# JEE (Main) MATHEMATICS SOLVED PAPER

## Section A

**Q.1.** The angle of elevation of the top P of a tower from the feet of one person standing due South of the tower is 45° and from the feet of another person standing due west of the tower is 30°. If the height of the tower is 5 meters, then the distance (in meters) between the two persons is equal to:

(1) 10 (2) 
$$5\sqrt{5}$$
 (3)  $\frac{5}{2}\sqrt{5}$  (4) 5

- **Q. 2.** Let *a*, *b*, *c* and *d* be positive real numbers such that a + b + c + d = 11. If the maximum value of  $a^5 b^3 c^2$  *d* is 3750  $\beta$ , then the value of  $\beta$  is: **(1)** 55 **(2)** 108 **(3)** 90 **(4)** 110
- **Q.3.** If  $f : \mathbb{R} \to \mathbb{R}$  be a continuous function satisfying  $\int_{-\pi}^{\pi} \frac{\pi}{2} f(\sin 2x) \sin x \, dx + \alpha \int_{-\pi}^{\pi} f(\cos 2x) \cos x \, dx = 0,$

then the value of  $\alpha$  is:

(1) 
$$-\sqrt{3}$$
 (2)  $\sqrt{3}$  (3)  $-\sqrt{2}$  (4)  $\sqrt{2}$ 

Q.4. Let f and g be two functions defined by

$$f(x) = \begin{cases} x+1, & x<0\\ |x-1|, & x \ge 0 \end{cases} \text{ and } g(x) = \begin{cases} x+1, & x<0\\ 1 & x \ge 0 \end{cases}$$

Then, (gof)(x) is:

- (1) continuous everywhere but not differentiable at x = 1
- (2) continuous everywhere but not differentiable exactly at one point
- (3) differentiable everywhere
- (4) not continuous at x = -1
- **Q. 5.** If the radius of the largest circle with centre (2, 0) inscribed in the ellipse  $x^2 + 4y^2 = 36$  is *r*, then  $12r^2$  is equal to:

**Q. 6.** Let the mean of 6 observations 1, 2, 4, 5 *x* and *y* is 5 and their variance be 10. Then, their mean deviation about the mean is equal to:

(1) 
$$\frac{7}{3}$$
 (2)  $\frac{10}{3}$  (3)  $\frac{8}{3}$  (4) 3

- Q. 7. Let  $A = \{1, 3, 4, 6, 9\}$  and  $B = \{2, 4, 5, 8, 10\}$ . Let R be a relation defined on A×B such that  $R = \{((a_1, b_1), (a_2, b_2)): a_1 \le b_2 \text{ and } b_1 \le a_2\}$ . Then, the number of elements in the set R is: (1) 52 (2) 160 (3) 26 (4) 180
- **Q. 8.** Let P be the plane passing through the points (5, 3, 0), (13, 3, -2) and (1, 6, 2). For  $\alpha \in N$ , if the distances of the points A(3, 4,  $\alpha$ ) and B(2,  $\alpha$ , *a*) from the plane P are 2 and 3, respectively, then the positive value of *a* is:

- Q. 9. If the letters of the word MATHS are permuted and all possible words so formed are arranged as in a dictionary with serial number, then the serial number of the word THAMS is:
  (1) 102 (2) 103 (3) 101 (4) 104
- Q.10. If four distinct points with position vectors
  - $\vec{a}, \vec{b}, \vec{c}$  and  $\vec{d}$  are coplanar, then  $[\vec{a}\vec{b}\vec{c}]$  is equal to:
    - (1)  $[\vec{d}\,\vec{c}\,\vec{a}] + [\vec{b}\,\vec{d}\,\vec{a}] + [\vec{c}\,\vec{d}\,\vec{b}]$

(1) 5

- (2)  $[\vec{d}\vec{b}\vec{a}] + [\vec{a}\vec{c}\vec{b}] + [\vec{d}\vec{b}\vec{c}]$
- (3)  $[\vec{a}\vec{d}\vec{b}] + [\vec{d}\vec{c}\vec{a}] + [\vec{d}\vec{b}\vec{c}]$
- (4)  $[\vec{b}\,\vec{c}\,\vec{d}] + [\vec{d}\,\vec{c}\,\vec{a}] + [\vec{d}\,\vec{b}\,\vec{a}]$
- **Q.11.** The sum of the coefficients of three consecutive terms in the binomial expansion of  $(1 + x)^{n+2}$ , which are in the ratio 1 : 3 : 5, is equal to: (1) 63 (2) 92 (3) 25 (4) 41

**Q.12.** Let y = y(x) be the solution of the differential

equation 
$$\frac{dy}{dx} + \frac{5}{x(x^5+1)}y = \frac{(x^5+1)^2}{x^7}, x > 0$$
. If  $y(1)$ 

= 2, then y(2) is equal to:

(1) 
$$\frac{693}{128}$$
 (2)  $\frac{637}{128}$  (3)  $\frac{697}{128}$  (4)  $\frac{679}{128}$ 

- **Q. 13.** The converse of  $((\sim p) \land q) \Rightarrow r$  is: (1)  $(p \lor (\sim q)) \Rightarrow (\sim r)$  (2)  $((\sim p) \lor q) \Rightarrow r$ (3)  $(\sim r) \Rightarrow ((\sim p) \land q)$  (4)  $(\sim r) \Rightarrow p \land q$
- **Q. 14.** If the 1011<sup>th</sup> term from the end in the binominal expansion of  $\left(\frac{4x}{5} \frac{5}{2x}\right)^{2022}$  is 1024 times 1011<sup>th</sup> term from the beginning, then |x| is equal to:

F a sequal to

(1) 8 (2) 12 (3) 
$$\frac{5}{16}$$
 (4) 15

**Q. 15.** If the system of linear equations  $7x + 11y + \alpha z = 13$   $5x + 4y + 7z = \beta$  175x + 194y + 57z = 361has infinitely many solutions, then  $\alpha + \beta + 2$  is equal to :

$$(1) 3 (2) 6 (3) 5 (4) 4$$

**Q. 16.** Let the line passing through the point P (2, -1, 2) and R (5, 3, 4) meet the plane x - y + z = 4 at the point T. Then, the distance of the point R from the plane x + 2y + 3z + 2 = 0 measured parallel to the

line 
$$\frac{x-7}{2} = \frac{y+3}{2} = \frac{z-2}{1}$$
 is equal to:  
(1) 3 (2)  $\sqrt{61}$  (3)  $\sqrt{31}$  (4)  $\sqrt{189}$ 

