JEE (Main) MATHEMATICS SOLVED PAPER

2023
 $13^{\text {th }}$ April Shift 2

Section A

Q. 1. The area of the region $\left\{(x, y): x^{2} \leq y \leq\left|x^{2}-4\right|\right.$, $y \geq 1\}$ is:
(1) $\frac{3}{4}(4 \sqrt{2}+1)$
(2) $\frac{4}{3}(4 \sqrt{2}-1)$
(3) $\frac{3}{4}(4 \sqrt{2}-1)$
(4) $\frac{4}{3}(4 \sqrt{2}+1)$
Q. 2. If $\lim _{x \rightarrow 0} \frac{e^{a x}-\cos (b x)-\frac{c x e^{-c x}}{2}}{1-\cos (2 x)}=17$, then $5 a^{2}+b^{2}$ is equal to:
(1) 76
(2) 72
(3) 64
(4) 68
Q.3. The line that is coplanar to the line $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ is:
(1) $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$
(2) $\frac{x+1}{1}=\frac{y-2}{2}=\frac{z-5}{5}$
(3) $\frac{x-1}{-1}=\frac{y-2}{2}=\frac{z-5}{4}$
(4) $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{4}$
Q.4. The plane, passing through the points ($0,-1$, $2)$ and $(-1,2,1)$ and parallel to the line passing through ($5,1,-7$) and ($1,-1,-1$), also passes through the point:
(1) $(0,5,-2)$
(2) $(-2,5,0)$
(3) $(2,0,1)$
(4) $(1,-2,1)$
Q. 5. Let for a triangle $A B C$,
$\overline{\mathrm{AB}}=-2 \hat{i}+\hat{j}+3 \hat{k}$
$\overline{\mathrm{CB}}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$
$\overline{\mathrm{CA}}=4 \hat{i}+3 \hat{j}+\delta \hat{k}$

