=4, y_{1}=1, z_{1}=-4 \\
& \Rightarrow C(4,1,-4)
\end{aligned}
$$

Also given that the image of $C(4,1,-4)$ in the plane $x+2 y+4 z=11$ is $(\alpha, \beta, \gamma)$
$\Rightarrow \frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=\frac{-2(4+2 \times 1+4(-4)-11)}{1^{2}+2^{2}+4^{2}}$
$=\frac{-2(-21)}{21}=2$
$\Rightarrow \alpha=6, \beta=5, \gamma=4$
and $\alpha \beta+\beta \gamma+\gamma \alpha$
$=6 \times 5+5 \times 4+4 \times 6$
$=30+20+24=74$
6. Option (1) is correct.

Negation of $(p \vee q)(q \vee(\sim r))$
$=\sim[(p \vee q) \wedge(q \vee(\sim r))]$
$=\sim(p \vee q) \vee(\sim(q \vee(\sim r))$
$=(\sim p \wedge \sim q) \vee(\sim q \wedge r)$
$=(\sim p \wedge \sim q) \vee(r \wedge \sim q)$
$=(\sim p \vee r) \wedge(\sim q)$
7. Option (4) is correct.

By using the formula of shortest distance


We get
$d=\frac{\left|\begin{array}{ccc}4+2 & 1-0 & -3-5 \\ 1 & -2 & 2 \\ 1 & 2 & 0\end{array}\right|}{\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 1 & 2 & 0\end{array}\right|}=\frac{\left|\begin{array}{ccc}6 & 1 & -8 \\ 1 & -2 & 2 \\ 1 & 2 & 0\end{array}\right|}{\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 1 & 2 & 0\end{array}\right|}$
$\Rightarrow d=\frac{|6(0-4)-1(0-2)-8(2+2)|}{|\hat{i}(0-4)-\hat{j}(0-2)+\hat{k}(2+2)|}$
$=\frac{|-54|}{\sqrt{16+4+16}}=\frac{|-54|}{6}$
$\Rightarrow d=\frac{54}{6}=9$
8. Option (1) is correct.

In the expansion of $\left(a x-\frac{1}{b x^{2}}\right)^{13}$
$T_{r+1}={ }^{13} C_{r}(a x)^{13-r}\left(-\frac{1}{b x^{2}}\right)^{r}$
$T_{r+1}={ }^{13} C_{r}(a)^{13-r}\left(-\frac{1}{b}\right)^{r}(x)^{13-3 r}$
for the coefficient of $x^{7}$, putting $13-3 r=7$
$\Rightarrow r=2$
So $T_{2+1}={ }^{13} C_{2}(a)^{13-2}\left(-\frac{1}{b}\right)^{2}(x)^{13-6}$
$={ }^{13} C_{2}(a)^{11} \times \frac{1}{b^{2}} x^{7}$
$\Rightarrow$ Coefficient of $x^{7}$ in $\left(a x-\frac{1}{b x^{2}}\right)^{13}$ is ${ }^{13} C_{2} \frac{a^{11}}{b^{2}}$
Similarly, in the expansion of $\left(a x+\frac{1}{b x^{2}}\right)^{13}$
We have
$\mathrm{T}_{r+1}={ }^{13} C_{r}(a x)^{13-r}\left(\frac{1}{b x^{2}}\right)^{r}$
$={ }^{13} C_{r}(a)^{13-r}\left(\frac{1}{b}\right)^{r} x^{13-3 r}$
for the coefficient of $x^{-5}$, putting $13-3 r=-5$
$\Rightarrow r=6$
So $T_{6+1}={ }^{13} C_{6}(a)^{7}\left(\frac{1}{b^{6}}\right) x^{-5}$
$\Rightarrow$ Coefficient of $x^{-5}$ in $\left(a x+\frac{1}{b x^{2}}\right)^{13}$ is ${ }^{13} C_{6} \frac{a^{7}}{b^{6}}$

Now according to the question
${ }^{13} C_{2} \frac{a^{11}}{b^{2}}={ }^{13} C_{6} \frac{a^{7}}{b^{6}}$
$\Rightarrow a^{4} b^{4}=\frac{{ }^{13} C_{6}}{{ }^{13} C_{2}}=\frac{13!2!11!}{6!7!13!}=22$
9. Option (4) is correct.

