JEE (Main) MATHEMATICS SOLVED PAPER

Section A

Q. 1. $\int_{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x$
(1) $\log _{e}\left(\frac{32}{27}\right)$
(2) $\log _{e}\left(\frac{256}{81}\right)$
(3) $\log _{e}\left(\frac{512}{81}\right)$
(4) $\log _{e}\left(\frac{64}{27}\right)$
Q.2. Among
$\left(\mathrm{S}_{1}\right): \lim _{n \rightarrow \infty} \frac{1}{n^{2}}(2+4+6+\ldots .+2 n)=1$
$\left(\mathrm{S}_{2}\right): \lim _{n \rightarrow \infty} \frac{1}{n^{16}}\left(1^{15}+2^{15}+3^{15}+\ldots .+n^{15}\right)=\frac{1}{16}$
(1) Only $\left(\mathrm{S}_{1}\right)$ is true.
(2) Both $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ are true.
(3) Both $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ are false.
(4) Only $\left(\mathrm{S}_{2}\right)$ is true.
Q.3. The number of symmetric matrices of order 3, with all the entries from the set $\{0,1,2,3,4,5,6$, $7,8,9\}$, is
(1) 10^{9}
(2) 10^{6}
(3) 9^{10}
(4) 6^{10}
Q.4. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and
$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. If a vector \vec{d} satisfies $\vec{d} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{d} \cdot \vec{a}=24$, then $|\vec{d}|^{2}$ is equal to:
(1) 323
(2) 423
(3) 413
(4) 313
Q.5. A coin is biased so that the head is 3 times as likely to occur as tail. This coin is tossed until a head or three tails occur. If X denotes the number of tosses of the coin, then the mean of X is:
(1) $\frac{21}{16}$
(2) $\frac{15}{16}$
(3) $\frac{81}{64}$
(4) $\frac{37}{16}$
Q. 6. $\max _{0 \leq x<\pi}\left\{x-2 \sin x \cos x+\frac{1}{3} \sin 3 x\right\}=$
(1) 0
(2) π
(3) $\frac{5 \pi+2+3 \sqrt{3}}{6}$
(4) $\frac{\pi+2-3 \sqrt{3}}{6}$
Q. 7. The set of all $a \in \mathrm{R}$ for which the equation $x|x-1|$ $+|x+2|+a=0$ has exactly one real root is:
(1) $(-\infty,-3)$
(2) $(-\infty, \infty)$
(3) $(-6, \infty)$
(4) $(-6,-3)$
Q. 8. Let PQ be a focal chord of the parabola $y^{2}=36 x$ of length 100, making an acute angle with the positive x-axis. Let the ordinate of P be positive and M be the point on the line segment PQ
such that $\mathrm{PM}: \mathrm{MQ}=3: 1$. Then, which of the following points does NOT lie on the line passing through M and perpendicular to the line PQ ?
(1) $(3,33)$
(2) $(6,29)$
(3) $(-6,45)$
(4) $(-3,43)$
Q. 9. For the system of linear equations
$2 x+4 y+2 a z=b \quad x+2 y+3 z=4$
$2 x-5 y+2 z=8$
which of the following is NOT correct?
(1) It has infinitely many solutions if $a=3, b=8$.
(2) It has unique solution if $a=b=8$.
(3) It has unique solution if $a=b=6$.
(4) It has infinitely many solutions if $a=3, b=6$.
Q. 10. Let $s_{1}, s_{2}, s_{3}, \ldots \ldots ., s_{10}$, respectively be the sum to 12 terms of 10 A.P. s whose first terms are $1,2,3, \ldots$, 10 and the common differences are $1,3,5$,
19, respectively. Then, $\sum_{i=1}^{10} s_{i}$.
(1) 7260
(2) 7380
(3) 7220
(4) 7360
Q. 11. For the differentiable function $f: R-\{0\} \rightarrow R$. Let $3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10$, then $\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|$ is equal to
(1) 13
(2) $\frac{29}{5}$
(3) $\frac{33}{5}$
(4) 7
Q. 12. The negation of the statement $((A \wedge(B \vee C))$ $\Rightarrow(\mathrm{A} \vee \mathrm{B})) \Rightarrow \mathrm{A}$ is:
(1) equivalent to $B \vee \sim C$
(2) a fallacy
(3) equivalent to $\sim \mathrm{C}$
(4) equivalent to $\sim \mathrm{A}$
Q. 13. Let the tangent and normal at the point $(3 \sqrt{3}, 1)$ on the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$ meet the y-axis at the points A and B, respectively. Let the circle C be drawn taking AB as a diameter and the line $x=2 \sqrt{5}$ intersect C at the points P and Q . If the tangents at the points P and Q on the circle intersect at the point (α, β), then $\alpha^{2}-\beta^{2}$ is equal to:
(1) $\frac{304}{5}$
(2) 60
(3) $\frac{314}{5}$
(4) 61
Q. 14. The distance of the point $(-1,2,3)$ from the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+3 \hat{k})=10$ parallel to the line of the shortest distance between the lines $\vec{r}=(\hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}-\hat{j}+\hat{k})$ is:
(1) $2 \sqrt{5}$
(2) $3 \sqrt{5}$
(3) $3 \sqrt{6}$
(4) $2 \sqrt{6}$
Q. 15. Let $B=\left[\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right], \alpha>2$ be the adjoint of a matrix A and $|\mathrm{A}|=2$, then $\left[\begin{array}{ll}\alpha-2 \alpha & \alpha\end{array}\right] \mathrm{B}\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]$ is equal to:
(1) 16
(2) 32
(3) 0
(4) -16
Q. 16. For $x \in \mathrm{R}$, two real valued functions $f(x)$ and $g(x)$ are such that, $g(x)=\sqrt{x}+1$ and $\operatorname{fog}(x)=x+3$ $-\sqrt{x}$. Then, $f(0)$ is equal to:
(1) 5
(2) 0
(3) -3
(4) 1
Q.17. Let the equation of the plane passing through the line of intersection of the planes $x+2 y+a z=2$ and $x-y+z=3$ be $5 x-11 y+b z=6 a-1$. For $c \in \mathrm{Z}$, if the distance of this plane from the point $(a,-c, c)$ is $\frac{2}{\sqrt{a}}$, then $\frac{a+b}{c}$ is equal to:
(1) -4
(2) 2
(3) -2
(4) 4
Q.18. Fractional part of the number is $\frac{4^{2022}}{15}$ is equal to:
(1) $\frac{4}{15}$
(2) $\frac{8}{15}$
(3) $\frac{1}{15}$
(4) $\frac{14}{15}$
Q. 19. Let $y=y_{1}(x)$ and $y=y_{2}(x)$ be the solution curves of the differential equation $\frac{d y}{d x}=y+7 \quad y+7$ with initial conditions $y_{1}(0)=0$ and $y_{2}(0)=1$ respectively. Then the curves $y=y_{2}(x)$ and $y=y_{2}$
(x) intersect at
(1) no point
(2) infinite number of points
(3) one point
(4) two points
Q. 20. The area of the region enclosed by the curve $f(x)=$ $\max \{\sin x, \cos x\},-\pi \leq x \leq \pi$ and the x-axis is
(1) $2 \sqrt{2}(\sqrt{2}+1)$
(2) $4(\sqrt{2})$
(3) 4
(4) $2(\sqrt{2}+1)$