**Q. 17.** Let the function  $f: [0, 2] \rightarrow \mathbb{R}$  be defined as

$$f(x) = \begin{cases} e^{\min(x^2, x - [x])}, & x \in [0, 1) \\ e^{[x - \log_e x]}, & x \in [1, 2) \end{cases}$$

where [t] denotes the greatest integer less than or equal to t. Then, the value of the integral

$$\int_{0}^{2} xf(x)dx \text{ is:}$$
(1)  $(e-1)\left(e^{2}+\frac{1}{2}\right)$  (2)  $1+\frac{3e}{2}$ 
(3)  $2e-\frac{1}{2}$  (4)  $2e-1$ 

**Q. 18.** For  $a \in C$ , let  $A = \{z \in C : \operatorname{Re}(a + \overline{z}) > \operatorname{Im}(\overline{a} + z) | \}$  and  $B = \{z \in C : \operatorname{Re}(a + \overline{z}) < \operatorname{Im}(\overline{a} + z) \}$ . The two statements: (S1) : If Re (a), Im (a) >0, then the set A contains all the real numbers (S2) : If Re (a), Im (a) < 0, then the set B contains all the real numbers, (1) only (S1) is true (2) both are false (3) only (S2) is true (4) both are true

**Q.19.** If 
$$\begin{vmatrix} x & x+\lambda & x \\ x & x & x+\lambda^2 \end{vmatrix} = \frac{9}{8}(103x+81)$$
, then  $\lambda, \frac{\lambda}{3}$ 

are the roots of the equation:

(1)  $4x^2 - 24x - 27 = 0$  (2)  $4x^2 + 24x + 27 = 0$ (3)  $4x^2 - 24x + 27 = 0$  (4)  $4x^2 + 24x - 27 = 0$ 

**Q. 20.** The domain of the function 
$$f(x) = \frac{1}{\sqrt{[x]^2 - 3[x] - 10}}$$

is (where [*x*] denotes the greastest integer less than or equal to *x*):

- (1)  $(-\infty, -3] \cup [6, \infty)$  (2)  $(-\infty, -2] \cup (5, \infty)$
- (3)  $(-\infty, -3] \cup (5, \infty)$  (4)  $(-\infty, -2) \cup [6, \infty)$

#### Section B

**Q.21.** If A is the area in the first quadrant enclosed by the curve  $C : 2x^2 - y + 1 = 0$ , the tangent to C at the point (1, 3) and the line x + y = 1, then the value of 60 A is \_\_\_\_\_.

- **Q. 22.** Let  $A = \{1, 2, 3, 4, 5\}$  and  $B = \{1, 2, 3, 4, 5, 6\}$ . Then, the number of functions  $f : A \rightarrow B$  satisfying f(1) + f(2) = f(4) - 1 is equal to \_\_\_\_\_.
- **Q. 23.** Let the tangent to the parabola  $y^2 = 12x$  at the point (3,  $\alpha$ ) be perpendicular to the line 2x + 2y = 3. Then, the square of distance of the point (6, -4) from the normal to the hyperbola  $\alpha^2 x^2 9y^2 = 9\alpha^2$  at its point ( $\alpha 1$ ,  $\alpha + 2$ ) is equal to \_\_\_\_\_.
- **Q.24.** For  $k \in \mathbb{N}$ , if the sum of the series  $1 + \frac{4}{k} + \frac{8}{k^2} + \frac{13}{k^3} + \frac{19}{k^4} + \dots$  is 10, then the value of k is
- **Q.25.** Let the line  $\ell : x = \frac{1-y}{-2} = \frac{z-3}{\lambda}, \lambda \in \mathbb{R}$  meet the plane P : x + 2y + 3z = 4 at point  $(\alpha, \beta, \gamma)$ . If the angle between the line  $\ell$  and the plane P is  $\cos^{-1}\left(\sqrt{\frac{5}{14}}\right)$ , then  $\alpha + 2\beta 6\gamma$  is equal to \_\_\_\_\_.
- **Q.26.** The number of points where the curve  $f(x) = e^{8x} e^{6x} 3e^{4x} e^{2x} + 1$ ,  $x \in \text{cuts } x$ -axis, is equal to
- **Q. 27.** If the line  $l_1: 3y 2x = 3$  is the angular bisector of the line  $l_2: x y + 1 = 0$  and  $l_3: \alpha x + \beta y + 17$ , then  $\alpha^2 + \beta^2 \alpha \beta$  is equal to \_\_\_\_\_.
- **Q. 28.** Let the probability of getting head for a biased coin be  $\frac{1}{4}$ . It is tossed repeatedly until a head appears. Let N be the number of tosses required. If the probability that the equation  $64x^2 + 5Nx + 1 = 0$  has no real root is  $\frac{p}{q}$ , where *p* and *q* are coprime, then q p is equal to \_\_\_\_\_.
- **Q.29.** Let  $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$  and  $\vec{b} = \hat{i} + \hat{j} \hat{k}$ . If  $\vec{c}$  is vector such that  $\vec{a}.\vec{c} = 11$ ,  $\hat{b}.(\vec{a} \times \vec{c}) = 27$  and  $\vec{b}.\vec{c} = -\sqrt{3} |\vec{b}|$ ,  $|\vec{a} \times \vec{c}|^2$  is equal to \_\_\_\_\_.