If $\delta>0$ and the area of the triangle ABC is $5 \sqrt{6}$, then $\overrightarrow{C B} \cdot \overrightarrow{C A}$ is equal to:
(1) 108
(2) 60
(3) 54
(4) 120
Q. 6. Let for $A=\left[\begin{array}{lll}1 & 2 & 3 \\ \alpha & 3 & 1 \\ 1 & 1 & 2\end{array}\right],|A|=2$. If $\mid 2 \operatorname{adj}(2 \operatorname{adj}$ (2A)) $\mid=32^{n}$, then $3 n+\alpha$ is equal to:
(1) 10
(2) 9
(3) 12
(4) 11
Q. 7. The range of $f(x)=4 \sin ^{-1}\left(\frac{x^{2}}{x^{2}+1}\right)$ is:
(1) $[0, \pi)$
(2) $[0, \pi]$
(3) $[0,2 \pi)$
(4) $[0,2 \pi]$
Q. 8. Let $a_{1}, a_{2}, a_{3}, \ldots$. be a G. P. of increasing positive numbers. Let the sum of its $6^{\text {th }}$ and $8^{\text {th }}$ terms be 2 and the product of its $3^{\text {rd }}$ and $5^{\text {th }}$ terms be $\frac{1}{9}$. Then, $6\left(a_{2}+a_{4}\right)\left(a_{4}+a_{6}\right)$ is equal to:
(1) 2
(2) 3
(3) $3 \sqrt{3}$
(4) $2 \sqrt{2}$
Q.9. If the system of equations
$2 x+y-z=5 \quad 2 x-5 y+\lambda z=\mu$
$x+2 y-5 z=7$
has infinitely many solutions, then $(\lambda+\mu)^{2}+$ $(\lambda-\mu)^{2}$ is equal to:
(1) 904
(2) 916
(3) 912
(4) 920
Q. 10. The statement $(p \wedge(\sim q)) \vee((\sim p) \wedge q) \vee((\sim p) \wedge$ $(\sim q))$ is equivalent to \qquad
(1) $(\sim p) \vee(\sim q)$
(2) $(\sim p) \wedge(\sim q)$
(3) $p \vee(\sim q)$
(4) $p \vee q$
Q. 11. Let $S=z=i\left(z^{2}+\operatorname{Re}(z)\right\}$. Then, $\sum_{z \in S}|z|^{2}$ is equal to:
(1) 4
(2) $\frac{7}{2}$
(3) 3
(4) $\frac{5}{2}$
Q. 12. Let α, β be the roots of the equation $x^{2}-\sqrt{2} x+2=0$. Then, $\alpha^{14}+\beta^{14}$ is equal to:
(1) $-128 \sqrt{2}$
(2) $-64 \sqrt{2}$
(3) -128
(4) -64
Q. 13. Let $|\vec{a}|=2,|\vec{b}|=3$ and the angle between the vectors \vec{a} and \vec{b} be $\frac{\pi}{4}$. Then, $|(\vec{a}+2 \vec{b}) \times(2 \vec{a}-3 \vec{b})|^{2}$ is equal to:
(1) 482
(2) 841
(3) 882
(4) 441
Q. 14. The value of $\frac{e^{-\frac{\pi}{4}}+\int_{0}^{\frac{\pi}{4}} e^{-x} \tan ^{50} x d x}{\int_{0}^{\frac{\pi}{4}} e^{-x}\left(\tan ^{49} x+\tan ^{51} x\right) d x}$ is:
(1) 25
(2) 51
(3) 50
(4) 49
Q.15. The coefficient of x^{5} in the expansion of $\left(2 x^{3}-\frac{1}{3 x^{2}}\right)^{5}$ is:
(1) $\frac{80}{9}$
(2) 8
(3) 9
(4) $\frac{26}{3}$
Q.16. The random variable X follows binomial distribution B (n, p), for which the difference of the mean and the variance is 1 . If $2 \mathrm{P}(x=2)=3 \mathrm{P}(x$ $=1$), then $n^{2} \mathrm{P}(\mathrm{X}>1)$ is equal to:
(1) 16
(2) 11
(3) 12
(4) 15
Q. 17. Let the centre of a circle C be (α, β) and its radius $r<8$. Let $3 x+4 y=24$ and $3 x-4 y=32$ be two tangents and $4 x+3 y=1$ be a normal to C. Then, ($\alpha-\beta+r$) is equal to:
(1) 5
(2) 6
(3) 7
(4) 9
Q. 18. Let N be the foot of the perpendicular from the point $\mathrm{P}(1,-2,3)$ on the line passing through the points $(4,5,8)$ and $(1,-7.5)$. Then, the distance of N from the plane $2 x-2 y+z+5=0$ is:
(1) 6
(2) 7
(3) 9
(4) 8
Q. 19. All words, with or without meaning, are made using all the letters of the word MONDAY. These words are written as in a dictionary with serial numbers. The serial number of the word MONDAY is:
(1) 328
(2) 327
(3) 324
(4) 326
Q. 20. Let (α, β) be the centroid of the triangle formed by the lines $15 x-y=82,6 x-5 y=-4$ and $9 x+4 y$ $=17$. Then, $\alpha+2 \beta$ and $2 \alpha-\beta$ are the roots of the equation:
(1) $x^{2}-13 x+42=0$
(2) $x^{2}-10 x+25=0$
(3) $x^{2}-7 x+12=0$
(4) $x^{2}-14 x+48=0$