Section B

Q. 21. The sum to 20 terms of the series $2.2^{2}-3^{2}+2.4^{2}-$ $5^{2}+2.6^{2}-$ \qquad is equal to \qquad -.
Q. 22. Let the mean of the data

x	1	3	5	7	9
Frequency (f)	4	24	28	α	8

be 5 . If m and σ^{2} are respectively the mean deviation about the mean and the variance of the
data, then $\frac{3 \alpha}{m+\sigma^{2}}$ is equal to \qquad -.
Q. 23. Let α be the constant term in the binomial expansion of $\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^{n}, n \leq 15$. If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of x^{-n} is λa, then λ is equal to \qquad -.
Q. 24. Let $\omega=z \bar{z}+k_{1} z+k_{2} \mathrm{i} z+\lambda(1+\mathrm{i}), k_{1}, k_{2} \in$ R. Let $\operatorname{Re}(\omega)=0$ be the circle C of radius 1 in the first quadrant touching the line $y=1$ and the y-axis. If the curve $\operatorname{Im}(\omega)=0$ intersects C at A and B, then $30(\mathrm{AB})^{2}$ is equal to \qquad .
Q.25. Let $\vec{a}=3 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=2 \hat{i}-3 \hat{j}+3 \hat{k}$. If \vec{b} is a vector such that $\vec{a}=\vec{b} \times \vec{c}$ and $|\vec{b}|^{2}=50$, then $\left|72-|\vec{b}+\vec{c}|^{2}\right|$ is equal to \qquad -.
Q.26. Let m_{1}, and m_{2} be the slopes of the tangents drawn from the point $\mathrm{P}(4,1)$ to the hyperbola $\mathrm{H}: \frac{y^{2}}{25}-\frac{x^{2}}{16}=1$. If Q is the point from which the tangents drawn to H have slopes $\left|m_{1}\right|$ and $\left|m_{2}\right|$ and they make positive intercepts α and β on the x-axis, then $\frac{(\mathrm{PQ})^{2}}{\alpha \beta}$ is equal to \qquad .
Q.27. Let the image of the point $\left(\frac{5}{3}, \frac{5}{3}, \frac{8}{3}\right)$ in the plane $x-2 y+z-2=0$ be P. If the distance of the point $Q(6,-2, \alpha), \alpha>0$, from P is 13 , then α is equal to
\qquad -.
Q. 28. Let for $x \in \mathrm{R}, \mathrm{S}_{0}(x)=x, \mathrm{~S}_{k}(x)=\mathrm{C}_{k} x+k \int_{0}^{\pi} S_{k-1}(t) d t$ where $\mathrm{C}_{0}=1, \mathrm{C}_{k}=1-\int_{0}^{1} S_{k-1}(x) d x, k=1,2,3, \ldots \ldots$. Then, $\mathrm{S}_{2}(3)+6 \mathrm{C}_{3}$ is equal to \qquad .
Q. 29. If $S=$

$$
\left\{x \in \mathrm{R}: \sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}\right\}
$$

then is equal to \qquad .
Q.30. The number of seven digit positive integers formed using the digits $1,2,3$ and 4 only and sum of the digits equal to 12 is \qquad -

Answer Key

Q. No.	Answer	Topic name	
$\mathbf{1}$	$\mathbf{(1)}$	Definite integral using indefinite	Definite integral
$\mathbf{2}$	$\mathbf{(2)}$	Limit as sum of series	Limits
$\mathbf{3}$	$\mathbf{(2)}$	Transpose of a matrix	Matrix
$\mathbf{4}$	$\mathbf{(3)}$	Product of two vector	Vector
$\mathbf{5}$	$\mathbf{(1)}$	Binomial distribution	Probability
$\mathbf{6}$	$\mathbf{(3)}$	Maxima and minima	Application of derivative
$\mathbf{7}$	$\mathbf{(2)}$	Increasing and decreasing function	Application of derivative
$\mathbf{8}$	$\mathbf{(4)}$	Chord of parabola	Parabola
$\mathbf{9}$	$\mathbf{(1)}$	Solution of system of linear equations	Matrix
$\mathbf{1 0}$	$\mathbf{(1)}$	Arithmetic progression	Sequence and series
$\mathbf{1 1}$	$\mathbf{(1)}$	Differentiation	Function and its differentiation
$\mathbf{1 2}$	$\mathbf{(4)}$	Compound statement	Mathematical reasoning
$\mathbf{1 3}$	$\mathbf{(1)}$	Tangent and normal of ellipse	Ellipse
$\mathbf{1 4}$	$\mathbf{(4)}$	Line and plane	3D
$\mathbf{1 5}$	$\mathbf{(4)}$	Adjoint of a matrix	Matrix
$\mathbf{1 6}$	$\mathbf{(1)}$	Comosite function	Function
$\mathbf{1 7}$	$\mathbf{(1)}$	Family of planes	3D
$\mathbf{1 8}$	$\mathbf{(3)}$	Divisibility problem	Binomial theorem
$\mathbf{1 9}$	$\mathbf{(1)}$	Linear differential equation	Differential equation
$\mathbf{2 0}$	$\mathbf{(2)}$	Area under simple curves	Area under curves
$\mathbf{2 1}$	$\mathbf{[1 3 1 0]}$	Method of difference	Sequence and series
$\mathbf{2 2}$	$\mathbf{[8]}$	Mean and variance	Statistics
$\mathbf{2 3}$	$[\mathbf{3 6]}$	General term	Binomial theorem
$\mathbf{2 4}$	$[\mathbf{2 4]}$	Geometrical properties of complex number	Complex number
$\mathbf{2 5}$	[66]	Product of two vector	Vector
$\mathbf{2 6}$	$\mathbf{[8]}$	Tangent	Hyperbola
$\mathbf{2 7}$	$\mathbf{[1 5]}$	Image of a point wrt a plane	3D
$\mathbf{2 8}$	$\mathbf{[1 8]}$	Definite integral using indefinite	Definite integral
$\mathbf{2 9}$	$\mathbf{[0]}$	Equation involving itf	Inverse trigonometric function
$\mathbf{3 0}$	$\mathbf{[4 1 3]}$	Restricted permutations	Permutations and combination