**Q.30.** Let 
$$\left\{ S = \left\{ z \in C - \{i, 2i\} : \frac{z^2 + 8iz - 15}{z^2 - 3iz - 2} \in R \right\}.$$
 If  $\alpha - \frac{13}{11}i \in S, a \in R - \{0\}$ , then  $242\alpha^2$  is equal to

| Q. No. | Answer | Topic name                          | Chapter name                     |
|--------|--------|-------------------------------------|----------------------------------|
| 1      | (1)    | Problem based on height an distance | Height and distance              |
| 2      | (3)    | Rrlation b/w a.M., G.M              | Sequence and series              |
| 3      | (3)    | Definite integral using properties  | Definite integral                |
| 4      | (2)    | Differentiability of a function     | Continuity and differentiability |
| 5      | (4)    | Ellipse and circle                  | Ellipse                          |

## **Answer Key**

| Q. No. | Answer | Topic name                         | Chapter name                |
|--------|--------|------------------------------------|-----------------------------|
| 6      | (3)    | Mean and variance                  | Statistics                  |
| 7      | (2)    | Rrlation                           | Relation and function       |
| 8      | (3)    | Point and plane                    | 3D                          |
| 9      | (2)    | Word problem                       | Permutation and combination |
| 10     | (1)    | Scalar triple product              | Vector                      |
| 11     | (1)    | Properties if ncr                  | Binomial theorem            |
| 12     | (1)    | Linear differential equation       | Differential equation       |
| 13     | (1)    | Compound statement                 | Mathematical reasoning      |
| 14     | (3)    | General therm                      | Binomial theorem            |
| 15     | (4)    | Elementary transformation          | Matrix                      |
| 16     | (1)    | Point and plane                    | 3D                          |
| 17     | (3)    | Definite integral using properties | Definite integral           |
| 18     | (2)    | Component of complex number        | Complex number              |
| 19     | (3)    | Determinant                        | Determinant                 |
| 20     | (4)    | Domain                             | Functions                   |
| 21     | [16]   | Approximation                      | Application of derivatives  |
| 22     | [360]  | No. of functions                   | Functions                   |
| 23     | [116]  | Tangent and normal of parabola     | Parabola                    |
| 24     | [2]    | Method of difference               | Sequence and series         |
| 25     | [11]   | Line and plane                     | 3D                          |
| 26     | [2]    | Solution of equation               | Basics Mathematics          |
| 27     | [348]  | Line and line                      | 3D                          |
| 28     | [27]   | Classical approach                 | Probability                 |
| 29     | [285]  | Product of two vectors             | Vector                      |
| 30     | [1680] | Locus related problem              | Complex number              |

# Solutions

## Section A 1. Option (1) is correct. In $\Delta PQA$ $\tan 30^\circ = \frac{PQ}{AQ} \Longrightarrow \frac{1}{\sqrt{3}} = \frac{5}{AQ}$ $\Rightarrow AQ = 5\sqrt{3}$ -5m 90° ~90° In **DPQB** QV $\tan 45^\circ = \frac{PQ}{BQ} \Longrightarrow 1 = \frac{5}{BQ}$ 90 $\Rightarrow BQ = 5$ Now, in $\triangle ABQ$ A ↓ West B ↓ $AB^{2} = AQ^{2} + BQ^{2}$ $AB^{2} = (5\sqrt{3})^{2} + (5)^{2} = 75 + 25 = 100$ South $\Rightarrow AB = 10$ Hence, distance between the two persons in 10 m. 2. Option (3) is correct. Given that a + b + c + d = 11

Now to find the maximum value of  $a^5b^3c^2d$ , Since, *a* is repeated 5 times, *b* is 3 times, *c* is 2 times

and *d* is one time.

Therefore by using A.M. 
$$\geq$$
 G.M., we get

$$\begin{aligned} \frac{a}{5} + \frac{a}{5} + \frac{a}{5} + \frac{a}{5} + \frac{b}{3} + \frac{b}{3} + \frac{b}{3} + \frac{c}{2} + \frac{c}{2} + \frac{d}{1} \\ & 11 \end{aligned} \\ & \geq \left( \left(\frac{a}{5}\right)^5 \left(\frac{b}{3}\right)^3 \left(\frac{c}{2}\right)^2 d \right)^{\frac{1}{11}} \\ & \Rightarrow \left(\frac{a+b+c+d}{11}\right)^{11} \ge \left(\frac{a}{5}\right)^5 \left(\frac{b}{3}\right)^3 \left(\frac{c}{2}\right)^2 d \\ & \Rightarrow \left(\frac{11}{11}\right)^{11} \ge \frac{a^5 b^3 c^2 d}{5^5 3^3 2^2} \\ & \Rightarrow 1 \ge \frac{3750\beta}{337500} = \frac{\beta}{90} \Rightarrow \beta \le 90 \end{aligned}$$

Option (3) is correct. 3. Given that  $f : \mathbb{R} \to \mathbb{R}$  and  $\int f(\sin 2x)\sin x dx + \alpha \int f(\cos 2x)\cos x dx = 0$  $\Rightarrow \int_{0}^{\frac{\pi}{4}} f(\sin 2x) \sin x \, dx + \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx$  $+\alpha \int_{-\infty}^{-\infty} f(\cos 2x) \cos x \, dx = 0$  $\Rightarrow \int_{0}^{\overline{4}} f(\cos 2x) \sin\left(\frac{\pi}{4} - x\right) dx + \int_{\underline{\pi}}^{\overline{2}} f(\sin 2x) \sin x \, dx$ Putting  $x = t + \frac{\pi}{4}$ ; dx = dt $\pi$  $\Rightarrow \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \sin\left(\frac{\pi}{4} - x\right) dx + \int_{0}^{\frac{\pi}{4}} f(\cos 2t) \sin\left(t + \frac{\pi}{4}\right) dx$  $+\alpha \int_{0}^{\frac{1}{4}} f(\cos 2x) \cos dx = 0$  $\Rightarrow \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \sin\left(\frac{\pi}{a} - x\right) dx + \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \sin\left(\frac{\pi}{4} + x\right) dx$  $+\alpha \int_{0}^{\overline{4}} f(\cos 2x) \cos x \, dx = 0$  $\Rightarrow \int_{0}^{4} f(\cos 2x) \left\{ \sin\left(\frac{\pi}{4} - x\right) + \sin\left(\frac{\pi}{4} + x\right) + \alpha \cos x \right\} dx = 0$  $\Rightarrow \int_{0}^{1} f(\cos 2x) \left\{ \sqrt{2} \cos x + \alpha \cos x \right\} dx = 0$  $\Rightarrow (\sqrt{2} + \alpha) \times \int_{0}^{\frac{\pi}{4}} \cos x \cdot f(\cos 2x) dx = 0$  $\left\{ \because f(\cos 2x)\cos x \text{ is } \neq 0 \text{ in } \left(0, \frac{\pi}{4}\right) \right\}$  $\Rightarrow \sqrt{2} + \alpha = 0$  $\Rightarrow \alpha = -\sqrt{2}$ Option (2) is correct. 4.

