JEE (Main) MATHEMATICS SOLVED PAPER

2023

$10^{\text {th }}$ April Shift 2

Section A

Q.1. If the coefficients of x and x^{2} in $(1+x)^{p}(1-x)^{q}$ are 4 and -5 respectively, then $2 p+3 q$ is equal to
(1) 60
(2) 63
(3) 66
(4) 69
Q. 2. Let $A=\{2,3,4\}$ and $B=\{8,9,12\}$. Then the number of elements in the relation $\mathrm{R}=\left\{\left(\left(a_{1}\right.\right.\right.$, $\left.\left.b_{1}\right),\left(a_{2}, b_{2}\right)\right) \in(\mathrm{A} \times \mathrm{B}, \mathrm{A} \times \mathrm{B}): a_{1}$ divides b_{2} and a_{2} divides $\left.b_{1}\right\}$ is
(1) 18
(2) 24
(3) 12
(4) 36
Q.3. Let time image of the point $\mathrm{P}(1,2,6)$ in the plane passing through the points $A(1,2,0), B(1,4,1)$ and $C(0,5,1)$ be $\mathrm{Q}(\alpha, \beta, \gamma)$. Then $\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)$ is equal to
(1) 70
(2) 76
(3) 62
(4) 65
Q. 4. The statement $\sim[p \vee(\sim(p \wedge q))]$ is equivalent to
(1) $(\sim(p \wedge q)) \wedge q$
(2) $\sim(p \vee q)$
(3) $\sim(p \wedge q)$
(4) $(p \wedge q) \wedge(\sim p)$
Q. 5. Let $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^{2} x}+9^{\tan ^{2} x}=10\right\}$ $b=\sum_{x \in S} \tan ^{2}\left(\frac{x}{3}\right)$, then $\frac{1}{6}(b-14)^{2}$ is equal to
(1) 16
(2) 32
(3) 8
(4) 64
Q.6. If the points P and Q are respectively the circumcenter and the orthocentre of a $\triangle A B C$, the $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}+\overline{\mathrm{PC}}$ is equal to
(1) $2 \overrightarrow{\mathrm{QP}}$
(2) $\overrightarrow{\mathrm{PQ}}$
(3) $2 \overrightarrow{\mathrm{PQ}}$
(4) $\overrightarrow{\mathrm{PQ}}$
Q. 7. Let A be the point $(1,2)$ and B be any point on the curve $x^{2}+y^{2}=16$. If the centre of the locus of the point P, which divides the line segment $A B$ in the ratio $3: 2$ is the point $C(\alpha, \beta)$ then the length of the line segment $A C$ is
(1) $\frac{6 \sqrt{5}}{5}$
(2) $\frac{2 \sqrt{5}}{5}$
(3) $\frac{3 \sqrt{5}}{5}$
(4) $\frac{4 \sqrt{5}}{5}$
Q. 8. Let μ be the mean and σ be the standard deviation of the distribution.

x_{i}	0	1	2	3	4	5
f_{i}	$k+2$	$2 k$	$k^{2}-1$	$k^{2}-1$	$k^{2}+1$	$k-3$

where $\Sigma f_{i}=62$. If $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^{2}+\sigma^{2}\right]$ is equal to
(1) 8
(2) 7
(3) 6
(4) 9
Q. 9. If $\mathrm{S}_{n}=4+11+21+34+50+\ldots$ to n terms, then $\frac{1}{60}\left(\mathrm{~S}_{29}-\mathrm{S}_{9}\right)$ is equal to
(1) 220
(2) 227
(3) 226
(4) 223
Q.10. Eight persons are to be transported from city A to city B in three cars different makes. If each car can accomodate at most three persons, then the number of ways, in which they can be transported, is
(1) 1120
(2) 560
(3) 3360
(4) 1680
Q. 11. If $A=\frac{1}{5!6!7!}\left[\begin{array}{ccc}5! & 6! & 7! \\ 6! & 7! & 8! \\ 7! & 8! & 9!\end{array}\right]$, then $|\operatorname{adj}(\operatorname{adj}(2 A))|$ is equal to
(1) 2^{16}
(2) 2^{8}
(3) 2^{12}
(4) 2^{20}
Q. 12. Let the number $(22)^{2022}+(2022)^{22}$ leave the remainder α when divided by 3 and β when divided by 7 . Then $\left(\alpha^{2}+\beta^{2}\right)$ is equal to
(1) 13
(2) 20
(3) 10
(4) 5
Q. 13. Let $g(x)=f(x)+f(1-x)$ and $f^{n}(x)>0, x \in(0,1)$. If g is decreasing in the interval $(0, \alpha)$ and increasing in the interval $(\alpha, 1)$, then $\tan ^{-1}(2 \alpha)+\tan ^{-1}\left(\frac{\alpha+1}{\alpha}\right)$ is equal to
(1) $\frac{5 \pi}{4}$
(2) π
(3) $\frac{3 \pi}{4}$
(4) $\tan ^{-1}(-2)$
Q. 14. For $\alpha, \beta, \gamma, \delta \in \mathrm{N}$, if $\int\left(\left(\frac{x}{e}\right)^{2 x}+\left(\frac{e}{x}\right)^{2 x}\right)$
$=\frac{1}{\alpha}\left(\frac{x}{e}\right)^{\beta x}-\frac{1}{\gamma}\left(\frac{e}{x}\right)^{\delta x}+\mathrm{C}$, where $e=\sum_{n=0}^{\infty} \frac{1}{n!}$ and
C is constant of integration, then $\alpha+2 \beta+3 \gamma-4 \delta$ is equal to
(1) 4
(2) -4
(3) -8
(4) 1
Q. 15. Let f be a continuous function satisfying $\int_{0}^{t^{2}}\left(f(x)+x^{2}\right) d x=\frac{4}{3} t^{3}, \forall t>0$. Then $f\left(\frac{\pi^{2}}{4}\right)$ is equal to
(1) $-\pi^{2}\left(1+\frac{\pi^{2}}{16}\right)$
(2) $\pi\left(1-\frac{\pi^{3}}{16}\right)$
(3) $-\pi\left(1+\frac{\pi^{3}}{16}\right)$
(4) $\pi^{2}\left(1-\frac{\pi^{3}}{16}\right)$
Q. 16. Let a dice be rolled n times. Let the probability of getting odd numbers seven times be equal to the probability of getting odd numbers nine times. If the probability of getting even numbers twice is $\frac{k}{2^{15}}$, then k is equal to
(1) 60
(2) 30
(3) 90
(4) 15
Q. 17. Let a circle of radius 4 be concentric to the ellipse $15 x^{2}+19 y^{2}=285$. Then the common tangents are inclined to the minor axis of the ellipse at the angle.
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{12}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$
Q. 18. Let $\vec{a}=2 \hat{i}+7 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{k}$ and $\vec{c}=\hat{i}-\hat{j}+2 \hat{k}$, Let \vec{d} be a vector which is perpendicular to both \vec{a} and \vec{b}, and $\vec{c} \cdot \vec{d}=12$. The $(-\hat{i}+\hat{j}-\hat{k}) \cdot(\vec{c} \times \vec{d})$ is equal to
(1) 24
(2) 42
(3) 48
(4) 44
Q. 19. Let $\mathrm{S}=\left\{z=x+i y: \frac{2 z-3 i}{4 z+2 i}\right.$ is a real number $\}$. Then which of the following is NOT correct ?
(1) $y \in\left(-\infty,-\frac{1}{2}\right) \cup\left(-\frac{1}{2}, \infty\right)$
(2) $(x, y)=\left(0,-\frac{1}{2}\right)$
(3) $x=0$
(4) $y+x^{2}+y^{2} \neq-\frac{1}{4}$
Q. 20. Let the line $\frac{x}{1}=\frac{6-y}{2}=\frac{z+8}{5}$ intersect the lines $\frac{x-5}{4}=\frac{y-7}{3}=\frac{z+2}{1}$ and $\frac{x+3}{6}=\frac{3-y}{3}=\frac{z-6}{1}$ at the points A and B respectively. Then the distance of the mid-point of the line segment $A B$ from the plane $2 x-2 y+z=14$ is
(1) 3
(2) $\frac{10}{3}$
(3) 4
(4) $\frac{11}{3}$