Section B

Q.21. Let $A=\{-4,-3,-2,0,1,3,4\}$ and $R=\{(a, b) \in$ $\mathrm{A} \times \mathrm{A}: b=|a|$ or $\left.b^{2}=a+1\right\}$ be a relation on A. Then, the minimum number of elements that must be added to the relation R so that it becomes reflexive and symmetric, is \qquad -
Q. 22. Let $f_{n}=\int_{0}^{\frac{\pi}{2}}\left(\sum_{k=1}^{n} \sin ^{k-1} x\right)\left(\sum_{k=1}^{n}(2 k-1) \sin ^{k-1} x\right) \cos x$ $d x, n \in \mathrm{~N}$. Then, $f_{21}-f_{20}$ is equal to \qquad .
Q.23. If $y=y(x)$ is the solution of the differential equation $\frac{d y}{d x}+\frac{4 x}{\left(x^{2}-1\right)} y=\frac{x+2}{x^{2}-\frac{1}{2}}, x>1$
such that $y(2)=\frac{2}{9} \log _{e}(2+\sqrt{3})$ and
$y(\sqrt{2})=\alpha \log _{e}(\sqrt{\alpha}+\beta)+\beta-\sqrt{\gamma}, \alpha, \beta, \gamma, \in \mathrm{N}$, then $\alpha \beta \gamma$ is equal to \qquad -.
Q.24. Total numbers of 3-digit numbers that are divisible by 6 and can be formed by using the digits $1,2,3,4,5$ with repetition, is \qquad -.
Q. 25. The remainder, when 7^{103} is divided by 17 , is
\qquad .
Q. 26. Let $f(x)=\sum_{k=1}^{10} k x^{k \prime} x \in \mathrm{R}$. If $2 \mathrm{f}(2)-\mathrm{f}^{\prime}(2)=119(2)^{\mathrm{n}}$ +1 , then n is equal to \qquad .
Q. 27. For $x \in(-1,1]$, the number of solutions of the equation $\sin ^{-1} x=2 \tan ^{-1} x$ is equal to \qquad -.
Q. 28. The mean and standard deviation of the marks of 10 students were found to be 50 and 12 , respectively, Later, it was observed that two marks 20 and 25 were wrongly read as 45 and 50, respectively. Then, the correct variance is \qquad -
Q. 29. The foci of a hyperbola are $(\pm 2,0)$ and its eccentricity is $\frac{3}{2}$. A tangent, perpendicular to the line $2 x+3 y=6$, is drawn at a point in the first quadrant on the hyperbola. If the intercepts made by the tangent on the x and y-axis are a and b, respectively, then $|6 a|+|5 b|$ is equal to
\qquad .
Q. 30. Let $[\alpha]$ denote the greatest integer $\leq \alpha$. Then, $[\sqrt{1}]+[\sqrt{2}]+\ldots+[\sqrt{120}]$ is equal to \qquad .

Answer Key

Q. No.	Answer	Topic name	Chapter name
$\mathbf{1}$	$\mathbf{(2)}$	Area between two curves	Area under curves
$\mathbf{2}$	$\mathbf{(4)}$	Limits using expansion	Limits
$\mathbf{3}$	$\mathbf{(1)}$	Equation of a plane	3D
$\mathbf{4}$	$\mathbf{(2)}$	Equation of a plane	3D
$\mathbf{5}$	$\mathbf{(2)}$	Product of two vector	Vector
$\mathbf{6}$	$\mathbf{(4)}$	Adjoint of a matrix	Matrix
$\mathbf{7}$	$\mathbf{(3)}$	Range of itf	Itf
$\mathbf{8}$	$\mathbf{(2)}$	Geometric progression	Matrix
$\mathbf{9}$	$\mathbf{(2)}$	Solution of system of linear equations	Mathematical reasoning
$\mathbf{1 0}$	$\mathbf{(1)}$	Compound statments	Complex number
$\mathbf{1 1}$	$\mathbf{(1)}$	Modulus of a complex number	

Q. No.	Answer	Topic name	
$\mathbf{1 2}$	$\mathbf{(3)}$	Cube root of unity	Complex number name
$\mathbf{1 3}$	$\mathbf{(3)}$	Product of two vector	Vector
$\mathbf{1 4}$	$\mathbf{(3)}$	Definite integral using indefinite	Definite integral
$\mathbf{1 5}$	$\mathbf{(1)}$	General term	Binomial theorem
$\mathbf{1 6}$	$\mathbf{(2)}$	Binomial distribution	Probability
$\mathbf{1 7}$	$\mathbf{(3)}$	Normal	Circles
$\mathbf{1 8}$	$\mathbf{(2)}$	Point . Line and plane	3D
$\mathbf{1 9}$	$\mathbf{(2)}$	Rank of a word	Permutation and combination
$\mathbf{2 0}$	$\mathbf{(1)}$	Centroid and solving equation	Straight lines
$\mathbf{2 1}$	$[7]$	Reflexive and symmetric relation	Relation
$\mathbf{2 2}$	$\mathbf{[4 1]}$	Definite integral using properties	Definite integral
$\mathbf{2 3}$	$[\mathbf{6}]$	Linear differential equation	Differential equation
$\mathbf{2 4}$	$\mathbf{[1 6]}$	Divisibility problem	Basics mathematics
$\mathbf{2 5}$	$[\mathbf{1 2]}$	Divisibility problem	Binomial theorem
$\mathbf{2 6}$	$[\mathbf{1 0]}$	Function and its differentiation	Function and differentiation
$\mathbf{2 7}$	$[\mathbf{2]}$	Equation involving itf	Itf
$\mathbf{2 8}$	$[\mathbf{2 6 9]}$	Mean and variance	Statistics
$\mathbf{2 9}$	$[\mathbf{1 2]}$	Tangent	Hyperbola
$\mathbf{3 0}$	$[825]$	Special series	Sequence and series