Given that 
$$f(x) = \begin{cases} x+1, & x<0\\ |x-1|, & x \ge 0 \end{cases} = \begin{cases} x+1, & x<0\\ 1-x, & 0 \le x < 1\\ x-1, & x \ge 1 \end{cases}$$
  
and  $g(x) = \begin{cases} x+1, & x<0\\ 1, & x \ge 0\\ 1, & x \ge 0 \end{cases}$   
 $\Rightarrow g(f(x)) = \begin{cases} f(x)+1, & f(x)<0\\ 1, & f(x)\ge 0 \end{cases} = \begin{cases} x+1+1, & x+1<0\\ 1, & x+1\ge 0 \end{cases}$ 

 $y = \begin{cases} x + 2, & x < -1 \\ 1, & x \ge -1 \end{cases}$ v=1From the graph, if is clear that g(f(x)) $\rightarrow x$ -2 is continuous but not differentiable at one point. Option (4) is correct. Given ellipse is  $x^2 + 4y^2 = 36$  $\Rightarrow \frac{x^2}{\epsilon^2} + \frac{y^2}{2^2} = 1$ P (6cos0, 3sin0) Any point on this ellipse is (6  $\cos\theta$ , C(2, 0)3 sin $\theta$ ) and eqn. of normal at this point is  $ax \sec \theta - by \csc \theta = a^2 - b^2$  $\Rightarrow 6x \sec\theta - 3u \csc\theta = 36 - 9 = 27$ If the circle touches the ellipse, then this normal must pass through the centre of circle i.e. (2, 0)so  $6 \times 2 \sec \theta - \theta = 27$  $\Rightarrow \sec\theta = \frac{27}{12} = \frac{9}{4}$ or  $\cos\theta = \frac{4}{9}$  and  $\sin\theta = \sqrt{1 - \frac{16}{81}} = \frac{\sqrt{65}}{9}$ So p (6 cos $\theta$ , 3 sin $\theta$ ) =  $\left(\frac{6 \times 4}{9}, \frac{3 \times \sqrt{65}}{9}\right) = \left(\frac{8}{3}, \frac{\sqrt{65}}{3}\right)$ and  $CP^2 = r^2 = \left(2 - \frac{8}{3}\right)^2 + \left(0 - \frac{\sqrt{65}}{3}\right)^2$  $=\frac{4}{9}+\frac{65}{9}=\frac{65}{9}$  and  $12r^2=\frac{12\times69}{9}=4\times23$  $\Rightarrow 12r^2 = 92$ 6. Option (3) is correct. Given that mean = 5, variance = 10So  $\frac{1+2+4+5+x+y}{6} = 5$  $\Rightarrow x + y + 12 = 30 \text{ or } x + y = 18$ Also, variance = 10 ...(i)  $\Rightarrow \frac{1+4+16+25+x^2+y^2}{6} - 5^2 = 10$  $\Rightarrow 46 + x^2 + y^2 - 6 \times 25 = 60$  $\Rightarrow x^2 + y^2 = 164$ ...(ii) On solving equations (i) & (ii), we get x = 8, y = 10Hence, mean deviation about mean  $=\frac{|1-5|+|2-5|+|4-5|+|5-5|+|8-5|+|10-5|}{6}$  $=\frac{4+3+1+0+3+5}{6}=\frac{16}{6}=\frac{8}{3}$ 

5.

7. Option (2) is correct. Given that  $A = \{1, 3, 4, 6, 9\} \& B = \{2, 4, 5, 8, 10\}$  and

 $\mathbf{R} = \{(a_1, b_1), (a_2, b_2)\} : a_1 \le b_2 \text{ and } b_1 \le a_2\}$ 

Here, if  $a_1 = 1, 3, 4, 6, 9$ , then  $b_2$  can take 5, 4, 4, 2, 1 choices, respectively. Also if  $b_1 = 2, 4, 5, 8, 10$  then *a*<sub>2</sub> can take 4, 3, 2, 1, choices respectively. Hence, total number of required relations are  $= (5 + 4 + 4 + 2 + 1) \times (4 + 3 + 2 + 1)$  $= 16 \times 10 = 160$ 

8. Option (3) is correct.

Eqn. of the plane passing through the points (5, 3, 0), (13, 3, -2) and (1, 6, 2) is given by

 $|x-5 \quad y-3 \quad z-0|$ 8 0 -2 = 0-3 -2 4

or 3x - 4y + 12z = 3...(i) Now, distance of this plane from A (3, 4,  $\alpha$ ) & B(2,  $\alpha$ , *a*) are 2 and 3, respectively, then

$$\frac{|9-16+12\alpha-3|}{\sqrt{9+16+144}} = 2 \text{ and } \frac{|6-4\alpha+12a-3|}{\sqrt{9+16+144}} = 3$$
$$\Rightarrow |12\alpha-10| = 26$$
$$\Rightarrow 12\alpha = 10 \pm 26$$
$$\Rightarrow \alpha = 3 \left(\alpha = \frac{-16}{12} \text{ rejected as } \alpha \in N\right)$$
and 
$$\frac{|12a+3-4\alpha|}{\alpha} = 3$$

$$\Rightarrow |12a + 3 - 4 \times 3| = 3 \times 13$$
$$12a - 9 = \pm 39$$
$$\Rightarrow 12a = 9 + 39 = 48 \Rightarrow a = 4$$

9. Option (2) is correct. Given word is MATHS If we start with A, then total words = 4! = 24If we start with H, then total words = 4! = 24If we start with M, then total words = 4! = 24If we start with S, then total words = 4! = 24If we start with TA, then total words = 3! = 6Then, the next word is THAMS which is the required word. Hence, the total serial number of the word THAMS is

 $24 \times 4 + 6 + 1 = 103$ 

## 10. Option (1) is correct.

Since  $\vec{a}, \vec{b}, \vec{c}$  and  $\vec{d}$  are coplanar that  $(\vec{a} - \vec{d}), (\vec{b} - \vec{d})$ and  $(\vec{c} - \vec{d})$  must be coplanar.