Section B

Q. 21. The sum of all the four-digit numbers that can be formed using all the digits $2,1,2,3$ is equal to
\qquad -.
Q.22. In In
$\theta_{1}+\theta_{2}=\frac{\pi}{2}$ the figure, $\sqrt{3}(\mathrm{BE}) \stackrel{ }{=}$, $4(A B)$. If the area of $\triangle C A B$ is $\quad 2 \sqrt{3}-3$ unit 2, when $\frac{\theta_{2}}{\theta_{1}}$ is the largest, then the perimeter (in unit) of \triangle CED is equal to \qquad -
Q. 23. Let the tangent at any point P on a curve passing through the points $(1,1)$ and $\left(\frac{1}{10}, 100\right)$, intersect positive x-axis and y-axis at the points A and B respectively. If $\mathrm{PA}: \mathrm{PB}=1: k$ and $y=y(x)$ is the solution of the differential equation $e^{\frac{d y}{d x}}=k x+\frac{k}{2}, y(0)=k$, then $4 y$ then $4 y(1)-5 \log e^{3}$ is equal to \qquad .
Q.24. Suppose $a_{1}, a_{2}, 2, a_{3}, a_{4}$ be in an arithemeticogeometric progression. If the common ratio of the corresponding geometric progression is 2 and the sum of all 5 terms of the arithmetico-geometric progression is $\frac{49}{2}$, then a_{4} is equal to \qquad -.
Q. 25. If the area of the region $\left\{(x, y):\left|x^{2}-2\right| \leq x\right\}$ is A , then $6 \mathrm{~A}+16 \sqrt{2}$ is equal to \qquad -
Q.26. Let the foot of perpendicular from the point A $(4,3,1)$ on the plane P : $x-y+2 z+3=0$ be N. If $B(5, \alpha, \beta), \alpha, \beta \in Z$ is a point on plane P such that the area of the triangle ABN is $3 \sqrt{2}$, then α^{2} $+\beta^{2}+\alpha \beta$ is equal to \qquad .
Q. 27. Let S be the set of values of λ, for which the system of equations
$6 \lambda x-3 y+3 z=4 \lambda^{2}$,
$2 x+6 \lambda y+4 z=1$,
$3 x+2 y+3 \lambda z=\lambda$ has no solution. Then $12 \sum_{1 \in S}|\lambda|$ is equal to \qquad -
Q.28. If the domain of the function $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ is $[\alpha, \beta) \cup(\gamma, \delta]$, then $|3 \alpha+10(\beta+\gamma)+21 \delta|$ is equal to \qquad -.
Q. 29. Let the quadratic curve passing through the point $(-1,0)$ and touching the line $y=x$ at $(1,1)$ be $y=f(x)$. Then the x-intercept of the normal to the curve at the point ($\alpha, \alpha+1$) in the first quadrant is \qquad .
Q.30. Let the equations of two adjacent sides of a parallelogram ABCD be $2 x-3 y=-23$ and $5 x+$ $4 y=23$. If the equation of its one diagonal AC is $3 x+7 y=23$ and the distance of A from the other diagonal is d, then $50 d^{2}$ is equal to \qquad _.