Solutions

Section A

1. Option (1) is correct.

Let $\mathrm{I}=\int_{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x$
$\mathrm{I}=\int_{0}^{\infty} \frac{6 d x}{\left(e^{x}+1\right)\left(e^{x}+2\right)\left(e^{x}+3\right)}$ (on factorising the Dr)
Let $\frac{6}{\left(e^{x}+1\right)\left(e^{x}+2\right)\left(e^{x}+3\right)}=\frac{\mathrm{A}}{e^{x}+1}+\frac{\mathrm{B}}{e^{x}+2}+\frac{\mathrm{C}}{e^{x}+3}$
On solving, we get $A=3, B=-6, C=3$
so $\mathrm{I}=\int_{0}^{\infty} \frac{3}{e^{x}+1} d x-\int_{0}^{\infty} \frac{6}{e^{x}+2} d x+\int_{0}^{\infty} \frac{3}{e^{x}+3} d x$
$=3 \int_{0}^{\infty} \frac{e^{-x}}{1+e^{-x}} d x-6 \int_{0}^{\infty} \frac{e^{-x} d x}{1+2 e^{-x}}+3 \int_{0}^{\infty} \frac{e^{-x}}{1+3 e^{-x}} d x$
$=-3\left[\log \left(1+e^{-x}\right)\right]_{0}^{\infty}+6 \times \frac{1}{2}\left[\log \left(1+2 e^{-x}\right)\right]_{0}^{\infty}-$

$$
3 \times \frac{1}{3}\left[\log \left(1+3 e^{-x}\right)\right]_{0}^{\infty}
$$

$=-3(0-\log 2)+3(0-\log 3)-(0-\log 4)$
$=3 \log 2-3 \log 3+\log 4$
$=\log \frac{2^{3} \times 4}{3^{3}}=\log \frac{32}{27}$
2. Option (2) is correct.

$$
\begin{aligned}
& \mathrm{S}_{1}: \operatorname{Lt}_{n \rightarrow \infty} \frac{1}{n^{2}}(2+4+6+\ldots .+2 n) \\
& =\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{2}{n^{2}} \times \frac{n(n+1)}{2}=\underset{n \rightarrow \infty}{\operatorname{Lt}}\left(1+\frac{1}{n}\right)=1 \\
& \text { and } \mathrm{S}_{2}: \operatorname{Lt}_{n \rightarrow \infty}^{\operatorname{Lt}} \frac{1}{n^{16}}\left(1^{15}+2^{15}+3^{15}+\ldots .+n^{15}\right) \\
& =\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{1}{n^{16}} \sum_{r=1}^{15} r^{15}=\operatorname{Lt}_{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{15}\left(\frac{r}{n}\right)^{15} \\
& =\int_{0}^{1} x^{15} d x=\left[\frac{x^{16}}{16}\right]_{0}^{1}=\frac{1}{16}
\end{aligned}
$$

Hence, both $\mathrm{S}_{1} \& \mathrm{~S}_{2}$ are true.
3. Option (2) is correct.

If A is symmetric matrix, then $a_{i j}=a_{j i}$

$$
\text { or } \mathrm{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

then there can be 6 different entries out of $\{0,1,2,3$, 9\}
Hence, no. of symmetric matrices are 10^{6}.
4. Option (3) is correct.

Given that $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and
$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$ and $\vec{d} \times \vec{b}=\vec{c} \times \vec{b}, \vec{d} \cdot \vec{a}=24$
$\Rightarrow(\vec{d}-\vec{c}) \times \vec{b}=0$
$\vec{d}-\vec{c}$ and \vec{b} are parallel
So $\vec{d}-\vec{c}=\lambda \vec{b}$ or $\vec{d}=\vec{c}+\lambda \vec{b}$
$\vec{d} \cdot \vec{a}=24 \Rightarrow(\vec{c}+\lambda \vec{b}) \cdot \vec{a}=24$
$\Rightarrow \vec{c} \cdot \vec{a}+\lambda \vec{a} \cdot \vec{b}=24$

$$
\begin{aligned}
& (2-4+8)+\lambda(3-8+14)=24 \\
& 6+\lambda(9)=24 \text { or } \lambda=2 \\
& \Rightarrow \vec{d}=\vec{c}+2 \vec{b} \\
& =2 \hat{i}-\hat{j}+4 \hat{k}+6 \hat{i}-4 \hat{j}+14 \hat{k} \\
& \Rightarrow \vec{d}=8 \hat{i}-5 \hat{j}+18 \hat{k} \\
& |\vec{d}|^{2}=64+25+324=413
\end{aligned}
$$

5. Option (1) is correct.

Given that $\mathrm{P}(\mathrm{H})=\frac{3}{4}$ and $\mathrm{P}(\mathrm{T})=\frac{1}{4}$
IF X denotes the number of tosses of the coin, then

$$
\begin{aligned}
& X=1 \Rightarrow P(X=1)=\frac{3}{4} \\
& X=2 \Rightarrow P(X=2)=\frac{1}{4} \times \frac{3}{4}=\frac{3}{16} \\
& X=3 \Rightarrow P(X=3) \\
& =\left(\frac{1}{4}\right)^{3}+\left(\frac{1}{4}\right)^{2} \times \frac{3}{4}=\frac{1}{64}+\frac{3}{64}=\frac{4}{64}=\frac{1}{16} \\
& \therefore \text { Mean }=1 \times \frac{3}{4}+2 \times \frac{3}{16}+3 \times \frac{1}{16} \\
& =\frac{3}{4}+\frac{6}{16}+\frac{3}{16}=\frac{21}{16}
\end{aligned}
$$