So 
$$[(\vec{a} - \vec{d}), (\vec{b} - \vec{d}), (\vec{c} - \vec{d})] = 0$$

$$\Rightarrow (\vec{a} - \vec{d}) \cdot ((\vec{b} - \vec{d}) \times (\vec{c} - \vec{d})) = 0$$

$$\Rightarrow (\vec{a} - \vec{d}) \cdot (\vec{b} \times \vec{c} - \vec{b} \times \vec{d} - \vec{d} \times \vec{c}) = 0$$

$$\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] - [\vec{a} \ \vec{b} \ \vec{d}] - [\vec{a} \ \vec{d} \ \vec{c}] - [\vec{d} \ \vec{b} \ \vec{c}] = 0$$

or  $[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{d} \ \vec{c} \ \vec{a}] + [\vec{b} \ \vec{d} \ \vec{a}] + [\vec{c} \ \vec{d} \ \vec{b}]$ 

### 11. Option (1) is correct.

Given that 3 consecutive terms are in the ratio 1 : 3 : 5. So

$${}^{n+2}C_{r-1}: {}^{n+2}C_r: {}^{n+2}C_{r+1} = 1:3:5$$

$$\Rightarrow \frac{n+2}{n+2} \frac{1}{C_r} = \frac{1}{3} \text{ and } \frac{n+2}{n+2} \frac{1}{C_{r+1}} = \frac{3}{5}$$

$$\Rightarrow \frac{r}{n+2-r+1} = \frac{1}{3} \text{ and } \frac{r+1}{n+2-(r+1)+1} = \frac{3}{5}$$

$$\Rightarrow 3r = n-r+3 \text{ and } 5r+5 = 3n-3r+6$$
or  $4r = n+3$  ...(i)
and  $8r = 3n+1$  ...(ii)
On solving eqn. (i) and (ii), we get
 $r = 2 \text{ and } n = 5$ 
Hence, sum of terms =  ${}^{7}C_1 + {}^{7}C_2 + {}^{7}C_3$ 
 $= 7+21+35=63$ 
12. Option (1) is correct.

Given that

$$\frac{dy}{dx} + \frac{5}{x(x^5+1)}y = \frac{(x^5+1)^2}{x^7}, x > 0$$

which is a linear differential eqn.

I.F. = 
$$e^{\int \frac{5}{x(x^5+1)} dx} = e^{\int \frac{5}{x^6(1+\frac{1}{x^5})} dx}$$
  
Let  $t = 1 + \frac{1}{x^5}$   
 $dt = -\frac{5}{x^6} dx$  or  $-dt = \frac{5dx}{x^6}$   
I.F. =  $e^{-\int \frac{1}{t} dt} = e^{-\log t} = \frac{1}{t} = \frac{x^5}{1+x^5}$   
Solution of differential eqn. is given

S n by

$$y \times \frac{x^5}{1+x^5} = \int \frac{(x^5+1)^2}{x^7} \times \frac{x^5}{(1+x^5)} dx + c$$
$$= \int \frac{x^5+1}{x^2} dx + c = \int (x^3+x^{-2}) dx + c$$
$$\Rightarrow \frac{yx^5}{1+x^5} = \frac{x^4}{4} - \frac{1}{x} + c$$

Putting x = 1, y = 2, we get

$$\Rightarrow \frac{2}{1+1} = \frac{1}{4} - 1 + C \Rightarrow C = \frac{7}{4}$$
$$\Rightarrow \frac{yx^5}{1+x^5} = \frac{x^4}{4} - \frac{1}{x} + \frac{7}{4}$$

Putting x = 2 $\Rightarrow \frac{y \times 32}{1+32} = \frac{16}{4} - \frac{1}{2} + \frac{7}{4}$  $33 [16 + 7 - 2] \quad 33 \times 21$ 

$$\Rightarrow y = \frac{33}{32} \left[ \frac{13 + 7 - 2}{4} \right] = \frac{33 \times 21}{32 \times 4}$$
$$\Rightarrow y = \frac{693}{128}$$

13. Option (1) is correct. Converse of  $((\sim p) \land q) \rightarrow r$  is  $\sim ((\sim p) \land q) \rightarrow \sim r$ 

$$\Rightarrow (\sim (\sim p)) \lor (\sim q) \rightarrow \sim r$$
$$\Rightarrow p \lor (\sim q) \rightarrow \sim r$$

14. Option (3) is correct. Given that, in exp of  $\left(\frac{4x}{5} - \frac{5}{2x}\right)^{2022}$ 

 $T'_{1011} = 1024 \times T_{1011}$ 

$$\Rightarrow {}^{2022}C_{1010} \left(\frac{-5}{2x}\right)^{2022-1010} \left(\frac{4x}{5}\right)^{1010} = 2{}^{10} \times {}^{2022}C_{1010} \\ \left(\frac{-5}{2x}\right)^{1010} \left(\frac{4x}{5}\right)^{1012} \\ \Rightarrow \left(\frac{-5}{2x}\right)^2 = 2{}^{10} \times \left(\frac{4x}{5}\right)^2 \\ \Rightarrow x^4 = \frac{5^4}{2^{16}} = \frac{5^4}{(2^4)^4} \text{ or } |x| = \frac{5}{16}$$

15. Option (4) is correct.

The augmented matrix of the given system of equations can be written as

$$[\mathbf{A}:\mathbf{B}] = \begin{bmatrix} 175 & 194 & 57 & : & 361 \\ 7 & 11 & \alpha & : & 13 \\ 5 & 4 & 7 & : & \beta \end{bmatrix}$$

Now,  $R_2 \rightarrow 25R_2 - R_1$  and  $R_3 \rightarrow 35R_3 - R_1$ , we get

$$[A:B] \sim \begin{bmatrix} 175 & 194 & 57 & : & 361 \\ 0 & 81 & 25\alpha - 57 & : & -36 \\ 0 & -54 & 188 & : & 35\beta - 361 \end{bmatrix}$$

Again applying  $R_2 \leftrightarrow R_3$ 

$$[A:B] \sim \begin{bmatrix} 175 & 194 & 57 & : & 361 \\ 0 & -54 & 188 & : & 35\beta - 361 \\ 0 & 81 & 25\alpha - 57 & : & -36 \end{bmatrix}$$

Applying  $R_3 \rightarrow 54 R_3 + 81R_{2'}$  we get

$$[A:B] \sim \begin{bmatrix} 175 & 194 & 57 & : & 361 \\ 0 & -54 & 188 & : & 35\beta - 361 \\ 0 & 0 & 1350\alpha + 12150 & : & 2835\beta - 2305 \end{bmatrix}$$

For infinite solutions  $1350 \alpha + 12150 = 0 \text{ and } 2835\beta - 2305 = 0$   $\Rightarrow \alpha = -9 \text{ and } \beta = 11$  $\Rightarrow \alpha + \beta + 2 = -9 + 11 + 2 = 4$ 