Answer Key

Q. No.	Answer	Topic name	Chapter name
1	(2)	Binomial theorem for any index	Binomial theorem
2	(4)	No of relation	Relation and function
3	(4)	Point and plane	3D
4	(4)	Compound statement	Mathematical reasoning
5	(2)	Trigonometric series	Trigonometry
6	(4)	Algebra on vector	Vector
7	(3)	Equation of circle	Circle
8	(1)	Mean and variance	Statistics
9	(4)	Method of difference	Sequence and series
10	(4)	Division into groups	Permutation and combination
11	(1)	Adjoint of a matrix	Matrix and determinants
12	(4)	Divisibility problem	Binomial theorem
13	(4)	Maxima and minima	Application of derivatives
14	(1)	Inegration using substitutions	Indefinit integral
15	(2)	Lebnitz rule	Definite integral
16	(1)	Binomial distribution	Probability
17	(1)	Circle and ellipse	Ellipse
18	(4)	Product of two vectors	Vector
19	(3)	Algebra of complex number	Complex number
20	(3)	Point and line	3D
21	[26664]	Sum of numbers	Permutation and combination
22	[6]	Perimeter of triangle	Properties of triangle
23	[5]	Geometrical problem	Differential equations
24	[16]	AGP	Sequence and series
25	[27]	Area b/w two curves	Area under curves
26	[7]	Point and line	3D
27	[24]	Solving system of linear equations	Matrix and determinants
28	[24]	Domain	Inverse trigonometric function
29	[11]	Tangent and normal	Application of derivatives
30	[529]	Point and line	Straight lines

Solutions

Section A

1. Option (2) is correct.

We have $(1+x)^{p}(1-x)^{q}$
$=\left(1+p x+\frac{p(p-1)}{2} x^{2}+\ldots.\right)\left(1-q x+\frac{q(q-1)}{2} x^{2}-\ldots\right)$
Coefficient of x is 4
$\Rightarrow p-q=4$
and coefficient of x^{2} is -5
$\Rightarrow \frac{p(p-1)}{2}-p q+\frac{q(q-1)}{2}=-5$
or $p^{2}-p-2 p q+q^{2}-q+10=0$
on solving equation (i) and (ii), we get
$p=15$ and $q=11$
so $2 p+3 q=30+33=63$
2. Option (4) is correct.

Given that $A=\{2,3,4\}$ and $B=\{8,9,12\}$
Since, each element of A have two choices that $\forall a \in \mathrm{~A}$ and $b \in \mathrm{~B}$ such that a divides b therefore, a_{1} divides b_{2} have $3 \times 2=6$ elements and a_{2} divides b_{1} have $3 \times 2=6$ elements.
Hence, total number of element in R are $6 \times 6=36$ elements.
3. Option (4) is correct.

Equation of plane passing through the points $\mathrm{A}(1,2$, $0), B(1,4,1)$ and $C(0,5,1)$ is
$\left|\begin{array}{ccc}x-1 & y-2 & z-0 \\ 0 & 2 & 1 \\ -1 & 3 & 1\end{array}\right|=0$
$\Rightarrow x+y-2 z=3$
Now $\mathrm{Q}(\alpha, \beta, \gamma)$ is the image of the point $\mathrm{P}(1,2,6)$ in the plane $x+y-2 z-3=0$
$\Rightarrow \frac{\alpha-1}{1}=\frac{\beta-2}{1}=\frac{\gamma-6}{-2}=\frac{-(1+2-12-3)}{1^{2}+1^{2}+(-2)^{2}}$
$=\frac{(-2)(-12)}{6}=4$
$\Rightarrow \alpha=5, \beta=6, \gamma=-2$
and $\alpha^{2}+\beta^{2}+\gamma^{2}=25+36+4=65$
4. Option (4) is correct.
$\sim[p \vee(\sim p \wedge q))]$
$\Rightarrow \sim p \wedge((p \wedge q) \quad[\because \sim(p \wedge q)=\sim p \vee \sim q]$
5. Option (2) is correct.

Let $9^{\tan ^{2} x}=t$
Now $9^{1-\tan ^{2} x}+9^{\tan ^{2} x}=10$
$\Rightarrow 9 \times \frac{1}{t}+t=10 \Rightarrow t=1$ or $t=9$
$\Rightarrow 9^{\tan ^{2} x}=9^{\circ}$ or $9^{\tan ^{2} x}=9^{1}$
$\Rightarrow \tan ^{2} x=0$ or $\tan ^{2} x=1$
$\Rightarrow x=0$ or $\pm \frac{\pi}{4}$
Also $b=\sum_{x \in S} \tan ^{2}\left(\frac{x}{3}\right)=\tan ^{2} 0+\tan ^{2}\left(\frac{\pi}{12}\right)+\tan ^{2}\left(\frac{-\pi}{12}\right)$
$b=0+2 \tan ^{2}\left(\frac{\pi}{12}\right)$
$b=2(2-\sqrt{3})^{2}=2(4+3-4 \sqrt{3})$
$b=14-8 \sqrt{3} \Rightarrow b-14=-8 \sqrt{3}$
and $\frac{1}{6}(b-14)^{2}=\frac{1}{6} \times 64 \times 3=32$
6. Option (4) is correct.

Given that P is circumcentre and Q is orthocentre of $\triangle \mathrm{ABC}$.
Let P be at origin and G be the centroid of the $\triangle A B C$, Since, centroid divides the orthocentre and circumcentre in $2: 1$ then
$\overrightarrow{\mathrm{PG}}=\frac{2 \overrightarrow{\mathrm{PP}}+1 \overrightarrow{\mathrm{PQ}}}{2+1}=\frac{\overrightarrow{\mathrm{O}}+\overrightarrow{\mathrm{PQ}}}{3}=\frac{\overrightarrow{\mathrm{PQ}}}{3}$
$\Rightarrow \overrightarrow{\mathrm{PQ}}=3 \overrightarrow{\mathrm{PG}} \quad \stackrel{2}{\mathrm{Q}} \quad \stackrel{\rightharpoonup}{\mathrm{G}} \quad 1 \quad$ •
$=3\left(\frac{\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}}{3}\right)$
Hence, $\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{PQ}}$
7. Option (3) is correct.