6. Option (3) is correct.

Let $f(x)=x-2 \sin x \cos x+\frac{1}{3} \sin 3 x$
$=x-\sin 2 x+\frac{1}{3} \sin 3 x$
$\Rightarrow f^{\prime}(x)=1-2 \cos 2 x+\frac{1}{3} \times 3 \cos 3 x$
$f^{\prime}(x)=1-2 \cos 2 x+\cos 3 x$
For maxima or minima, putting $f^{\prime}(x)=0$
$1-2 \cos 2 x+\cos 3 x=0$
$1-2\left(2 \cos ^{2} x-1\right)+\left(4 \cos ^{3} x-3 \cos x\right)=0$
$\Rightarrow 1-2\left(2 \cos ^{2} x-1\right)+4 \cos ^{3} x-3 \cos x=0$
$=1-4 \cos ^{2} x+2+4 \cos ^{3} x-3 \cos x=0$
$\Rightarrow 4 \cos ^{3} x-4 \cos ^{2} x-3 \cos x+3=0$
$\Rightarrow 4 \cos ^{2} x(\cos x-1)-3(\cos x-1)=0$
$\cos x=1, \cos x=\frac{\sqrt{3}}{4}= \pm \frac{\sqrt{3}}{2}$
$\Rightarrow \cos x=\frac{ \pm \sqrt{3}}{2}=\cos \frac{\pi}{6}$ or $\cos \frac{5 \pi}{6}$
$\Rightarrow x=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
Also, $f^{\prime \prime}(x)=0+4 \sin 2 x-3 \sin 3 x$
and $f^{\prime \prime}\left(\frac{5 \pi}{6}\right)=4 \sin \frac{5 \pi}{3}-3 \sin \frac{5 \pi}{2}<0$
$\Rightarrow x=\frac{5 \pi}{6}$ is a point of maxima
and $f\left(\frac{5 \pi}{6}\right)=\frac{5 \pi}{6}-\sin \left(\frac{2 \times 5 \pi}{6}\right)+\frac{1}{3} \sin \left(\frac{3 \times 5 \pi}{6}\right)$
$=\frac{5 \pi}{6}-\sin \frac{5 \pi}{3}+\frac{1}{3} \sin \frac{5 \pi}{2}=\frac{5 \pi}{6}+\frac{\sqrt{3}}{2}+\frac{1}{3}$
7. Option (2) is correct.

Given that $a \in \mathrm{R}$ and $x|x-1|+|x+2|+a=0$
Let $y=x|x-1|+|x+2|$ and $y=-a$
So $y=\left\{\begin{array}{cc}-x(x-1)-(x+2), & x<-2 \\ -x(x-1)+(x+2), & -2 \leq x<1 \\ x(x-1)+(x+2), & x \geq 1\end{array}\right.$

$$
=\left\{\begin{array}{cc}
-x^{2}-2, & x<-2 \\
-x^{2}+2 x+2, & -2 \leq x<1 \\
x^{2}+2, & x \geq 1
\end{array}\right.
$$

$f\left(-2^{-}\right)=-6, f\left(-2^{+}\right)=-6, f(-2)=-6 \Rightarrow$ continuous at -2 and $f\left(1^{-}\right)=3, f\left(1^{+}\right)=3, f(1)=3 \Rightarrow$ continuous at 1
Also $f^{\prime}(x)=\left\{\begin{array}{cc}-2 x, & x<-2 \\ -2 x+2, & -2<x<1 \\ 2 x, & x<1\end{array} \Rightarrow f^{\prime}(x)>0 \forall x \in \mathrm{R}\right.$
So $f(x)$ is continous and strictly increasing $\forall x \in \mathrm{R}$ and $y=-a$ is a st. line $|\mid$ to x-axis
Hence, $x|x-1|+|x+2|+a=0$ has exactly one real solution $\forall a \in \mathrm{R}$
8. Option (4) is correct.

Given that $y^{2}=36 x \Rightarrow a=9$
and length of focal chord $=100$
$\Rightarrow a\left(t+\frac{1}{t}\right)^{2}=100$
$\Rightarrow 9\left(t+\frac{1}{t}\right)^{2}=100$
or $t+\frac{1}{t}=\frac{10}{3}=3+\frac{1}{3}$
$\Rightarrow t=3$
$\Rightarrow \mathrm{P}(81,54)$ and $\mathrm{Q}(1,-6)$

$\Rightarrow \mathrm{M}\left(\frac{84}{4}, \frac{36}{4}\right) \equiv \mathrm{M}(21,9)$
Slope of line $\mathrm{PQ}=\frac{54+6}{81-1}=\frac{60}{80}=\frac{3}{4}$
So, slope of line \perp to $\mathrm{PQ}=\frac{-4}{3}$
and eqn. of line passing through M is
$y-9=\frac{-4}{3}(x-21)$
$\Rightarrow 4 x+3 y=111$
Here, $4(-3)+3 \times 45=-12+129=117 \neq 111$
Hence, $(-3,43)$ does not lie on the line.
9. Option (1) is correct.

Given system of eqn can be written as
[A: B] $=\left[\begin{array}{ccccc}1 & 2 & 3 & : & 4 \\ 2 & -5 & 2 & : & 8 \\ 2 & 4 & 2 a & : & b\end{array}\right]$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$\Rightarrow[\mathrm{A}: \mathrm{B}] \sim\left[\begin{array}{ccccc}1 & 2 & 3 & : & 4 \\ 0 & -9 & -4 & : & 8 \\ 0 & 0 & 2 a-6 & : & b-8\end{array}\right]$
Now, for unique solution $2 a-6 \neq 0$ and $b-8 \in \mathrm{R}$
$\Rightarrow a \neq 3$ and $b \in \mathrm{R}$
and for infinite solutions $2 a-6=0$ and $b-8=0$
$\Rightarrow a=3$ and $b=8$
10. Option (1) is correct.