### 16. Option (1) is correct.

Eqn. of line passing through P (2, -1, 2) and Q (5, 3, 4) is

$$\frac{x-5}{3} = \frac{y-3}{4} = \frac{z-4}{2} = \lambda(say)$$

 $\Rightarrow R (3\lambda + 5, 4\lambda + 3, 2\lambda + 4)$ This point lies on x - y + z = 4So,  $3\lambda + 5 - 4\lambda - 3 + 2\lambda + 4 = 4$  $\Rightarrow \lambda = -2$ So R (-1, -5, 0) Now, eqn. of line passing through R(-1, 5, 0) and parallel to line whose d.r.'s are (2, 2, 1) is  $\frac{x+1}{2} = \frac{y+5}{2} = \frac{z-0}{1} = \mu(say)$   $\Rightarrow (x, y, z) \equiv (2\mu - 1, 2\mu - 5, \mu) \text{ which lies on } x + 2y + 3z + 2 = 0$ So  $2\mu - 1 + 4\mu - 10 + 3\mu + 2 = 0 \Rightarrow 9\mu - 9 = 0$  $\Rightarrow \mu = 1$ So, point on the plane is (1, -3, 1)Hence, the required distance is  $= \sqrt{(1+1)^2 + (-3+5)^2 + (1-0)^2} = 3 \text{ units.}$ 

17. Option (3) is correct.

Given that 
$$f(x) = \begin{cases} e^{\min\{x^2, x-[x]\}}, & 0 \le x < 1\\ e^{[x-\log_e x]}, & 1 \le x < 2 \end{cases}$$
  
 $\Rightarrow f(x) = \begin{cases} e^{x^2}, & 0 \le x < 1\\ e, & 1 \le x < 2 \end{cases}$   
Now,  $\int_0^2 xf(x)dx = \int_0^1 xf(x)dx + \int_1^2 xf(x)dx$   
 $= \int_0^1 xe^{x^2}dx + \int_1^2 xe\,dx$   
Let  $t = x^2$   
 $\frac{dt}{2} = x\,dx$   
 $\int_0^2 xf(x)dx = \int_0^1 \frac{1}{2}e^tdt + e\left[\frac{x^2}{2}\right]_1^2$   
 $= \frac{1}{2}\left[e^t\right]_0^1 + e\left[2 - \frac{1}{2}\right]$   
 $= \frac{1}{2}(e-1) + \frac{3}{2}e = \frac{e}{2} - \frac{1}{2} + \frac{3e}{2} = 2e - \frac{1}{2}$ 

18. Option (2) is correct.

Given that  $A = \{z \in C : \text{Re } (a + \overline{z}) > I_m(\overline{a} + z)\}$  and  $B = \{x \in C : \text{Re } (a + \overline{z}) < I_m(\overline{a} + z)\}$ Let z = x + iy and a = p + iqThen, Re  $(a + \overline{z}) > I_m(\overline{a} + z)$   $\Rightarrow \text{Re } (p + iq + x - iy) > I_m (p - iq + x + iy)$   $\Rightarrow p + x > y - q$ which is not true for all real values of p, q, x, y  $\Rightarrow S_1$  is false Again, Re  $(a + \overline{z}) < I_m(\overline{a} + z)$   $\Rightarrow p + x < y - q$ which is also not true for all real values of p, q, x, y  $\Rightarrow S_2$  is false. **19. Option (3) is correct.** 

Given that 
$$\begin{vmatrix} x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2 \end{vmatrix} = \frac{9}{8}(103x+81)$$

Putting x = 0, we get

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^2 \end{vmatrix} = \frac{9}{8}(0+81)$$
$$\Rightarrow \lambda^3 = \left(\frac{9}{2}\right)^3$$

$$\Rightarrow \lambda = \frac{9}{2} \text{ and } \frac{\lambda}{3} = \frac{3}{2}$$

So, the required quadratic equation is or  $4x^2 - 24x + 27 = 0$ 

## 20. Option (4) is correct.

Given that 
$$f(x) = \frac{1}{\sqrt{[x]^2 - 3[x] - 10}}$$

Now, f(x) is defined, when  $[x]^2 - 3[x] - 10 > 0$   $\Rightarrow ([x] + 2) ([x] - 5) > 0$   $\Rightarrow [x] < -2 \text{ or } [x] > 5$   $\Rightarrow x < -2 \text{ or } x \ge 6$ or  $x \in (-\infty, -2) \cup [6, \infty)$ 

## Section B

**21.** Correct answer is [16]. Given that  $y = 2x^2 + 1$  which is parabola differentiating :  $\frac{dy}{dx} = 4x$   $\frac{dy}{dx}\Big|_{(1,3)} = 4$   $\Rightarrow$  Eqn. of tangent at (1, 3) is y - 3 = 4 (x - 1)  $\Rightarrow y = 4x - 1$  ...(i) Solving line (i) with x + y = 1 ...(ii) we get

$$x = \frac{2}{5}$$
 and  $y = \frac{3}{5}$ 

which can be represented as



So, the required area is

$$A = \int_{0}^{1} y_{\text{Parabola}} dx - \int_{0}^{2/5} y_{\text{Line (ii)}} dx - \int_{2/5}^{1} y_{\text{Line (i)}} dx$$
$$= \int_{0}^{1} (2x^{2} + 1) dx - \int_{0}^{\frac{2}{5}} (1 - x) dx - \int_{\frac{2}{5}}^{1} (4x - 1) dx$$
$$= \left[ \frac{2x^{3}}{3} + x \right]_{0}^{1} - \left[ x - \frac{x^{2}}{2} \right]_{0}^{\frac{2}{5}} - \left[ \frac{4x^{2}}{2} - x \right]_{\frac{2}{5}}^{1}$$