Any point on the circle $x^{2}+y^{2}=4^{2}$ is $B(4 \cos \theta, 4 \sin \theta)$ and $\mathrm{A}(1,2)$

Let P be (h, k) which divides AB in $3: 2$
So
$h=\frac{12 \cos \theta+2}{3+2}$ and $k=\frac{12 \sin \theta+2 \times 2}{3+2}$
$\Rightarrow 5 h-2=12 \cos \theta$ and $5 k-4=12 \sin \theta$
On squaring and adding, we get
$(5 h-2)^{2}+(5 k-4)^{2}=144$
Locus of (h, k) is $(5 x-2)^{2}+(5 y-4)^{2}=12^{2}$
which represents a circle of centre $\left(\frac{2}{5}, \frac{4}{5}\right) \equiv C(\alpha, \beta)$
So $\mathrm{AC}=\sqrt{\left(1-\frac{2}{5}\right)^{2}+\left(2-\frac{4}{5}\right)^{2}}=\sqrt{\frac{9}{25}+\frac{36}{25}}=\frac{3 \sqrt{5}}{5}$
8. Option (1) is correct.

Given that $\Sigma f_{i}=62$
$\Rightarrow k+2+2 k+k^{2}-1+k^{2}-1+k^{2}+1+k-3=62$
$\Rightarrow(3 k+16)(k-4)=0 \Rightarrow k=4$ $\left(\because k=\frac{-16}{3}\right.$ is not possible $)$

x_{i}	f_{i}	$f_{i} x_{i}$	$f_{i} x_{i}^{2}$
0	6	0	0
1	8	8	8
2	15	30	60
3	15	45	135
4	17	68	272
5	1	5	25
Total	62	156	500
$\mu=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{156}{62}$			

$\sigma^{2}=\frac{1}{\mathrm{~N}} \Sigma f_{i} x_{i}^{2}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2}$
$=\frac{500}{62}-\left(\frac{156}{62}\right)^{2}$
Now $\left[\mu^{2}+\sigma^{2}\right]=\left[\left(\frac{156}{62}\right)^{2}+\frac{500}{62}-\left(\frac{156}{62}\right)^{2}\right]$
$=\left[\frac{500}{62}\right]=8$
9. Option (4) is correct.

Given that
$\mathrm{S}_{n}=4+11+21+24+50+\ldots+\mathrm{T}_{n}$
$\mathrm{S}_{n}=4+11+21+34++\mathrm{T}_{n-1}+\mathrm{T}_{n}$
$\stackrel{-}{-} \stackrel{-}{0}=4+7+10+13+16+\ldots . \quad-\quad\left(\mathrm{T}_{n}-\mathrm{T}_{n-2}\right)-\mathrm{T}_{n}$
$\Rightarrow \mathrm{T}_{n}=4+7+10+13+16+\ldots$. to n terms
$\Rightarrow \mathrm{T}_{n}=\frac{n}{2}[2 \times 4+(n-1) 3]$
$T_{n}=\frac{3}{2} n^{2}+\frac{5}{2} n$
So $\mathrm{S}_{n}=\Sigma \mathrm{T}_{n}=\frac{3}{2} \Sigma n^{2}+\frac{5}{2} \Sigma n$
$\Rightarrow \mathrm{S}_{n}=\frac{3}{2} \times \frac{n(n+1)(2 n+1)}{6}+\frac{5}{2} \times \frac{n(n+1)}{2}$
$\Rightarrow \mathrm{S}_{n}=\frac{n(n+1)}{4}(2 n+1+5)=\frac{n(n+1)(n+3)}{2}$
Hence, $\frac{1}{60}\left(\mathrm{~S}_{29}-\mathrm{S}_{9}\right)=\frac{1}{60} \times \frac{1}{2}(29 \times 30 \times 32-9 \times 10 \times 12)$ $=223$
10. Option (4) is correct.

Total persons are 8, so they can be transported as in group of 3,3 and 2 .
So, total no. of way $=\frac{8!}{3!\times 3!\times 2!} \times 3!\times \frac{1}{2}$
$=\frac{8 \times 7 \times 6 \times 5 \times 4}{2 \times 2}=1680$
11. Option (1) is correct.

Given that

$$
\begin{aligned}
& A=\frac{1}{5!6!7!}\left[\begin{array}{lll}
5! & 6! & 7! \\
6! & 7! & 8! \\
7! & 8! & 9!
\end{array}\right] \\
& \Rightarrow|A|=\frac{1}{5!6!7!}\left|\begin{array}{lll}
5! & 6! & 7! \\
6! & 7! & 8! \\
7! & 8! & 9!
\end{array}\right| \\
& \Rightarrow|A|=\frac{1}{5!6!7!} \times 5!6!7!\left|\begin{array}{lll}
1 & 6 & 7 \times 6 \\
1 & 7 & 8 \times 7 \\
1 & 8 & 9 \times 8
\end{array}\right| \\
& =\left|\begin{array}{lll}
1 & 6 & 42 \\
1 & 7 & 56 \\
1 & 8 & 72
\end{array}\right|=2 \\
& \Rightarrow|A|=2
\end{aligned}
$$

Hence $|\operatorname{adj}(\operatorname{adj}(2 \mathrm{~A}))|=|2 \mathrm{~A}|^{(n-1)^{2}}=|2 \mathrm{~A}|^{4}$
$=\left(2^{3}|A|\right)^{4}=\left(2^{3} \times 2\right)^{4}=2^{16}$
12. Option (4) is correct.

Given that (22) ${ }^{2022}+(2022)^{22}$
Since, α is remainder when divided by 3
So, $(22)^{2022}+(2022)^{22}=(21+1)^{2022}+(2022)^{21}$
divisible by 3
$=3 k+1+0$ where $k \in$ Integer
$\Rightarrow \alpha=1$
Also, β is remainder when divided by 7
So, $(22)^{2022}+(2022)^{22}=(21+1)^{2022}-\left(2023-1^{22}\right)$
2023 is divisible by 7
$=7 k+1-(7 q-1)$
$=7(k-q)+2$ where $(k-q) \in$ Integer
$\Rightarrow \beta=2$ So $\alpha^{2}+\beta^{2}=1+4=5$
13. Option (4) is correct.