Here, first terms are $1,2,3, \ldots10$
Common differences are $1,3,5, \ldots . ., 19$
No. of terms in each sequence are 12
Then, $\mathrm{S}_{k}=\frac{12}{2}[2 \times k+(12-1)(2 k-1)]$
$=6[2 k+22 k-11]=6[24 k-11]$
$\mathrm{S}_{k}=144 k-66$
Hence, $\sum_{i=1}^{10} S_{i}=\sum_{i=1}^{10}(144 k-66)$
$=144 \times \frac{10 \times 11}{2}-66 \times 10$
$=72 \times 11 \times 10-660$
$=7920-660=7260$
11. Option (1) is correct.

Given that $f: R-\{0\} \rightarrow R$
and $3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10$
Replacing x by $\frac{1}{x}$
$3 f\left(\frac{1}{x}\right)+2 f(x)=x-10$
Applying $3 \times$ eqn. (1) $-2 \times$ eqn. (2), we get
$5 f(x)=\frac{3}{x}-30-2 x+20$
$\Rightarrow f(x)=\frac{1}{5}\left(\frac{3}{x}-2 x-10\right)$ and $f^{\prime}(x)=\frac{1}{5}\left(\frac{-3}{x^{2}}-2\right)$
So $\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|=\left|\frac{1}{5}(1-6-10)+\frac{1}{5}(-48-2)\right|$
$=|-3-10|=13$
12. Option (4) is correct.

Since, we know that $p \Rightarrow q=\sim p \vee q$
So $(A \wedge(B \vee C)) \Rightarrow(A \vee B)) \Rightarrow A$
$=(\sim(A \wedge(B \vee C)) \vee(A \vee B)) \Rightarrow A$
$(A \wedge(B \vee C) \wedge \sim(A \vee B) \vee A$
$=(f \vee A)=A$
Hence, Negation of $((\mathrm{A} \wedge(\mathrm{B} \vee \mathrm{C})) \Rightarrow(\mathrm{A} \vee \mathrm{B}))$ $\Rightarrow A$ is $\sim A$
13. Option (1) is correct.
$\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$
Eqn. of tangent at
$(3 \sqrt{3}, 1)$
$\frac{3 \sqrt{3} x}{36}+\frac{y \times 1}{4}=1$
$\frac{x}{4 \sqrt{3}}+\frac{y}{4}=1 \Rightarrow x=0, y=4$

Eqn. of normal at $(3 \sqrt{3}, 1)$
$\frac{x}{4}-\frac{y}{4 \sqrt{3}}=\frac{2}{\sqrt{3}} \Rightarrow x=0, y=-8$
Eqn. of circle having $\mathrm{A}(0,4), \mathrm{B}(0,-8)$ as diameter is
$x^{2}+(y+4)(y-8)=0$
$x^{2}+y^{2}-4 y-32=0$
$h x+k y+2(y+k)-32=0$
$\Rightarrow k=-2$
$h x+2 k-32=0$
$h x=36$
$\alpha=h=\frac{36}{2 \sqrt{5}} \& \beta=k=-2$
So, $\alpha^{2}-\beta^{2}=\frac{324}{5}-4=\frac{304}{5}$
14. Option (4) is correct.

Given that lines $\vec{r}=(\hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{k})$
and $\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}-\hat{j}+\hat{k})$
Now, direction of line of the shortest distance of line
(1) and (2) is given by
$\vec{n}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 1 \\ 1 & -1 & 1\end{array}\right|=\hat{i}-\hat{j}-2 \hat{k}$
So, eqn. of line passing through $(-1,2,3)$ whose d.r's are $(1,-1,-2)$ is given by
$\frac{x+1}{1}=\frac{y-2}{-1}=\frac{z-3}{-2}=\lambda$
$\Rightarrow(x, y, z) \equiv(\lambda-1,-\lambda+2,-2 \lambda+3)$
If this point lies on plane $\vec{r},(\hat{i}-2 \hat{j}+3 \hat{k})=10$
Then, $\lambda-1-2(-\lambda+2)+3(-2 \lambda+3)=10$
$\Rightarrow \lambda-1+2 \lambda-4-6 \lambda+9=10$
$\Rightarrow 3 \lambda=-6 \Rightarrow \lambda=-2$
So, point on plane is $(-3,4,7)$
and required distanceis $\sqrt{(-1+3)^{2}+(2-4)^{2}+(3-7)^{2}}$
$=\sqrt{4+4+16}=2 \sqrt{6}$
15. Option (4) is correct.

Given that $\mathrm{B}=\operatorname{adj} \mathrm{A}$
and $|\mathrm{B}|=|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{2}=4$
$\Rightarrow\left|\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right|=4$
$\Rightarrow \alpha=2$ or $\alpha=4$
But $\alpha>2$ (Given)
So, $\alpha=4$ and $[\alpha-2 \alpha \alpha] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]$
$=\left[\begin{array}{lll}4 & -8 & 4\end{array}\right]\left[\begin{array}{lll}1 & 3 & 4 \\ 1 & 2 & 3 \\ 4 & 4 & 4\end{array}\right]\left[\begin{array}{c}4 \\ -8 \\ 4\end{array}\right]$
$=\left[\begin{array}{lll}12 & 12 & 8\end{array}\right]\left[\begin{array}{c}4 \\ -8 \\ 4\end{array}\right]=[-16]$
16. Option (1) is correct.

Given that $g(x)=\sqrt{x}+1 \& f \circ g(x)=x+3-\sqrt{x}$
$\Rightarrow f(g(x))=x+3-\sqrt{x}$
$\Rightarrow f(g(x))=(\sqrt{x})^{2}+3-\sqrt{x}$
$f\left(g(x)=(g(x)-1)^{2}+3-(g(x)-1)\right.$
$f(x)=(x-1)^{2}+3-(x-1)$
and $f(0)=(0-1)^{2}+3-(0-1)$
$=1+3+1=5$
17. Option (1) is correct.