Given that length of segment $A B$ is $\lambda$ and radius of circle is also $\lambda$. Therefore $\triangle \mathrm{OAB}$ must be equilateral.
Also in P divides AB is $2: 3$ then
$\mathrm{AP}=\frac{2 \lambda}{5}$


Now in $\triangle \mathrm{OAP}$,
by using cosine rule, we get
$\cos \mathrm{A}=\frac{\mathrm{OA}^{2}+\mathrm{AP}^{2}-\mathrm{OP}^{2}}{2 \times \mathrm{OA} \times \mathrm{AP}}$
$\Rightarrow \cos 60^{\circ}=\frac{\lambda^{2}+\left(\frac{2 \lambda}{5}\right)^{2}-\mathrm{OP}^{2}}{2 \times \lambda \times \frac{2 \lambda}{5}}$
$\Rightarrow \frac{1}{2}=\frac{\lambda^{2}+\frac{4}{25} \lambda^{2}-\mathrm{OP}^{2}}{\frac{4}{5} \lambda^{2}}$
$\Rightarrow \frac{2}{5} \lambda^{2}=\frac{29}{25} \lambda^{2}-\mathrm{OP}^{2}$
$\Rightarrow \mathrm{OP}^{2}=\frac{19}{25} \lambda^{2} \quad$ or $\quad \mathrm{OP}=\frac{\sqrt{19}}{5} \lambda$
Hence, the locus of point P will be a circle of radius $\frac{\sqrt{19}}{5} \lambda$ units.
10. Option (4) is correct.

Since, Augmented matrix of given system of equation can be written as
[A : B] $=\left[\begin{array}{ccccc}2 & -1 & 3 & : & 5 \\ 3 & 2 & -1 & : & 7 \\ 4 & 5 & \alpha & : & \beta\end{array}\right]$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1} / 2$
$[A: B] \sim\left[\begin{array}{ccccc}1 & \frac{-1}{2} & \frac{3}{2} & : & \frac{5}{2} \\ 3 & 2 & -1 & : & 7 \\ 4 & 5 & \alpha & : & \beta\end{array}\right]$
Applying $R_{2} \rightarrow R_{2}-3 R_{1}$ and $R_{3} \rightarrow R_{2}-4 R_{1}$
$\Rightarrow[\mathrm{A}: \mathrm{B}] \sim\left[\begin{array}{ccccc}1 & \frac{-1}{2} & \frac{3}{2} & : & \frac{5}{2} \\ 0 & \frac{7}{2} & \frac{-11}{2} & : & \frac{-1}{2} \\ 0 & 7 & \alpha-6 & : & \beta-10\end{array}\right]$
Applying $R_{3} \rightarrow R_{3}-2 R_{2}$
$\Rightarrow[A: B] \sim\left[\begin{array}{ccccc}1 & \frac{-1}{2} & \frac{3}{2} & : & \frac{5}{2} \\ 0 & \frac{7}{2} & \frac{-11}{2} & : & \frac{-1}{2} \\ 0 & 0 & \alpha+5 & : & \beta-9\end{array}\right]$
So, the given system of equation have
(i) unique solution, if

Rank of $\mathrm{A}=\operatorname{Rank}$ of $[\mathrm{A}: \mathrm{B}]=3$
$\Rightarrow \alpha \neq-5$ and $\beta \in \mathrm{R}$
(ii) Infinite solution, if

Rank of $A=\operatorname{Rank}$ of [A:B] < 3 i.e., 2
$\Rightarrow \alpha=-5$ and $\beta=9$
(iii) Inconsistent, if

Rank of $\mathrm{A}<\operatorname{Rank}$ of [A: B]
$\Rightarrow \alpha=-5$ and $\beta \neq 9$
11. Option (3) is correct.

Let the 3 terms of G.P are $a, a r, a r^{2}$ then according to the question, we have
$(a)^{2}+(a r)^{2}+\left(a r^{2}\right)^{2}=33033$
$\Rightarrow a^{2}\left(1+r^{2}+r^{4}\right)=11^{2} \times(3 \times 7 \times 13)$
Since, $a$ and $r$ are positive integers, so by comparing
We have $a=11$ and $1+r^{2}+r^{4}=3 \times 7 \times 13$
$\Rightarrow r^{4}+r^{2}-272=0$
$\Rightarrow\left(r^{2}-16\right)\left(r^{2}+17\right)=0$
$\Rightarrow r^{2}=16$ or $r^{2}=-17$ (Not possible)
$\Rightarrow r=4 \quad(\because r$ is positive integer $)$
So, the numbers are $11,11 \times 4,11 \times 4^{2}$
or $11,44,176$
and sum of these numbers $=11+44+176=231$
12. Option (4) is correct.