Given that $g(x)=f(x)+f(1-x)$
and $f^{n}(x)>0, \forall x \in(0,1)$
So $g^{\prime}(x)=f^{\prime}(x)-f^{\prime}(1-x)$
and $g^{\prime \prime}(x)=f^{\prime \prime}(x)+f^{\prime \prime}(1-x)>0 \forall x \in(0,1)$
Also for maxima or minima, putting $g^{\prime}(x)=0$
$\Rightarrow f^{\prime}(x)=f^{\prime}(1-x) \Rightarrow x=1-x$
or $x=\frac{1}{2}$
and $g^{\prime \prime}(x)>0 \forall x \in(0,1)$
$\Rightarrow g$ is concave up and also $\alpha=\frac{1}{2}$

Hence, $\tan ^{-1}(2 \alpha)+\tan ^{-1}\left(\frac{\alpha+1}{\alpha}\right)$

$$
\begin{aligned}
& =\tan ^{-1}(1)+\tan ^{-1}(3) \\
& =\tan ^{-1}\left(\frac{4}{1-3}\right)=\tan ^{-1}(-2)
\end{aligned}
$$

(Note: There is some error in the question, that's why answer is not matching)
14. Option (1) is correct.

Let $\mathrm{I}=\int\left(\left(\frac{x}{e}\right)^{2 x}+\left(\frac{e}{x}\right)^{2 x}\right) \log _{e} x d x$
$\Rightarrow \mathrm{I}=\int\left(\left(\frac{e^{\log _{e} x}}{e}\right)^{2 x}+\left(\frac{e}{e^{\log _{e} x}}\right)^{2 x}\right) \log _{e} x d x$
$\Rightarrow \mathrm{I}=\int\left(e^{2(x \log x-x)}+e^{-2(x \log x-x)}\right) \log _{e} x d x$
Let $t=x \log x-x \Rightarrow d t=\log _{e} x d x$
So $\mathrm{I}=\int\left(e^{2 t}+e^{-2 t}\right) d t=\frac{e^{2 t}}{2}-\frac{e^{-2 t}}{2}+\mathrm{C}$
$\mathrm{I}=\frac{1}{2}\left(\frac{x}{e}\right)^{2 x}-\frac{1}{2}\left(\frac{e}{x}\right)^{2 x}+\mathrm{C}$
Hence $\alpha=2, \beta=2, \gamma=2, \delta=2$
and $\alpha+2 \beta+3 \gamma-4 \delta=2+4+6-8=4$
15. Option (2) is correct.

Given that
$\int_{0}^{t^{2}}\left(f(x)+x^{2}\right) d x=\frac{4}{3} t^{3}, \forall t>0$
On differentiating using Leibnitz rule, we get
$\left(f\left(t^{2}\right)+t^{4}\right) \times 2 t=\frac{4}{3} \times 3 t^{2}$
$\Rightarrow f\left(t^{2}\right)+t^{4}=2 t$
$\Rightarrow f\left(t^{2}\right)=2 t-t^{4}$
If $t=\frac{\pi}{2}$
$f\left(\frac{\pi^{2}}{4}\right)=\pi-\frac{\pi^{4}}{16}=\pi\left(1-\frac{\pi^{3}}{16}\right)$
16. Option (1) is correct.

Given that
P (odd number seven times) $=\mathrm{P}$ (Odd number nine times)
$\Rightarrow{ }^{n} \mathrm{C}_{7}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{n-7}={ }^{n} \mathrm{C}_{9}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)^{n-9}$
$\Rightarrow{ }^{n} \mathrm{C}_{7}={ }^{n} \mathrm{C}_{9}$
$\Rightarrow n=7+9=16$
Hence, $\mathrm{P}($ Even number twice $)=\frac{k}{2^{15}}$

$$
\begin{aligned}
& \Rightarrow{ }^{16} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{16-2}=\frac{k}{2^{15}} \\
& \Rightarrow \frac{16 \times 15}{2} \times \frac{1}{2^{16}}=\frac{k}{2^{15}} \Rightarrow k=60
\end{aligned}
$$

17. Option (1) is correct.

Given ellipse is $15 x^{2}+19 y^{2}=285$
$\Rightarrow \frac{x^{2}}{19}+\frac{y^{2}}{15}=1$
$\Rightarrow a^{2}=19 \& b^{2}=15$
So any tangent to this ellipse, is given by
$y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}=m x \pm \sqrt{19 m^{2}+15}$
or $m x-y \pm \sqrt{19 m^{2}+15}=0$
If this line is also a tangent to circle of radius 4 whose centre at $(0,0)$, then
$\left|\frac{ \pm \sqrt{19 m^{2}+15}}{\sqrt{m^{2}+1}}\right|=4$
$\Rightarrow 19 m^{2}+15=16 m^{2}+16$
$\Rightarrow m= \pm \frac{1}{\sqrt{3}}$
or $\tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=\frac{\pi}{6}$
18. Option (4) is correct.

If \vec{d} is \perp to both \vec{a} and \vec{b} then
$\vec{d}=\lambda(\vec{a} \times \vec{b})=\lambda\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 7 & -1 \\ 3 & 0 & 5\end{array}\right|=(35 \hat{i}-13 \hat{j}-21 \hat{k}) \lambda$
but $\vec{c} \cdot \vec{d}=12 \Rightarrow \lambda(35 \times 1+13 \times 1-21 \times 2)=12$
$\Rightarrow \lambda(6)=12$ or $\lambda=2$
$\vec{\lambda}=2(35 \hat{i}-13 \hat{j}-21 \hat{k})$
and $(-\hat{i}-+\hat{j}-\hat{k}) \cdot(\vec{c} \times \vec{d})$
$=\left|\begin{array}{ccc}-1 & 1 & -1 \\ 1 & -1 & 2 \\ 70 & -26 & -42\end{array}\right|$
$=-94+182-44=44$
19. Option (3) is correct.