and 15A = 4or 60A = 16

22. Correct answer is [360].  $f(1) + f(2) + 1 = f(4) \le 6$  $f(1) + f(2) \le 5$ 

Case (i)  $f(1) = 1 \Rightarrow f(2) = 1, 2, 3, 4 \Rightarrow 4$  choice Case (ii)  $f(1) = 2 \Rightarrow f(2) = 1, 2, 3 \Rightarrow 3$  choice Case (iii)  $f(1) = 3 \Rightarrow f(2) = 1, 2 \Rightarrow 2$  choice Case (iv)  $f(1) = 4 \Rightarrow f(2) = 1 \Rightarrow 1$  choice f(3) and f(5) both have 6 choice Number of functions =  $(4 + 3 + 2 + 1) \times 6 \times 6 = 360$ 23. Correct answer is [116]. Given that (3,  $\alpha$ ) lies on  $y^2 = 12x$  $\Rightarrow \alpha^2 = 36 \Rightarrow \alpha = \pm 6$ and  $2y \frac{dy}{dx} = 12 \Rightarrow \frac{dy}{dx} = \frac{6}{y}$ or  $\frac{dy}{dx}\Big|_{\alpha \to +6} = \frac{6}{\pm 6} = \pm 1$  = slope of tangent But slope of the given line 2x + 2y = 3 is = -1So, slope of tangent m = -1 is rejected. Also,  $\alpha^2 x^2 - 9y^2 = 9\alpha^2$  $\Rightarrow \frac{x^2}{9} - \frac{y^2}{\alpha^2} = 1$ and Normal at  $(\alpha - 1, \alpha + 2)$  i.e.  $(6 - 1, 6 + 2) \equiv (5, 8)$  is  $\frac{9x}{5} + \frac{36y}{8} = 45$  $\Rightarrow 2x + 5y = 50$ Now, distance of (6, -4) from 2x + 5y - 50 = 0 is  $d = \left| \frac{2 \times 6 + 5(-4) - 50}{\sqrt{4 + 25}} \right| = \left| \frac{12 - 20 - 50}{\sqrt{29}} \right| = \frac{58}{\sqrt{29}}$  $d^2 = \frac{58 \times 58}{29} = 2 \times 58 = 116$ 24. Correct answer is [2]

 $10 = 1 + \frac{4}{k} + \frac{6}{k^2} + \frac{13}{k^3} + \frac{15}{k^4} + \dots \infty$ 

On multiplying by  $\frac{1}{k}$ , we get

$$\frac{10}{k} = \frac{1}{k} + \frac{4}{k^2} + \frac{8}{k^3} + \frac{13}{k^4} + \dots \infty$$

\_\_\_\_ on subtracting

$$10 - \frac{10}{k} = 1 + \frac{3}{k} + \frac{4}{k^2} + \frac{5}{k^3} + \frac{6}{k^4} + \dots \infty$$
  
or  $\left(9 - \frac{10}{k}\right) = \frac{3}{k} + \frac{4}{k^2} + \frac{5}{k^3} + \frac{6}{k^4} + \dots \infty$ 

Again multiplying by  $\frac{1}{k}$ , we get

$$\frac{\left(9 - \frac{10}{k}\right)\frac{1}{k} = \frac{3}{k^2} + \frac{4}{k^3} + \frac{5}{k^4} + \dots \infty}{\text{again subtracting}}$$
$$\frac{\frac{3}{\left(9 - \frac{10}{k}\right)\left(1 - \frac{1}{k}\right) = \frac{3}{k} + \frac{1}{k^2} + \frac{1}{k^3} + \frac{1}{k^4} + \dots \infty}{\frac{(9k - 10)(k - 1)}{k^2} = \frac{3}{k} + \frac{\frac{1}{k^2}}{1 - \frac{1}{k}} = \frac{3}{k} + \frac{1}{k(k - 1)}}$$

$$\frac{(9k-10)(k-1)}{k^2} = \frac{3k-3+1}{k(k-1)} = \frac{3k-2}{k(k-1)}$$

$$(9k-10)(k-1)^2 = k(3k-2)$$

$$(9k-10)(k^2-2k+1) = 3k^2-2k$$

$$(9k^3-18k^2+9k-10k^2+20k-10-3k^2+2k=0)$$

$$(9k^3-31k^2+31k=-10=0)$$

$$k = 2 \text{ satisfies the above cubic}$$
Hence,  $k = 2$ .

#### 25. Correct answer is [11].

Given that the angle between the line

$$\frac{x}{1} = \frac{y-1}{2} = \frac{z-3}{\lambda} \text{ and plane } x + 2y + 3z = 4 \text{ is}$$

$$\cos^{-1}\left(\sqrt{\frac{5}{14}}\right) \text{ or } \sin^{-1}\left(\frac{3}{\sqrt{14}}\right)$$

$$= \sin^{-1}\left|\frac{1+4+3\lambda}{\sqrt{1+4+\lambda^2}.\sqrt{1+4+9}}\right|$$

$$\Rightarrow \frac{3}{\sqrt{14}} = \frac{3\lambda+5}{\sqrt{\lambda^2+5}.\sqrt{14}}$$

$$\Rightarrow 9\lambda^2 + 45 = 9\lambda^2 + 25 + 30\lambda$$

$$\Rightarrow 20 = 30\lambda \text{ or } \lambda = \frac{2}{3}$$
So,  $l: \frac{x}{1} = \frac{y-1}{2} = \frac{z-3}{\frac{2}{3}} = t \text{ (say)}$ 

$$\Rightarrow (x, y, z) = \left(t, 2t+1, \frac{2t}{3}+3\right)$$

If this point lies on plane x + 2y + 3z = 4, then t + 4t + 2 + 2t + 9 = 4  $\Rightarrow 7t = -7 \Rightarrow t = -1$   $\therefore \left(-1, -1, \frac{7}{3}\right) \equiv (\alpha, \beta, \gamma)$ So,  $\alpha + 2\beta + 6\gamma = -1 - 2 + \frac{7}{3} \times 6 = 11$ 

26. Correct answer is [2].

To find the POI of y = f(x) with x-axis, Putting f(x) = 0, we get  $e^{8x} - e^{6x} - 3e^{4x} - e^{2x} + 1 = 0$   $\Rightarrow e^{4x} - e^{2x} - 3 - e^{-2x} + e^{-4x} = 0$  (dividing by  $e^{4x}$ )  $\Rightarrow (e^{2x} + e^{-2x})^2 - 2 - (e^x + e^{-x})^2 + 2 - 3 = 0$   $\Rightarrow ((e^x + e^{-x}) - 2)^2 - (e^x + e^{-x})^2 - 3 = 0$ Let  $t = (e^x + e^{-x})^2$  then  $(t-2)^2 - t - 3 = 0$   $\Rightarrow t^2 + 4 - 4t - t - 3 = 0$   $\Rightarrow t^2 - 5t + 1 = 0$   $t = \frac{5 \pm \sqrt{25 - 4}}{2} = \frac{5 \pm \sqrt{21}}{2}$  $(e^x + e^{-x})^2 = \frac{5 + \sqrt{21}}{2}$  (neglecting minus sign)

$$e^{x} + \frac{1}{e^{x}} = \pm \sqrt{\frac{5 + \sqrt{21}}{2}}$$

 $\Rightarrow$  *x* has two real values.