To find point $P$, let
$\frac{x+3}{3}=\frac{y+2}{1}=\frac{1-z}{2}=k$ (say)
$\Rightarrow x=3 k-3, y=k-2, \mathrm{z}=1-2 k$
So $\mathrm{P}(3 k-3, k-2,1-2 k)$ lie on $x+y+z=2$
$\Rightarrow 3 k-3+k-2+1-2 k=2$
$\Rightarrow 2 k=6$
or $k=3$
So point P will be $\mathrm{P}(3 \times 3-3,3-2,1-2 \times 3)$
or P (6, 1, -5)
Also it is given that the distance of point $P(6,1,-5)$ from the plane $3 x-4 y+12 z=32$ is $q$

$$
\begin{aligned}
& \Rightarrow q=\frac{|3 \times 6-4 \times 1-12 \times 5-32|}{\sqrt{(3)^{2}+(-4)^{2}+(12)^{12}}} \\
& =\frac{|18-4-60-32|}{\sqrt{9+16+14} 4}=\frac{78}{13} \\
& \Rightarrow q=6 \text { and } 2 q=12
\end{aligned}
$$

So the required equation having roots $q$ and $2 q$ is $x^{2}-(q+2 q) x+q \times 2 q=0$
$\Rightarrow x^{2}-18 x+72=0$

## 13. Option (4) is correct.

$x^{2} f(x)-x=4 \int_{0}^{x} t f(t) d t$
Differentiating with respect to $x$, we get
$x^{2} f(x)+2 x f(x)-1=4 x f(x) \times 1-0$
$\Rightarrow x^{2} f(x)-2 x f(x)-1=0$
or $f^{\prime}(x)-\frac{2}{x} f(x)=\frac{1}{x^{2}}$
or $\frac{d y}{d x}-\frac{2}{x} y=\frac{1}{x^{2}}$
(as $y=f(x)$ and $\left.\frac{d y}{d x}=f^{\prime}(x)\right)$
which is a linear differential equation where
$\mathrm{P}=\frac{-2}{x}, \mathrm{Q}=\frac{1}{x^{2}}$
$\Rightarrow$ I.F. $=e^{\int P d x}=e^{\int \frac{-2}{x} d x}=e^{-2 \log x}=\frac{1}{x^{2}}$
So, the required solution is
$y \times$ I.F. $=\int Q \times$ I.F $d x+C$
or $y \times \frac{1}{x^{2}}=\int \frac{1}{x^{2}} \times \frac{1}{x^{2}} d x+C$
$\frac{y}{x^{2}}=\int \frac{1}{x^{4}} d x+C$
$\frac{y}{x^{2}}=-\frac{1}{3 x^{3}}+\mathrm{C}$
or $f(x)=-\frac{1}{3 x}+\mathrm{C} x^{2}$
but $f(1)=\frac{2}{3}$
$\Rightarrow \frac{2}{3}=-\frac{1}{3}+\mathrm{C} \times 1^{2} \Rightarrow \mathrm{C}=1$
so $f(x)=-\frac{1}{3 x}+x^{2}$
and $f(3)=-\frac{1}{9}+9=+\frac{80}{9}$
$\Rightarrow 18 f(3)=\frac{18 \times 80}{9}=160$