Given that $z=x+i y$
then $\frac{2 z-3 i}{4 z+2 i}=\frac{2(x+i y)-3 i}{4(x+i y)+2 i}$
$=\frac{2 x+i(2 y-3)}{4 x+i(4 y+2)} \times \frac{4 x-i(4 y+2)}{4 x-i(4 y+2)}$
$=\frac{8 x^{2}+(2 y-3)(4 y+2)}{(4 x)^{2}+(4 y+2)^{2}}+i\left(\frac{4 x(2 y-3)-2 x(4 y+2)}{(4 x)^{2}+(4 y+2)^{2}}\right)$
Since, $\frac{2 z-3 i}{4 z+2 i}$ is Real $\Rightarrow \operatorname{Img}\left(\frac{2 z-3 i}{4 z+2 i}\right)=0$
$\Rightarrow 4 x(2 y-3)-2 x(4 y+2)=0$
$\Rightarrow 2 x(4 y-6-4 y-2)=0$
$\Rightarrow 2 x(-8)=0 \Rightarrow x=0$
20. Option (3) is correct.

Given that
$\frac{x-5}{4}=\frac{y-7}{3}=\frac{z+2}{1}=\lambda$ (say)
$\Rightarrow x=4 \lambda+5, y=3 \lambda+7, z=\lambda-2$
and $\frac{x+3}{6}=\frac{3-y}{3}=\frac{z-6}{1}=\mu$ (say)
$\Rightarrow x=6 \mu-3, y=3-3 \mu, z=\mu+6$
and $\frac{x}{1}=\frac{6-y}{2}=\frac{z+8}{5}$
Since, A is the POI of line (i) and line (iii)
So $\frac{4 \lambda+5}{1}=\frac{6-(3 \lambda+7)}{2}$
$\Rightarrow 8 \lambda+10=6-3 \lambda-7$
or $11 \lambda=-11 \Rightarrow \lambda=-1$
So A $(1,4,-3)$
Similarly B is the P.O.I of line (ii) and line (iii)
So $\frac{6 \mu-3}{1}=\frac{6-(3-3 \mu)}{2}$
$\Rightarrow 12 \mu-6=3+3 \mu$
$\Rightarrow 9 \mu=9 \Rightarrow \mu=1$
So $B(3,0,7)$ and mid point of $A B$ is $(2,2,2)$
Now \perp distance of $2 x-2 y+z=14$ from $(2,2,2)$ is
$=\frac{|4-4+2-14|}{\sqrt{4+4+1}}=\frac{12}{3}=4$

Section B

21. Correct answer is [26664].

If 1 at unit place then total no. are $\frac{3!}{2!}=3$
If 2 at unit place then total no. are $3!=6$
If 3 at unit place then total no. are $\frac{3!}{2!}=3$
So sum of digits at unit place is $3 \times 1+6 \times 2+3 \times 3$ $=24$
Hence, required sum $=24 \times 1000+24 \times 100+24 \times$
$10+24 \times 1$
$=24 \times(1000+100+10+1)$
$=24 \times 1111=26664$
22. Correct answer is [6].

In the given figure, let $\mathrm{AB}=\mathrm{CD}=x$ then $\mathrm{DE}=x \tan$
θ_{2}, and $\mathrm{AC}=x \tan \theta_{1}$
Also given that $\theta_{1}+\theta_{2}=\frac{\pi}{2}$
$\sqrt{3} \mathrm{BE}=4 \mathrm{AB}$
and ar $(\triangle \mathrm{CAB})=2 \sqrt{3}-3$
$\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}=2 \sqrt{3}-3$
$\frac{1}{2} \times x \times x \tan \theta_{1}=2 \sqrt{3}-3$
Now $\sqrt{3} B E=4 \mathrm{AB}$
$\Rightarrow \sqrt{3}\left(x \tan \theta_{2}+\mathrm{BD}\right)=4 \mathrm{AB}$
$\Rightarrow \sqrt{3}\left(x \tan \theta_{2}+x \tan \theta_{1}\right)=4 \mathrm{AB}$
$\Rightarrow \sqrt{3} x\left(\tan \theta_{1}+\tan \theta_{2}\right)=4 x$

$$
\begin{aligned}
& \Rightarrow \tan \theta_{1}+\tan \left(\frac{\pi}{2}-\theta_{1}\right)=\frac{4}{\sqrt{3}} \\
& \Rightarrow \tan \theta_{1}+\cot \theta_{1}=\frac{4}{\sqrt{3}}=\sqrt{3}+\frac{1}{\sqrt{3}} \\
& \Rightarrow \tan \theta_{1}=\sqrt{3} \text { or } \theta_{1}=\frac{\pi}{3} \text { and } \theta_{2}=\frac{\pi}{6} \\
& \text { or } \theta_{1}=\frac{\pi}{6} \text { and } \theta_{2}=\frac{\pi}{3} \\
& \because \frac{\theta_{2}}{\theta_{1}} \text { is largest } \\
& \therefore \theta_{1}=\frac{\pi}{6} \text { and } \theta_{2}=\frac{\pi}{3}
\end{aligned}
$$

So from eqn. (i)
$\frac{1}{2} x^{2} \times \frac{1}{\sqrt{3}}=2 \sqrt{3}-3$
$\Rightarrow x^{2}=12-6 \sqrt{3}=(3-\sqrt{3})^{2}$
$\Rightarrow x=3-\sqrt{3}$
Hence, perimeter of $\triangle \mathrm{CED}=\mathrm{CE}+\mathrm{ED}+\mathrm{CD}$
$=x \sec \theta_{2}+x \tan \theta_{2}+x$
$=x\left(\sec \frac{\pi}{3}+\tan \frac{\pi}{3}+1\right)$
$=(3-\sqrt{3})(2+\sqrt{3}+1)$
$=(3-\sqrt{3})(3+\sqrt{3})$
$=9-3=6$ units.
23. Correct answer is [5].