Solutions

Section A

1. Option (2) is correct.

Given that $x^{2} \leq y \leq\left|x^{2}-4\right|, y \geq 1$
Here, $x^{2}=y$ and $y=\left|x^{2}-4\right|$ both represent parabola, which can be plotted as

Solving $x^{2}=y \& y=\left|x^{2}-4\right|$
We get $y= \pm(y-4)$
$y=-y+4 \Rightarrow y=2$
so, the required area

$$
\begin{aligned}
& =2\left[\int_{1}^{2} \sqrt{y} d y+\int_{2}^{4} 2 \sqrt{4-y} d y\right] \\
& =2 \times\left\{\left[\frac{2}{3} y^{\frac{3}{2}}\right]_{1}^{2}-\left[\frac{2}{3}(4-y)^{\frac{3}{2}}\right]_{2}^{4}\right\} \\
& =2\left\{\frac{2}{3} \times 2 \sqrt{2}-\frac{2}{3}+\frac{2}{3} \times 2 \sqrt{2}\right\}
\end{aligned}
$$

$=2\left\{\frac{8}{3} \sqrt{2}-\frac{2}{3}\right\}=\frac{4}{3}\{4 \sqrt{2}-1\}$
2. Option (4) is correct.

Given that

$$
\begin{aligned}
& \operatorname{lt}_{x \rightarrow 0} \frac{e^{a x}-\cos b x-\frac{c x}{2} \times e^{-c x}}{1-\cos (2 x)}=17 \\
& \left\{1+a x+\frac{a^{2} x^{2}}{2} \ldots .\right\}-\left\{1-\frac{b^{2} x^{2}}{2}+\frac{b^{4} x^{4}}{24}-\ldots .\right\}- \\
& \operatorname{lt}_{x \rightarrow 0} \frac{\frac{c x}{2}\left\{1-c x+\frac{c^{2} x^{2}}{2} \ldots \ldots\right\}}{1-\left\{1-\frac{4 x^{2}}{2}+\frac{16 x^{4}}{24} \ldots .\right\}} \\
& \operatorname{lt}_{x \rightarrow 0} \frac{\left(a-\frac{c}{2}\right) x+\left(\frac{a^{2}}{2}+\frac{b^{2}}{2}+\frac{c^{2}}{2}\right) x^{2}+\ldots .}{2 x^{2}-\frac{x^{4}}{3}}=17
\end{aligned}
$$

This limit will exist if $a-\frac{c}{2}=0$
$\Rightarrow c=2 a$
and $\frac{\frac{a^{2}}{2}+\frac{b^{2}}{2}+\frac{c^{2}}{2}}{2}=17$
$\Rightarrow a^{2}+b^{2}+c^{2}=34 \times 2$
or $a^{2}+b^{2}+4 a^{2}=34 \times 2$ (from eqn (1)
$\Rightarrow 5 a^{2}+b^{2}=68$
3. Option (1) is correct.

Given line passes through the point $(-3,1,5)$ whose d.r's are $(-3,1,5)$

Option (1): Here $\left|\begin{array}{ccc}-2 & -1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5\end{array}\right|$
$=-2(-5)+1(-10)+0=10-10=0$
So, no need to check other options.
4. Option (2) is correct.