## 14. Option (2) is correct.

Since, we know that $2^{\mathrm{N}}<\mathrm{N}$ ! is satisfied only when N $\geq 4$
therefore, required probability can be written as-
$\mathrm{P}(\mathrm{N} \geq 4)=1$ - $\mathrm{P}(\mathrm{N}<4)$
But, it is given that N denotes the sum of numbers obtained when two dice are rolled,
So when $\mathrm{N}=1$ then it is not possible
When $\mathrm{N}=2$ then only the case is possible i.e., $(1,1)$
$\Rightarrow \mathrm{P}(\mathrm{N}=2)=\frac{1}{36}$
When $\mathrm{N}=3$, then two cases are possible i.e., $(1,2)$,
$(2,1)$
$\Rightarrow \mathrm{P}(\mathrm{N}=3)=\frac{2}{36}$
So $\mathrm{P}(\mathrm{N}<4)=\mathrm{P}(\mathrm{N}=1)+\mathrm{P}(\mathrm{N}=2)+\mathrm{P}(\mathrm{N}=3)$
$=0+\frac{1}{36}+\frac{2}{36}=\frac{3}{36}=\frac{1}{12}$
Now from equation (i), we have
$\mathrm{P}(\mathrm{N} \geq 4)=1-\mathrm{P}(\mathrm{N}<4)$
$=1-\frac{1}{12}$
$\mathrm{P}(\mathrm{N} \geq 4)=\frac{11}{12}=\frac{m}{n}$ (given)
$\Rightarrow m=11$ and $n=12$
and $4 m-3 n=4 \times 11-3 \times 12$
$=44-36=8$
15. Option (3) is correct.
$\mathrm{I}=\int e^{\sin ^{2} x}(\cos x \sin 2 x-\sin x) d x$
$\mathrm{I}=\int \underbrace{e_{\mathrm{I}}^{\sin ^{2} x} \sin 2 x}_{\mathrm{II}} \cos x d x-\int e^{\sin ^{2} x} \sin x d x$
$\mathrm{I}=\cos \times \int e^{\sin ^{2} x} \sin 2 x d x-\int((-\sin x)$.
$\left.\int e^{\sin ^{2} x} \sin 2 x d x\right) d x-\int e^{\sin ^{2} x} \sin x d x+\mathrm{C}$
Let $t=\sin ^{2} x$
$\Rightarrow d t=2 \sin x \cos x d x=\sin 2 x d x$
So $\mathrm{I}=\cos \int e^{t} d t+\int\left(\sin x \int e^{t} d t\right) d x-$
$\int e^{\sin ^{2} x} \sin x d x+\mathrm{C}$
$\Rightarrow \mathrm{I}=\cos e^{t}+\int \sin x e^{t} d x-\int e^{\sin ^{2} x} \sin x d x+\mathrm{C}$
$\Rightarrow \mathrm{I}=\cos e^{\sin ^{2} x}+\int \sin x e^{\sin ^{2} x} d x-\int e^{\sin ^{2} x} \sin d x+\mathrm{C}$
$\Rightarrow \mathrm{I}=\cos x \cdot e^{\sin ^{2} x}+\mathrm{C}$
but $\mathrm{I}(0)=1$
$\Rightarrow 1=\cos 0 \times e^{\sin ^{2} 0}+\mathrm{C}$
$\Rightarrow 1=1 \times e^{0}+\mathrm{C} \Rightarrow \mathrm{C}=0$
so $\mathrm{I}=\cos x . e^{\sin ^{2 x}}$
and $I\left(\frac{\pi}{3}\right)=\cos \frac{\pi}{3} e^{\sin ^{2\left(\frac{\pi}{3}\right)}}$
$\mathrm{I}\left(\frac{\pi}{3}\right)=\frac{1}{2} \times e^{\frac{3}{4}}$

## 16. Option (3) is correct.

Since, $\cos A \cdot \cos 2 A \cdot \cos 2^{2} A . \ldots . . \cos 2^{n-1} A=\frac{\sin \left(2^{n} A\right)}{2^{n} \sin A}$
therefore,
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$
$=96 \cos \frac{\pi}{33} \cos 2\left(\frac{\pi}{33}\right) \cos 2^{2}\left(\frac{\pi}{33}\right) \cos 2^{3}\left(\frac{\pi}{33}\right) \cos 2^{4}\left(\frac{\pi}{33}\right)$
$=96 \times \frac{\sin \left(2^{5}\left(\frac{\pi}{33}\right)\right)}{2^{5} \sin \left(\frac{\pi}{33}\right)}$
$=\frac{96 \sin \left(\frac{32 \pi}{33}\right)}{32 \sin \left(\frac{\pi}{33}\right)}$
$=\frac{96 \sin \left(\pi-\frac{\pi}{33}\right)}{32 \sin \left(\frac{\pi}{33}\right)}=\frac{3 \sin \left(\frac{\pi}{33}\right)}{\sin \left(\frac{\pi}{33}\right)}=3$
17. Option (4) is correct.