Let the equation of tangent to the curve at (x, y).
Whose slope is $\frac{d y}{d x}$ is

$$
\mathrm{Y}-y=\frac{d y}{d x}(\mathrm{X}-x)
$$

Putting $\mathrm{Y}=0 \Rightarrow \mathrm{X}=x-\frac{y}{\left(\frac{d y}{d x}\right)} \mathrm{t}$
$\Rightarrow \alpha=x-\frac{y}{(d y)}$
$\Rightarrow \alpha=x-\frac{y}{\left(\frac{d y}{d x}\right)}$
and putting $\mathrm{X}=0 \Rightarrow \mathrm{Y}=y-x \frac{d y}{d x}$
$\Rightarrow \beta=y-x \frac{d y}{d x}$
$\because \mathrm{P}$ divides AB in $1: k$
$x=\frac{k \alpha+0}{k+1}$ and $y=\frac{k \times 0+\beta}{k+1}$
$\Rightarrow x(k+1)=k\left(x-\frac{y}{\frac{d y}{d x}}\right)$
$\Rightarrow x k+x=x k-\frac{y k}{\frac{d y}{d x}} \Rightarrow x \frac{d y}{d x}=-y k$
or $\int \frac{d y}{y}=-k \times \int \frac{1}{x} d x$
$\Rightarrow \log y=-k \log x+\log \mathrm{C}$
or $\log y \times x^{k}=\log \mathrm{C}$
$\Rightarrow y x^{k}=\mathrm{C}$
putting $x=1, y=1 \Rightarrow c=1$
so $y x^{k}=1$
Putting $x=\frac{1}{10}, y=100 \Rightarrow 100 \times\left(\frac{1}{100}\right)^{k}=1 \Rightarrow k=2$
so $y x^{2}=1$ or $y=\frac{1}{x^{2}}$
Now $e^{\frac{d y}{d x}}=k x+\frac{k}{2}$
$\Rightarrow \frac{d y}{d x}=\log _{e}\left(k x+\frac{k}{2}\right)=\log _{e}(2 x+1)$
On integrating
$y=\int 1 . \log _{e}(2 x+1) d x$
$=x \log _{e}(2 x+1)-\int \frac{1 \times 2}{2 x+1} \times x d x$
$=x \log _{e}(2 x+1)-\int 1-\frac{1}{2 x+1} d x$
$y=x \log _{e}(2 x+1)-x+\frac{1}{2} \log _{e}(2 x+1)+c$
Put $x=0, y=k=2 \Rightarrow c=2$
putting $x=1$
$y(1)=\log _{e} 3-1+\frac{1}{2} \log _{e} 3+2=\frac{3}{2} \log _{e} 3-1+2$
$\Rightarrow 4 y(1)=6 \log _{e} 3+4$
or $4 y(1)-5 \log _{e} 3=\log _{e} 3+4$
24. Correct answer is [16].

Since, common ratio of A.G.P. is 2
therefore A.G.P. can be taken as
$\frac{(a-2 d)}{4}, \frac{(c-d)}{2}, a, 2(a+d), 4(a+2 d)$
or $a_{1}, a_{2}, 2, a_{3}, a_{4}$ (Given)
$\Rightarrow a=2$
also sum of thes A.G.P. is $\frac{49}{2}$
$\Rightarrow \frac{2-2 d}{4}+\frac{2-d}{2}+2+2(2+d)+4(2+2 d)=\frac{49}{2}$
$\Rightarrow \frac{1}{4}[2-2 d+4-2 d+8+16+8 d+32+32 d]=\frac{49}{2}$
$\Rightarrow 36 d+62=98$
$\Rightarrow 36 d=36 \Rightarrow d=1$
Hence, $a_{4}=4(a+2 d)=4(2+2 \times 1)=16$
25. Correct answer is [27].

Given that
$\left\{(x, y):\left|x^{2}-2\right| \leq x\right\}$
Let $y=\left|x^{2}-2\right|$
and $y=x$
which can be plotted as
By using the graph, we have

$\mathrm{A}=\int_{1}^{\sqrt{2}}\left[x-\left(2-x^{2}\right)\right] d x+\int_{\sqrt{2}}^{2}\left[x-\left(x^{2}-2\right)\right] d x$
$=\left[\frac{x^{2}}{2}-2 x+\frac{x^{3}}{3}\right]_{1}^{\sqrt{2}}+\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}+2 x\right]_{\sqrt{2}}^{2}$
$=\left(\frac{2}{2}-2 \sqrt{2}+\frac{2 \sqrt{2}}{2}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right)+\left(\frac{4}{2}-\frac{8}{3}+4\right)-$

$$
\left(\frac{2}{2}-\frac{2 \sqrt{2}}{3}+2 \sqrt{2}\right)
$$

$=1-2 \sqrt{2}+\frac{2 \sqrt{2}}{3}+\frac{3}{2}-\frac{1}{3}+6-\frac{8}{3}-1+\frac{2 \sqrt{2}}{3}-2 \sqrt{2}$
$A=-\frac{8 \sqrt{2}}{3}+\frac{9}{2}$
$\Rightarrow 6 \mathrm{~A}=-16 \sqrt{2}+27$ or $6 \mathrm{~A}+16 \sqrt{2}=27$
26. Correct answer is [7]. Given that $\mathrm{A}(4,3,1)$