Given that the plane passes through the points $(0,-1$, 2) $\&(-1,2,1)$
\Rightarrow d.r's of this line $(1,-3,1)$
Also, the plane is parallel to line passing through $(5,1,-7)$ and $(1,-1,-1)$
So dr's of this line ($4,2,-6$)
Now, if (a, b, c) one the d.r's of the normal to the plane then

$$
\begin{aligned}
& a \hat{i}+b \hat{j}+c \hat{k}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 1 \\
4 & 2 & -6
\end{array}\right|=16 \hat{i}+10 \hat{j}+14 \hat{k} \\
& \Rightarrow(a, b, c) \equiv(16,+10,+14) \text { or }(8,+5,+7)
\end{aligned}
$$

So the eqn. of the plane is
$a x+b y+c z+d=0$
or $8 x+5 y+7 z+d=0$
which passes through $(0,-1,2)$
$\Rightarrow 0-5+14+d=0 \Rightarrow d=-9$
so $8 x+5 y+7 z-9=0^{\prime}$
Clearly the point $(-2,5,0)$ lies on the above plane.
5. Option (2) is correct.

Given that $\overrightarrow{\mathrm{AB}}=-2 \hat{i}+\hat{j}+3 \hat{k}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{CB}}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k} \\
& \overrightarrow{\mathrm{CA}}=4 \hat{i}+3 \hat{j}+\delta \hat{k}
\end{aligned}
$$

Since $\overrightarrow{C A}+\overrightarrow{A B}=\overrightarrow{C B}$
$\Rightarrow 2 \hat{i}+4 \hat{j}+(3+\delta) \hat{k}=\overrightarrow{\mathrm{CB}}$
Now
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 3 \\ -4 & -3 & -\delta\end{array}\right|=(9-\delta) \hat{i}-(2 \delta+12) \hat{j}+10 \hat{k}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \stackrel{\mathrm{AC}}{ }|^{2}=(9-\delta)^{2}+(2 \delta+12)^{2}+100$
But area $(\triangle \mathrm{ABC})=5 \sqrt{6}$
$\Rightarrow \frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=5 \sqrt{6}$
$\Rightarrow(9-\delta)^{2}+(2 \delta+12)^{2}+100=4 \times 25 \times 6$
$\Rightarrow 81+\delta^{2}-18 \delta+4 \delta^{2}+144+48 \delta+100=600$
$\Rightarrow 5 \delta^{2}+30 \delta-275=0$
$\Rightarrow \delta^{2}+6 \delta-55=0$
$\Rightarrow(\delta+11)(\delta-5)=0$
$\Rightarrow \delta=5$
so $\overrightarrow{\mathrm{CB}}=2 \hat{i}+4 \hat{j}+8 \hat{k}$
$\overrightarrow{\mathrm{CA}}=4 \hat{i}+3 \hat{j}+5 \hat{k}$
and $\overrightarrow{C B} \cdot \overrightarrow{C A}=8+12+40=60$
6. Option (4) is correct.

Given that $A=\left[\begin{array}{lll}1 & 2 & 3 \\ \alpha & 3 & 1 \\ 1 & 1 & 2\end{array}\right],|A|=2$
Now, $\operatorname{adj}(2 \mathrm{~A})=2^{2} \operatorname{adj}(\mathrm{~A})$
$\Rightarrow 2 \operatorname{adj}(2 A)=8 \operatorname{adj}(A)$
$\Rightarrow \operatorname{adj}(2 \operatorname{adj}(2 A))=\operatorname{adj}(8 \operatorname{adj}(A))$
$=8^{2} \operatorname{adj}(\operatorname{adj}(A))$
$\Rightarrow|2 \operatorname{adj}(2 \operatorname{adj}(2 A))|=|2 \times 64 \operatorname{adj}(\operatorname{adj}(A))|$
$=(128)^{3}|\operatorname{adj}(\operatorname{adj}(\mathrm{~A}))|$
$=\left(2^{7}\right)^{3}|\mathrm{~A}|^{(3-1) 2}$
$=2^{21} \times|A|^{4}=2^{21} \times 2^{4}=2^{25}$
So $|2 \operatorname{adj}(2 \operatorname{adj}(2 A))|=32^{n}$
$\Rightarrow 2^{25}=2^{5 n}$
$\Rightarrow 5 n=25 \Rightarrow n=5$
Also, $|\mathrm{A}|=2$
$\Rightarrow\left|\begin{array}{lll}1 & 2 & 3 \\ \alpha & 3 & 1 \\ 1 & 1 & 2\end{array}\right|=2$
$\Rightarrow 5-2(2 \alpha-1)+3(\alpha-3)=2$
$\Rightarrow 5-4 \alpha+2+3 \alpha-9=2$
$\Rightarrow \alpha=-4$
Hence, $3 n+\alpha=3 \times 5-4=11$
7. Option (3) is correct.