If $z=x+i y$, then

$$
\begin{aligned}
& \frac{2 z-3 i}{2 z+i}=\frac{2 x+2 i y-3 i}{2 x+2 i y+i} \\
& \frac{2 x+i(2 y+3)}{2 x+i(2 y+1)} \times \frac{2 x-i(2 y+1)}{2 x-i(2 y+1)} \\
& \frac{2 z-3 i}{2 z+i}=\left(\frac{4 x^{2}+(2 y-3)(2 y+1)}{4 x^{2}+(2 y+1)^{2}}\right)+ \\
& \quad i\left(\frac{2 x(2 y-3)-2 x(2 y+1)}{4 x^{2}+(2 y+1)^{2}}\right)
\end{aligned}
$$

Now $\frac{2 z-3 i}{2 z+i}$ is purely imaginary if
$\frac{4 x^{2}+(2 y-3)(2 y+1)}{4 x^{2}+(2 y+1)^{2}}=0$
$\Rightarrow 4 x^{2}+4 y^{2}-4 y-3=0$
but $x+y^{2}=0$ is given
so $x=-y^{2}$ and $x^{2}=y^{4}$
$\Rightarrow 4 y^{4}+4 y^{2}-4 y-3=0$
or $y^{4}+y^{2}-y=\frac{3}{4}$
18. Option (2) is correct.

Since, $\tan i, \log _{e} 123$ and $\log _{e} 1234$ are constants, so let
$a=\tan 1^{\circ}, b=\log _{e} 123$ and $c=\log _{e} 1234$
So $f(x)=\frac{\left(\tan 1^{\mathrm{o}}\right) x+\log _{e} 123}{x \log _{e}(1234)-\left(\tan 1^{\mathrm{O}}\right)}=\frac{a x+b}{c x-a}$
Now $f(f(x))=\frac{a\left(\frac{a x+b}{c x-a}\right)+b}{c\left(\frac{a x+b}{c x-a}\right)-a}=\frac{a^{2} x+a b+b c x-a b}{a c x+b c-a c x+a^{2}}$
$=\frac{x\left(a^{2}+b c\right)}{\left(a^{2}+b c\right)}=x$
and $f\left(f\left(\frac{4}{x}\right)\right)=\frac{4}{x}$
So using A.M. $\geq$ G.M.
$\frac{f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)}{2} \geq \sqrt{f(f(x)) \times f\left(f\left(\frac{4}{x}\right)\right)}$
$\Rightarrow f(f(x))+f\left(f\left(\frac{4}{x}\right)\right) \geq 2 \sqrt{x \times \frac{4}{x}}=4$
Hence least value of $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ is 4
19. Option (1) is correct.

Given that, slope of tangent at any point is $\frac{x^{2}+y^{2}}{2 x y}$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$
which is homogeneous differential eqn.,
so putting $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, we get
$v+x \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 x \times v x}=\frac{1+v^{2}}{2 v}$
$x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}-v=\frac{1+v^{2}-2 v^{2}}{2 v}$
or $\int \frac{2 v d v}{1-v^{2}}=\int \frac{d x}{x}$
$-\log \left(1-v^{2}\right)=\log x+\log C$
or $\frac{1}{1-v^{2}}=\mathrm{C} x$
or $\frac{x^{2}}{x^{2}-y^{2}}=\mathrm{C} x$
or $x=c\left(x^{2}-y^{2}\right)$
but, it is given that $y(2)=0$
$\Rightarrow 2=\mathrm{C}(4-0) \Rightarrow \mathrm{C}=\frac{1}{2}$
so $x=\frac{1}{2}\left(x^{2}-y^{2}\right)$ or $2 x=x^{2}-y^{2}$
or $y=\sqrt{x^{2}-2 x}$
Putting $x=8$
$y(8)=\sqrt{8^{2}-2 \times 8}=\sqrt{64-16}=\sqrt{48} \Rightarrow y(8)=4 \sqrt{3}$
20. Option (4) is correct.