So $A N=\frac{|4-3+2+3|}{\sqrt{1+1+4}}$

$$
=\frac{6}{\sqrt{6}}=\sqrt{6}
$$

and $B(5, \alpha, \beta)$ lies on plane
so $5-\alpha+2 \beta+3=0$
$\Rightarrow \alpha-2 \beta=8$
Since N is foot of \perp from A to given plane,
So $\frac{x-4}{1}=\frac{y-3}{-1}=\frac{z-1}{2}=\frac{-(4-3+2+3)}{1+1+4}$
$=-1$
$\Rightarrow x=3, y=4, z=-1$
so $\mathrm{N}(3,4,-1)$
Also, ar $(\triangle \mathrm{ABN})=3 \sqrt{2}$
$\Rightarrow \frac{1}{2} \times \mathrm{AN} \times \mathrm{BN}=3 \sqrt{2}$
$\Rightarrow \frac{1}{2} \times \sqrt{6} \times \mathrm{BN}=3 \sqrt{2} \Rightarrow \mathrm{BN}=2 \sqrt{3}$
or $\mathrm{BN}^{2}=12$
$\Rightarrow(5-3)^{2}+(\alpha-4)^{2}+(\beta+1)^{2}=12$
$4+(2 \beta+4)^{2}+(\beta+1)^{2}=12$ (using eqn (i))
$\Rightarrow 4 \beta^{2}+16+16 \beta+\beta^{2}+1+2 \beta=8$
$\Rightarrow 5 \beta^{2}+18 \beta+9=0$
$\Rightarrow(5 \beta+3)(\beta+3)=0$
$\Rightarrow \beta=-3$ and $\alpha=2$
also $\alpha^{2}+\beta^{2}+\alpha \beta=9+4-6=7$

27. Correct answer is [24].

Given that S be the set of values of λ for which given system of equations has no solution
Therefore for the given set of equations
$\Delta=\left|\begin{array}{ccc}6 \lambda & -3 & 3 \\ 2 & 6 \lambda & 4 \\ 3 & 2 & 3 \lambda\end{array}\right|=0$
$\Rightarrow \lambda=1, \frac{-1}{3}, \frac{-2}{3}$
Also for each values of $\lambda=1, \frac{-1}{3}, \frac{-2}{3}$, we have
$\left|\begin{array}{ccc}6 \lambda & -3 & 4 \lambda^{2} \\ 2 & 6 \lambda & 1 \\ 3 & 2 & \lambda\end{array}\right| \neq 0$
which implies that, for each values of λ, the given system of equations has no solution
Therefore $S \in\left\{1, \frac{-1}{3}, \frac{-2}{3}\right\}$ and $12 \sum_{\lambda \in S}|\lambda|$
$=12\left(|1|+\left|\frac{-1}{3}\right|+\left|\frac{-2}{3}\right|\right)$
$=12\left(1+\frac{1}{3}+\frac{2}{3}\right)=12\left(\frac{6}{3}\right)=24$

28. Correct answer is [24].

Given that $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$
Since, the domain for $\sec ^{-1} x$ is $|x| \geq 1$
Therefore $\left|\frac{2 x}{5 x+3}\right| \geq 1$
$\Rightarrow|2 x| \geq|5 x+3|$
or $(5 x+3)^{2}-(2 x)^{2} \leq 0$
$\Rightarrow(x+1)(7 x+3) \leq 0$
$\Rightarrow x \in\left[-1, \frac{-3}{7}\right]$
but $5 x+3 \neq 0 \Rightarrow x \neq \frac{-3}{5}$
Hence $x \in\left[-1, \frac{-3}{5}\right) \cup\left(\frac{-3}{5}, \frac{-3}{7}\right]$
and on comparing, we get
$\alpha=-1, \beta=\frac{-3}{5}, \gamma=\frac{-3}{5}$ and $\delta=\frac{-3}{7}$
then $|3 \alpha+10(\beta+\gamma)+21 \delta|$
$=\left|-3+10\left(\frac{-3}{5}-\frac{3}{5}\right)+21\left(\frac{-3}{7}\right)\right|$
$=|-3-12-9|=24$
29. Correct answer is [11].

Let quadratic equation be $y=a x^{2}+b x+c$
which passing through $(-1,0)$ and $(1,1)$
$\Rightarrow a-b+c=0$
and $a+b+c=1$
Also slope of tangent at $(1,1)$ is 1
so $\frac{d y}{d x}=2 a x+\left.b \Rightarrow \frac{d y}{d x}\right|_{(1,1)}=2 a+b=1$

$$
\begin{equation*}
\Rightarrow 2 a+b=1 \tag{iii}
\end{equation*}
$$

Solving (i), (ii) and (iii), we get
$a=\frac{1}{4}, b=\frac{1}{2}, c=\frac{1}{4}$
so $y=\frac{1}{4} x^{2}+\frac{1}{2} x+\frac{1}{4}$
Since, $(\alpha, \alpha+1)$ lies on this curve,
therefore
$\alpha+1=\frac{1}{4} \alpha^{2}+\frac{1}{2} \alpha+\frac{1}{4}$
$\Rightarrow 4 \alpha+4=\alpha^{2}+2 \alpha+1$
$\Rightarrow \alpha=3 \quad(\alpha=-1$ is rejected as $(\alpha, \alpha+1) \in I Q)$
Now $\frac{d y}{d x}=2 a x+b$
$\left.\frac{d y}{d x}\right|_{(3,4)}=2 \times \frac{1}{4} \times 3+\frac{1}{2}=2$
\Rightarrow Slope of normal $=\frac{-1}{2}$
and equation of normal
$y-4=-\frac{1}{2}(x-3)$
Putting $y=0 \Rightarrow-4=-\frac{1}{2}(x-3)$
$\Rightarrow x=11$
Hence, x-intercept is 11 .
30. Correct answer is [529].
On solving the equation of diagonal with the equation of $\mathrm{A}(-4,5) \quad 2 x-3 y=-23 \quad \mathrm{~B}(-1,7)$ sides, we get
$A(-4,5)$ and $C(3,2)$
also by solving the two sides, we get $B(-1,7)$ and mid point of AC is $\mathrm{E}\left(\frac{-1}{2}, \frac{7}{2}\right)$

Now equation of diagonal BD is
$y-7=\frac{7-\frac{7}{2}}{-1+\frac{1}{2}}(x+1)=\frac{\frac{7}{2}}{-\frac{1}{2}}(x+1)$
$-y+7=7 x+7$ or $7 x+y=0$
So, $d=\frac{|7 \times(-4)+5|}{\sqrt{49+1}}=\frac{23}{\sqrt{50}}$
and $50 d^{2}=23 \times 23=529$