27. Correct answer is [348].



Point of intersection of  $l_1$  and  $l_2$  is given by (0, 1)which lies on  $l_3$  $\Rightarrow \alpha \times 0 + \beta \times 1 + 17 = 0 \Rightarrow \beta = -17$ Also, any point on  $l_2$  is (1, 2) whose image w.r.t.,  $l_1$  is given by  $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{-2(2-6+3)}{4+9} = \frac{2}{13}$  $\Rightarrow x = 1 + \frac{4}{13} = \frac{17}{13}$  and  $y = 2 - \frac{6}{13} = \frac{20}{13}$ which lies on  $l_3$ :  $\alpha x - 17y + 17 = 0$  $\Rightarrow \alpha \times \frac{17}{13} - 17 \times \frac{20}{13} + 17 = 0$  $\Rightarrow \alpha - 20 + 13 = 0$  $\Rightarrow \alpha = 7$ Hence,  $\alpha^2 + \beta^2 - \alpha - \beta = 49 + 289 - 7 + 17$ = 34828. Correct answer is [27]. Given quadratic  $64x^2 + 5Nx + 1 = 0$  has no real roots, so D < 0 $\Rightarrow 25N^2 - 4 \times 64 \times 1 < 0$  $\Rightarrow$  N<sup>2</sup> -  $\left(\frac{16}{5}\right)^2 < 0$  $\Rightarrow \frac{-16}{5} < N < \frac{16}{5}$  and  $N \in Natural no.$  $\Rightarrow$  N = 1, 2, 3  $\therefore$  Required probability =  $\frac{p}{a}$  $\Rightarrow \frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{3}{4} \times \frac{1}{4} = \frac{p}{q}$  $\Rightarrow \frac{16+12+9}{64} = \frac{p}{q} = \frac{37}{64}$ 

⇒ 
$$p = 37$$
,  $q = 64$   
and  $q - p = 27$   
29. Correct answer is [285].

Given that  $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ ,  $\vec{b} = \hat{i} + \hat{j} - \hat{k}$ 

$$\Rightarrow |\vec{a}| = \sqrt{14}, |\vec{b}| = \sqrt{3}, \vec{a}.\vec{c} = 11$$

$$\vec{b}.\vec{c} = -\sqrt{3} |\vec{b}| = -3$$
, and  $\vec{a}.\vec{b} = 0$ 

Let  $\theta$  be the angle between  $\vec{b}$  and  $\vec{a} \times \vec{c}$ then  $\vec{b} \times (\vec{a} \times \vec{c}) = (\vec{b} \cdot \vec{c})\vec{a} - (\vec{b} \cdot \vec{a})\vec{c}$ 

$$= -3\vec{a} - 0\vec{c}$$
  

$$\vec{b} \times (\vec{a} \times \vec{c}) = -3\vec{a}$$
  

$$\Rightarrow |\vec{b}| |\vec{a} \times \vec{c}| \sin \theta = |-3\vec{a}|$$
  

$$\Rightarrow \sqrt{3} |\vec{a} \times \vec{c}| \sin \theta = 3 \times \sqrt{14}$$
  
and  $|\vec{b}| \cdot |\vec{a} \times \vec{c}| \cos \theta = 27$   

$$\Rightarrow \sqrt{3} |\vec{a} \times \vec{c}| \cos \theta = 27$$
  
On dividing  $\tan \theta = \frac{\sqrt{14}}{9}$   

$$\Rightarrow \sin \theta = \frac{\sqrt{14}}{\sqrt{95}}$$
  
and  $\sqrt{3} |\vec{a} \times \vec{c}| \times \frac{\sqrt{14}}{\sqrt{95}} = 3\sqrt{14}$   

$$\Rightarrow |\vec{a} \times \vec{c}| = \frac{3\sqrt{14} \times \sqrt{95}}{\sqrt{3} \times \sqrt{14}} = \sqrt{3 \times 95}$$
  
and  $|\vec{a} \times \vec{c}|^2 = 285$   
**30. Correct answer is [1680].**

and 
$$|\vec{a} \times \vec{c}|^2 = 285$$
  
Correct answer is [1680].  
Given that  $\frac{z^2 + 8iz - 15}{z^2 - 3iz - 2} \in \mathbb{R}$   
 $\Rightarrow \frac{(z^2 - 3iz - 2) + (11iz - 13)}{z^2 - 3iz - 2} \in \mathbb{R}$   
 $\Rightarrow 1 + \frac{11iz - 13}{z^2 - 3iz - 2} \in \mathbb{R}$ 

$$1 + \frac{i\alpha}{z^2 - 3iz - 2} \in \mathbb{R}$$
  

$$\Rightarrow z^2 - 3iz - 2 \in \mathrm{Img.}$$
  
Let  $z = x + iy$   

$$\Rightarrow x^2 - y^2 - 2ixy - 3ix + 3y - 2 \in \mathrm{Img}$$
  

$$\Rightarrow \mathrm{Re} (x^2 - y^2 + 3y - 2 - i (3x + 2xy)) = 0$$
  

$$\Rightarrow x^2 - y^2 + 3y - 2 = 0$$
  

$$\Rightarrow x^2 = y^2 - 3y + 2$$
  

$$\Rightarrow x^2 = (y - 1) (y - 2)$$
  

$$\therefore z = \alpha - \frac{13}{11}i$$
  
Putting  $x = \alpha, \ y = \frac{-13}{11}$   

$$\alpha^2 = \left(\frac{-13}{11} - 11\right) \left(\frac{-13}{11} - 2\right)$$
  

$$\alpha^2 = \frac{24 \times 35}{121}$$

but  $\alpha - \frac{13}{11}i \in S$ 

 $\Rightarrow 11iz - 13 = i\alpha$ So eqn. (i) becomes

or  $z = \alpha - \frac{13i}{11} = \alpha + \frac{13}{11i}$ 

$$\Rightarrow 242\alpha^2 = 48 \times 35 = 1680$$

...(i)