Given that $x^{2}+9 y^{2}=9$
$\Rightarrow \frac{x^{2}}{3^{2}}+\frac{y^{2}}{1^{2}}=1$
which represent an ellipse whose major axis is 3 and minor axis is of length $t$.
So, the eqn. of circle is $x^{2}+y^{2}=3^{2}$
or $x^{2}+y^{2}=9$
and eqn. of line through $\mathrm{A}(3,0), \mathrm{B}(0,1)$ is $\frac{x}{3}+\frac{y}{1}=1$ or $x=3(1-y)$
Now to find point $\mathrm{P}\left(x_{1}, y_{1}\right)$, putting the value of $x=3(1-y)$ in eqn. (i), we get
$9(1-y)^{2}+y^{2}=9$
$9+9 y^{2}-18 y+y^{2}=9$
$\Rightarrow 10 y^{2}-18 y=0$

$\Rightarrow y=\frac{9}{5}$
$(\because y=0$ is not possible $)$
and $x=3(1-y)=3\left(1-\frac{9}{5}\right)=3\left(\frac{-4}{5}\right)$
$\Rightarrow x=\frac{-12}{5}$
So, $\mathrm{P}\left(x_{1}, y_{1}\right) \equiv \mathrm{P}\left(\frac{-12}{5}, \frac{9}{5}\right)$
Area of $\Delta \mathrm{OAP}=\frac{1}{2} \times$ Base $\times$ Height
$=\frac{1}{2} \times \mathrm{OA} \times \mathrm{PM}=\frac{1}{2} \times 3 \times \frac{9}{5}=\frac{27}{10}=\frac{m}{n}$
$\Rightarrow m=27$ and $n=10$
and $m-n=17$

## Section B

21. Correct answer is [16].

Let number of complex be $n$
So according to the question:
${ }^{n} C_{2} \times{ }^{n-2} C_{2} \times 2=840$
$\Rightarrow \frac{n(n-1)}{2} \times \frac{(n-2)(n-3)}{2} \times 2=840$
or $n(n-1)(n-2)(n-3)=840 \times 2=8 \times 7 \times 6 \times 5$
On comparing, we get $n=8$
and total number of persons $=2 n=16$
22. Correct answer is [9].

Given that $\left\{n \in Z:\left|n^{2}-10 n+19\right|<6\right\}$
$\Rightarrow\left|n^{2}-10 n+19\right|<6 \forall n \in Z$
or $-6<n^{2}-10 n+19<6$
$\Rightarrow n^{2}-10 n+19>-6$ and $n^{2}-10 n+19<6$
$\Rightarrow n^{2}-10 n+25>0$ and $n^{2}-10 n+13<0$
$\Rightarrow(n-5)^{2}>0$ and $n \in z$
where $\alpha, \beta$ are the roots of $n^{2}-10 n+13=0$
$\Rightarrow n=\frac{10 \pm \sqrt{100-52}}{2}=\frac{10 \pm 4 \sqrt{3}}{2}$
$\Rightarrow \alpha=5-2 \sqrt{3}$ and $\beta=5+2 \sqrt{3}$
$\Rightarrow n \in Z-\{5\}$ and $n \in(5-2 \sqrt{3}, 5+2 \sqrt{3})$
$\Rightarrow n \in \mathrm{Z}-\{5\}$ and $n \in(-1.52,8.46)$
$n \in\{-1,0,1,2, \ldots . ., 8\}$
So, common integers are : $-1,0,1,2,3,4,6,7,8$
$\Rightarrow$ Hence, no. of elements is set are 9
23. Correct answer is [4898].

Given number are $1,2,3,4,5,6,7$
So, total number of permutation are $7!=5040$.
Now total number of permutation having string (153)
$=(153), 2,4,6,7$
$\Rightarrow n(153)=5!=120$
and total number of permutation having string (2467)
$=(2467), 1,3,5$
$\Rightarrow n(2467)=4!=24$
also total permutation having string (153) and (2467) $n(153 \cap 2467)=2!=2$
Now $n(153 \cup 2467)=120+24-2=142$
So, the required no. of permtuations are

$$
\begin{aligned}
& n(\overline{153} \cap \overline{2467})=n(\overline{153 \cup 2467}) \\
& =\text { Total }-n(153 \cup 2467) \\
& =5040-142=4898
\end{aligned}
$$