Equation of plane passing through $x+2 y+a z=2$
and $x-y+z=3$ is given by
$x+2 y+a z-2+\lambda(x-y+z-3)=0$
$\Rightarrow(1+\lambda) x+(2-\lambda) y+(a+\lambda) z-2-3 \lambda=0$
which is equivalent to $5 x-11 y+b z=6 a-1$
So $\frac{1+\lambda}{5}=\frac{2-\lambda}{-11}=\frac{a+\lambda}{b}=\frac{2+3 \lambda}{6 a-1}$
$\Rightarrow-11-11 \lambda=10-5 \lambda$
$\Rightarrow 6 \lambda=-21$ or $\lambda=\frac{-7}{2}$
Also, $\frac{1-\frac{7}{2}}{5}=\frac{a-\frac{7}{2}}{b}=\frac{2-3 \times \frac{7}{2}}{6 a-1}$
$-\frac{1}{2}=\frac{a-\frac{7}{2}}{b}=\frac{-17}{2(6 a-1)}$
$\Rightarrow a=3, b=1$
Now, $\frac{2}{\sqrt{a}}=\left|\frac{5 a+11 c+b c-6 a+1}{\sqrt{25+121+1}}\right|$
$\Rightarrow c=1$
$\therefore \frac{a+b}{c}=\frac{3+1}{-1}=-4$
18. Option (3) is correct.
$\because 4^{2022}=2^{4044}=\left(2^{4}\right)^{1011}$
$=(1+15)^{1011}=1+15 \lambda$
$\therefore\left\{\frac{4^{2022}}{15}\right\}=\left\{\frac{1+15 \lambda}{15}\right\}=\left\{\lambda+\frac{1}{15}\right\}=\frac{1}{15}$
19. Option (1) is correct.

Given that $\frac{d y}{d x}=y+7$
$\Rightarrow \int \frac{d y}{y+7}=\int d x \Rightarrow \log _{e}(y+7)=x+c$
$y_{1}(0)=0 \Rightarrow \log _{e} 7=0+c$
$\Rightarrow c=\log _{e} 7 \Rightarrow \log _{e}(y+7)=x+\log _{e} 7$
$\Rightarrow \log _{e}\left(\frac{y+7}{7}\right)=x$
or $y+7=7 e^{x}$
Also, $y_{2}(0)=1 \Rightarrow \log _{e} 8=1+c$
$\Rightarrow c=\log _{e}\left(\frac{8}{e}\right) \Rightarrow \log _{e}(y+7)=x+\log _{e}\left(\frac{8}{e}\right)$
$\Rightarrow \log _{e}\left(\frac{(y+7) e}{8}\right)=x$
$\Rightarrow(y+7) e=8 e^{x}$
From (1) and (2)
$7 e^{x} \times e=8 e^{x} \Rightarrow e=\frac{8}{7}$ which is not true.
Hence, there is no point.
20. Option (3) is correct.

Given that $f(x)=\max \{\sin x, \cos x\}$ which can be plotted as

So, required area is $=\left|\int_{-\pi}^{\frac{-3 \pi}{4}} \sin x d x\right|+\left|\int_{\frac{-3 \pi}{4}}^{\frac{-\pi}{2}} \cos x d x\right|$
$+\int_{-\frac{\pi}{2}}^{\overline{4}} \cos x d x++\int_{\frac{\pi}{4}}^{\pi} \sin x d x$
$=\left|[-\cos x]_{-\pi}^{-\frac{3 \pi}{4}}\right|+\left|[\sin x]_{\frac{-3 \pi}{4}}^{\frac{-\pi}{2}}\right|+[\sin x]_{-\frac{\pi}{2}}^{\frac{\pi}{4}}-[\cos x]_{\frac{\pi}{4}}^{\pi}$
$=\left|\frac{1}{\frac{-1}{\sqrt{2}}+1}\right|+\left|-1+\frac{1}{\sqrt{2}}\right|+\frac{1}{\sqrt{2}}+1-\left(-1-\frac{1}{\sqrt{2}}\right)=4$

Section B

21. The correct answer is (1310).

$$
\begin{aligned}
& \begin{aligned}
\mathrm{S}_{20}=2.2^{2}-3^{2}+ & 2.4^{2}-5^{2}+2.6^{2}-7^{2} \ldots \\
= & \left(2^{2}-3^{2}+4^{2}-5^{2} \ldots . . \text { upto } 20 \text { terms }\right)
\end{aligned} \\
& \quad \quad+\left(2^{2}+4^{2}+6^{2}+\ldots . \text { upto } 10 \text { terms }\right) \\
& =-(5+9+13+\ldots . \text { upto } 10 \text { terms }) \\
& \quad+2^{2}\left(1^{2}+2^{2}+3^{2}+\ldots .+ \text { upto } 10 \text { terms }\right) \\
& = \\
& =-\frac{10}{2}[10+9 \times 4]+4\left[\frac{10 \times 11 \times 21}{6}\right] \\
& = \\
& =-5 \times 46+2 \times 11 \times 7 \times 10
\end{aligned}
$$

22. The correct answer is (8).
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline x_{i} & f_{i} & f_{i} x_{i} & \left|x_{i}-\bar{x}\right| & f_{i}\left|x_{i}-\bar{x}\right| & \left(x_{i}-\bar{x}\right)^{2} & f_{i}\left(x_{i}-\bar{x}\right)^{2} \\ \hline 1 & 4 & 4 & 4 & 16 & 16 & 64 \\ \hline 3 & 24 & 72 & 2 & 48 & 4 & 96 \\ \hline 5 & 28 & 140 & 0 & 0 & 0 & 0 \\ \hline 7 & \alpha= & 7 \alpha= \\ 16 & 112\end{array}\right)$

Mean $=5$
$\Rightarrow \frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=5 \Rightarrow \frac{288+7 \alpha}{64+\alpha}=5$
$\Rightarrow 280+7 \alpha=320+5 \alpha \quad \Rightarrow \alpha=16$
M.D. $(\bar{x})=\frac{\Sigma f_{i}\left|x_{i}-\bar{x}\right|}{\Sigma f_{i}}=\frac{128}{80}=\frac{8}{5}=m$

Variance $=\frac{\Sigma f_{i}\left(x_{i}-\bar{x}\right)^{2}}{\Sigma f_{i}}=\frac{352}{80}=\sigma^{2}=\frac{22}{5}$
Now, $\frac{3 \alpha}{m+\sigma^{2}}=\frac{3 \times 16}{\frac{8}{5}+\frac{22}{5}}=\frac{3 \times 16 \times 5}{30}=8$
23. The correct answer is (36).