24. Correct answer is [4].
$f:(-2,2) \rightarrow \mathrm{R}$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
x[x], & -2<x<0 \\
(x-1)[x], & 0 \leq x<2
\end{array}\right. \\
& \Rightarrow f(x)=\left\{\begin{array}{l}
x(-2),-2<x<-1 \\
x(-1),-1 \leq x<0 \\
(x-1) \times 0,0 \leq x<1 \\
(x-1) \times 1,1 \leq x<2
\end{array}=\left\{\begin{array}{l}
-2 x,-2<x<-1 \\
-x,-1 \leq x<0 \\
0,-0 \leq x<1 \\
x-1,1 \leq x<2
\end{array}\right.\right.
\end{aligned}
$$

which can be plotted as

from the graph, its clear that $f(x)$ is discontinous at 1 point and non differentiable at 3 points
So $m=1$ and $n=3$
and $m+n=4$
25. Correct answer is [32].

Given parabola is $y^{2}=4 \times 1 x$
where $a=1$,
whose tangent is $y=m x+\frac{a}{m}$ i.e. $y=m x+\frac{1}{m} \ldots$ (i)
and point of contact is $\mathrm{Q}\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$ i.e., $\mathrm{Q}\left(\frac{1}{m^{2}}, \frac{2}{m}\right)$
Since, eqn. (i) is also a tangent of circle $(x-4)^{2}+y^{2}=$
16.

So,

$$
\begin{aligned}
& \frac{\left|m \times 4+\frac{1}{m}\right|}{\sqrt{m^{2}+1}}=4 \\
& \Rightarrow\left|\frac{4 m^{2}+1}{m}\right|=4 \sqrt{m^{2}+1} \\
& \Rightarrow 16 m^{4}+1+8 m^{2}=16 m^{4}+16 m^{2} \\
& \Rightarrow 8 m^{2}=1 \text { or } m=\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

So $Q(8,4 \sqrt{2})$
and $\mathrm{PQ}=\sqrt{\mathrm{S}_{1}} \Rightarrow(\mathrm{PQ})^{2}=\mathrm{S}_{1}$
$=(8-4)^{2}+(4 \sqrt{2})^{2}-16=32$
26. Correct answer is [151].

Given that mean is $\bar{x}=28$

| Class | $f_{i}$ | $\boldsymbol{x}_{\boldsymbol{i}}$ | $f_{i} x_{i}$ | $\boldsymbol{x}_{\boldsymbol{i}}{ }^{\mathbf{2}}$ | $f_{\boldsymbol{x}} \boldsymbol{x}_{\boldsymbol{i}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $0-10$ | 2 | 5 | 10 | 25 | 50 |
| $10-20$ | 3 | 15 | 45 | 225 | 675 |
| $20-30$ | $x$ | 25 | $25 x$ | 625 | 3750 |
| $30-40$ | 5 | 35 | 175 | 1225 | 6125 |
| $40-50$ | 4 | 45 | 180 | 2025 | 8100 |
| $\Sigma f_{i}=14+x$ |  |  | $\Sigma f_{i} x_{i}=$ <br> $410+25 x$ |  | 18700 |

$\bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$
$28=\frac{410+25 x}{14+x}$
$\Rightarrow x=6$
and variance $=\frac{1}{\mathrm{~N}} \Sigma f_{i} x_{i}^{2}-(\bar{x})^{2}$

$$
\begin{aligned}
& =\frac{1}{20} \times 18700-(28)^{2} \\
& =935-784=151
\end{aligned}
$$

27. Correct answer is [960].

Let the general term in the expansion of $\left(1-x+2 x^{3}\right)^{10}$ is given by
$\mathrm{T}_{n}=\frac{10!}{a!b!c!}(1)^{a}(-x)^{b}\left(2 x^{3}\right)^{c}$
or $\mathrm{T}_{n}=\frac{10!}{a!b!c!}(-1)^{b} \times 2^{c} \times x^{b+3 c}$
where $a+b+c=10$
and $b+3 c=7$

| $a$ | $b$ | $c$ |
| :--- | :--- | :--- |
| 3 | 7 | 0 |
| 5 | 4 | 1 |
| 7 | 1 | 2 |

So, the coefficient of $x^{7}$ is
$=\frac{10!}{3!7!0!} \times(-1)^{7} \times 2^{0}+\frac{10!}{5!4!1!} \times(-1)^{4} \times 2^{1}+$
$=\frac{\frac{10!}{7!1!2!} \times(-1)^{1} \times 2^{2}}{6}(-1)+\frac{10 \times 9 \times 8 \times 7 \times 6 \times 2}{4 \times 3 \times 2 \times 1}+\frac{10 \times 9 \times 8}{2 \times 1}$
$=-120+2520-1440=960$
28. Correct answer is [16].