Given that $\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^{n}, n \leq 15$
$T_{r+1}={ }^{n} C_{r}(\sqrt{x})^{n-r}\left(\frac{-6}{x^{\frac{3}{2}}}\right)^{r}$
$={ }^{n} \mathrm{C}_{r}(-6)^{r}(x)^{\frac{n-r}{2}-\frac{3 r}{2}}$
For independent term $\frac{n-r}{2}-\frac{3 r}{2}=0$
$\Rightarrow n-r=3 r$ or $r=\frac{n}{4}$
Sum of coefficients of remaining terms $=649$
$\Rightarrow\left(\sqrt{1}-\frac{6}{(1)^{\frac{3}{2}}}\right)^{n}-{ }^{n} C_{r}(-6)^{r}=649$
or $(-5)^{n}-{ }^{n} \mathrm{C}_{n / 4}(-6)^{n / 4}=625+24$
$\Rightarrow(-5)^{n}-{ }^{n} C_{r}(-6)^{r}=649$
$(-5)^{n}-{ }^{n} \mathrm{C}_{n / 4}(-6)^{n / 4}=(-5)^{4}-{ }^{4} \mathrm{C}_{4 / 4}(-6)^{4 / 4}$
By comparing, $n=4$ and $r=1$
Now, for coefficient of $x^{n-n}, \frac{n-r}{2}-\frac{3 r}{2}=-n=-4$
$\Rightarrow n-r-3 r=-8$ or $4-4 r=-8 \Rightarrow r=3$
So, coefficient of $x^{-n}={ }^{4} \mathrm{C}_{3}(-6)^{3}$
$\lambda \alpha={ }^{4} \mathrm{C}_{1}(-216)$
But $\lambda={ }^{4} \mathrm{C}_{1}(-6) \Rightarrow \alpha=36$
24. The correct answer is (24).

Given that
$\omega=z \bar{z}+k_{1} z+k_{2} i z+\lambda(1+i), k_{1}, k_{2} \in \mathrm{R}$
Let $z=x+i y$, then
$\omega=x^{2}+y^{2}+k_{1} x+i k_{1} y+i k_{2} x-k_{2} y+\lambda+i \lambda$
$\Rightarrow \operatorname{Re}(\omega)=0 \Rightarrow=x^{2}+y^{2}+k_{1} x-k_{2} y+\lambda=0$
Centre $\left(\frac{-k_{1}}{2}, \frac{k_{2}}{2}\right) \equiv(1,2)$
$\Rightarrow k_{1}=-2 \& k_{1}=4$
and radius $=1$
$\Rightarrow \sqrt{1+4-\lambda}=1 \Rightarrow \lambda=4$
$\operatorname{Im}(\omega)=0 \Rightarrow k_{1} y+k_{2} x+\lambda=0$
$\Rightarrow-2 y+4 x+4=0$
or $2 x-y+2=0$
so $d=\frac{2}{\sqrt{4+1}}=\frac{2}{\sqrt{5}}$

Now, $\left(\frac{\mathrm{AB}}{2}\right)^{2}+d^{2}=1$
$\Rightarrow{\frac{(\mathrm{AB})^{2}}{2}}_{2}=1-\frac{4}{5}=\frac{1}{5}$
or $(\mathrm{AB})^{2}=\frac{4}{5}$

and $30(\mathrm{AB})^{2}=30 \times \frac{4}{5}=24$
25. The correct answer is (66).

Given that $\vec{a}=3 \hat{i}+\hat{j}-\hat{k}, \vec{c}=2 \hat{i}-3 \hat{j}+3 \hat{k}$
$\Rightarrow|\vec{a}|=\sqrt{11},|\vec{c}|=\sqrt{22},|\vec{b}|^{2}=50$
$\vec{a}=\vec{b} \times \vec{c} \Rightarrow|\vec{a}|=|\vec{b} \times \vec{c}|$
$\Rightarrow \sqrt{11}=|\vec{b} \| \vec{c}| \sin \theta$
$\Rightarrow \sqrt{11}=\sqrt{50} \times \sqrt{22} \sin \theta$
$\Rightarrow \sin \theta=\frac{1}{10} \Rightarrow \cos \theta=\frac{\sqrt{99}}{10}$
Now, $|\vec{b}+\vec{c}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{b} \cdot \vec{c}$
$=50+22+2|\vec{b}||\vec{c}| \cos \theta$
$=72+2 \sqrt{50} \times \sqrt{22} \times \frac{\sqrt{99}}{10}$
$=72+\frac{2 \times 5 \sqrt{2} \times 3 \times \sqrt{2} \times 11}{10}$
$|\vec{b}+\vec{c}|^{2}=72+66$
So, $72-|\vec{b}+\vec{c}|^{2}=-66$
$\left|72-|\vec{b}+\vec{c}|^{2}\right|=66$
26. The correct answer is (8).

We know that eqn. of tangent to hyperbola
$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$ is given by $y=m x \pm \sqrt{a^{2}-b^{2} m^{2}}$
which pass through $\mathrm{P}(4,1)$
So, $1=4 m \pm \sqrt{25-16 m^{2}}$
$\Rightarrow(1-4 m)^{2}=\left(\pm \sqrt{25-16 m^{2}}\right)^{2}$
$\Rightarrow 1+16 m^{2}-8 m=25-16 m^{2}$
$\Rightarrow 32 m^{2}-8 m-24=0$
$\Rightarrow 4 m^{2}-m-3=0$
$\Rightarrow(4 m+3)(m-1)=0$
$\Rightarrow m=\frac{-3}{4}$ or $m=1 \Rightarrow\left|m_{1}\right|=\frac{3}{4} \&\left|m_{2}\right|=1$
So, equation of tangent with slopes $\left|m_{1}\right| \&\left|m_{2}\right|$ are $\Rightarrow 4 y=3 x-16$ and $y=x-3$
Putting $y=0$ in both eqns.
$\alpha=\frac{16}{3}$ and $\beta=3$
Also, on solving the above tangents
We get $\mathrm{Q}(-4,-7)$
$\Rightarrow \mathrm{PQ}=\sqrt{(4+4)^{2}+(1+7)^{2}}=\sqrt{64+64}=8 \sqrt{2}$
and $\frac{(\mathrm{PQ})^{2}}{\alpha \beta}$
$\frac{(\mathrm{PQ})^{2}}{\alpha \beta}=\frac{64 \times 2}{\frac{16}{3} \times 3}=8$
27. The correct answer is (15).