Let the equation of parabols is
$x^{2}=-4 a(y-1)$ which pass through $(1,0)$
$\Rightarrow 1=-4 a(a-1) \Rightarrow a=\frac{1}{4}$
so $\quad x^{2}=-4 \times \frac{1}{4}(y-1)$
or $x^{2}=-(y-1)$
and $\left\{(x, y):(x+1)^{2}+(y-1)^{2} \leq 1, y \leq p(x)\right\}$
$\Rightarrow(x+1)^{2}+(y-1)^{2} \leq 1$ represents interior part of the circle.
So required area is
$\mathrm{A}=\int_{-1}^{0} y_{\text {parabola }} d x-$
[Area of square - area of quarter of circle]

$\mathrm{A}=\int_{-1}^{0}\left(1-x^{2}\right) d x-\left[1 \times 1-\frac{\pi \times 1^{2}}{4}\right]$
$=\left[x-\frac{x^{3}}{3}\right]_{-1}^{0}-1+\frac{\pi}{4}$
$\mathrm{A}=0-\left(-1+\frac{1}{3}\right)-1+\frac{\pi}{4}$
$\mathrm{A}=\frac{\pi}{4}-\frac{1}{3}$
or $12 \mathrm{~A}=3 \pi-4$
or $48 \mathrm{~A}=12 \pi-16$
or $12(\pi-4 \mathrm{~A})=16$
29. Correct answer is [11].

Given that $(2 a)^{\log _{e} a}=(b c)^{\log _{e} b}$
$\Rightarrow \log _{e} a\left(\log _{e} 2+\log _{e} a\right)=\log _{e} b\left(\log _{e} b+\log _{e} c\right)$
and $b^{\log _{e} 2}=a^{\log _{e} c}$
$\Rightarrow \log _{e} 2 \times \log _{e} b=\log _{e} c \cdot \log _{e} a$
$\Rightarrow \log _{e} 2=\frac{\log _{e} c \cdot \log _{e} a}{\log _{e} b}$
Putting in equation (i), we get
$\log _{e} a\left(\log _{e} c . \log _{e} a+\log _{e} a . \log _{e} b\right)$
$=\left(\log _{e} b\right)^{2}\left(\log _{e} b+\log _{e} c\right)$
$\left(\log _{e} a\right)^{2}\left(\log _{e} b+\log _{e} c\right)-\left(\log _{e} b\right)^{2}\left(\log _{e} b+\log _{e} c\right)=0$
$\left.\Rightarrow \log _{e} b c\left\{\log _{e} a\right\}^{2}-\left(\log _{e} b\right)^{2}\right\}=0$
$\Rightarrow \log _{e} b c=0$ and $\log _{e} a=\log _{e} b$
$\Rightarrow b c=1$ and $a b=1$
If $b c=1$ then $(2 a)^{\log _{e} a}=(b c)^{\log _{e} b}=(1)^{\log _{e} b}=1$
$\Rightarrow(2 a)^{\log _{e} a}=1$
$\Rightarrow a=1$ or $a=\frac{1}{2}$
Now if $a=1$ and $b c=1$ then $6 a+5 b c=11$
and if $a=\frac{1}{2}$ and $b c=1$ then $6 a+5 b c=8$
30. Correct answer is (9525).

Given A.P. is $3,8,13, \ldots ., 373$
Using $\mathrm{T}_{n}=a+(n-1) d$, we get
$373=3+(n-1) 5$
$\Rightarrow n=75$
Sum of complete AP $=\frac{n}{2}(a+l)=\frac{75}{2}(3+373)$
$=14100$
Now the numbers divisible by 3 are $3,18,33, \ldots ., 363$
Using $\mathrm{T}_{n}=a+(k-1) d$, we get
$363=3+(k-1) 15$
$\Rightarrow k=25$
So sum of this A.P. $=\frac{k}{2}(a+l)=\frac{25}{2}(3+363)=4575$
Hence, the required sum is $14100-4575=9525$