If $\mathrm{P}(\alpha, \beta, \gamma)$ be the image of point $\left(\frac{5}{3}, \frac{5}{3}, \frac{8}{3}\right)$
in plane $x-2 y+z-2=0$, then
$\frac{\alpha-\frac{5}{3}}{1}=\frac{\beta-\frac{5}{3}}{-2}=\frac{\gamma-\frac{8}{3}}{1}=\frac{-2\left(\frac{5}{3}-\frac{10}{3}+\frac{8}{3}-2\right)}{1+4+1}$
$=\frac{-2}{6}\left(\frac{5-10+8-6}{3}\right)=\frac{-1}{3}\left(\frac{-3}{3}\right)=\frac{1}{3}$
$\Rightarrow \alpha=\frac{1}{3}+\frac{5}{3}, \beta=\frac{5}{3}-\frac{2}{3}, \gamma=\frac{8}{3}+\frac{1}{3}$
$\Rightarrow \alpha=2, \beta=1, \gamma=3$
or P $(2,1,3)$, Q ($6,-2, \alpha)$
$\mathrm{PQ}=13$ or $\mathrm{PQ}^{2}=169$
$\Rightarrow(4)^{2}+(-3)^{2}+(\alpha-3)^{2}=169$
$\Rightarrow 16+9+(\alpha-3)^{2}=169$
$\Rightarrow(\alpha-3)^{2}=144$
$\Rightarrow \alpha-3= \pm 12 \Rightarrow \alpha=15(\alpha>0)$
28. The correct answer is (18).

Given that
$\mathrm{S}_{k}(x)=\mathrm{C}_{k} x+k \int_{0}^{x} S_{k-1}(t) d t$
Putting $k=2$ and $x=3$, we get,
$\mathrm{S}_{3}(3)=\mathrm{C}_{2}(3)+2 \int_{0}^{3} \mathrm{~S}_{1}(t) d t$
Putting $k=1$
$\mathrm{S}_{1}(x)=\mathrm{C}_{1} x+\int_{0}^{x} \mathrm{~S}_{0}(t) d t=\mathrm{C}_{1} x+\frac{x^{2}}{2}$
Putting in eqn. (1)
$\mathrm{S}_{2}(3)=3 \mathrm{C}_{2}+2 \int_{0}^{3}\left(\mathrm{C}_{1} t+\frac{t^{2}}{2}\right) d t$
$=3 \mathrm{C}_{2}+2\left[\frac{\mathrm{C}_{1} t^{2}}{2}+\frac{t^{3}}{6}\right]_{0}^{3}$
$\mathrm{S}_{2}(3)=3 \mathrm{C}_{2}+9 \mathrm{C}_{1}+9$
But $\mathrm{C}_{1}=1-\int_{0}^{1} \mathrm{~S}_{0}(x) d x=\frac{1}{2}$
$\mathrm{C}_{2}=1-\int_{0}^{1} \mathrm{~S}_{1}(x) d x=0$
$\mathrm{C}_{3}=1-\int_{0}^{1} \mathrm{~S}_{2}(x) d x=1-\int_{0}^{1}\left(\mathrm{C}_{2} x+\mathrm{C}_{1} x^{2}+\frac{x^{3}}{3}\right) d x$
$=1-\left[\frac{\mathrm{C}_{2} x^{2}}{2}+\frac{\mathrm{C}_{1} x^{3}}{3}+\frac{x^{4}}{12}\right]_{0}^{1}$
$=1-\left[0+\frac{1}{2} \times \frac{1}{3}+\frac{1}{12}\right]=1-\frac{1}{4}=\frac{3}{4}$
then value is ${ }^{3} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{1}+9+{ }^{6} \mathrm{C}_{3}$
$=0+9 / 2+9+6(3 / 4)=18$
29. The correct answer is (0).

Given that
$\sin ^{-1}\left(\frac{x+1}{\sqrt{(x+1)^{2}+1}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}$
$\sin ^{-1}\left(\frac{x+1}{\sqrt{(x+1)^{2}+1}}\right)=\frac{\pi}{4}+\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)$
$\Rightarrow \frac{x+1}{\sqrt{(x+1)^{2}+1}}=\sin \left(\frac{\pi}{4}+\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)\right)$
$=\frac{1}{\sqrt{2}} \cos \left(\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)\right)+\frac{1}{\sqrt{2}} \times \frac{x}{\sqrt{x^{2}+1}}$
$=\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{x^{2}+1}}+\frac{x}{\sqrt{x^{2}+1}}\right]$
$\Rightarrow \frac{x+1}{\sqrt{(x+1)^{2}+1}}=\frac{1+x}{\sqrt{2}\left(\sqrt{x^{2}+1}\right)}$
$\Rightarrow x+1=0 \Rightarrow x=-1$
and $(x+1)^{2}+1=2\left(x^{2}+1\right)$
$\Rightarrow x^{2}-2 x=0 \Rightarrow x=0,2$
$2,-1$ will not satisfy the given condition hence $S=(0)$
Hence, required value is $\sin \frac{5 \pi}{2-\cos 5 \pi}=0$
30. The correct answer is (413).

Given that digits are 1, 2, 3, 4
And $x_{1}, x_{2}, x_{3}, \ldots x_{7}$ are the numbers, where
$x_{1}+x_{2}+\ldots .+x_{7}=12, x_{\mathrm{i}} \in\{1,2,3,4\}$
Hence, no. of required solutions are

$$
\begin{aligned}
& ={ }^{12-1} C_{7-1}-\frac{7!}{6!}-\frac{7!}{5!} \\
& ={ }^{11} C_{6}-7-7 \times 6 \\
& =\frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2}-7-42=462-49=413
\end{aligned}
$$