Given that $f(x)=4 \sin ^{-1}\left(\frac{x^{2}}{x^{2}+1}\right)$
Since, $0 \leq \frac{x^{2}}{x^{2}+1}<1 \quad \forall x \in \mathrm{R}$
Therefore, $\sin ^{-1}(0) \leq \sin ^{-1}\left(\frac{x^{2}}{x^{2}+1}\right)<\sin ^{-1} 1$
$4 \times 0 \leq f(x)<4 \times \frac{\pi}{2}$
$\Rightarrow f(x) \in[0,2 \pi)$
8. Option (2) is correct.

Given that $a_{1}, a_{2}, a_{3}, \ldots$. are in G.P.
Also, $a_{6}+a_{8}=2, a_{3} \times a_{5}=\frac{1}{9}$
$\Rightarrow a r^{5}+a r^{7}=2$ and $a r^{2} \times a r^{4}=\frac{1}{9}$
$\Rightarrow a r^{5}\left(1+r^{2}\right)=2$ and $a r^{3}=\frac{1}{3}$
$\Rightarrow a r^{3} \times r^{2}\left(1+r^{2}\right)=2 \Rightarrow \frac{1}{3}\left[r^{2}+r^{4}\right]=2$
$\Rightarrow r^{4}+r^{2}-6=0$
$\Rightarrow\left(r^{2}+3\right)\left(r^{5}-2\right)=0$
$\Rightarrow r^{2}=2$

$$
\begin{aligned}
& \text { and } a r^{3}=\frac{1}{3} \Rightarrow a \times 2^{3 / 2}=\frac{1}{3} \\
& \Rightarrow a=\frac{1}{3 \times 2^{\frac{3}{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } 6\left(a_{2}+a_{4}\right)\left(a_{4}+a_{6}\right) \\
& =6\left(a r+a r^{3}\right)\left(a r^{3}+a r^{5}\right) \\
& =6 a r \times a r^{3}\left(1+r^{2}\right)\left(1+r^{2}\right) \\
& =6 a^{2} r^{4}\left(1+r^{2}\right)^{2} \\
& =6 \times \frac{1}{9 \times 8} \times 4(1+2)^{2}=\frac{6 \times 4 \times 9}{9 \times 8}=3
\end{aligned}
$$

9. Option (2) is correct.

Since given system of equations have infinitely many solutions, so
$\rho[\mathrm{A}: \mathrm{B}]<\rho[\mathrm{A}]=2$
Now
$[A: B]=\left[\begin{array}{ccccc}2 & 1 & -1 & : & 5 \\ 2 & -5 & \lambda & : & \mu \\ 1 & 2 & -5 & : & 7\end{array}\right]$
$\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$ and then $\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{1}$
$\sim\left[\begin{array}{ccccc}1 & 2 & -5 & : & 7 \\ 2 & 1 & -1 & : & 5 \\ 2 & -5 & \lambda & : & \mu\end{array}\right]$
$\sim\left[\begin{array}{ccccc}1 & 2 & -5 & : & 7 \\ 0 & -3 & 9 & : & -9 \\ 0 & -9 & \lambda+10 & : & \mu-14\end{array}\right]$
$\sim\left[\begin{array}{ccccc}1 & 2 & -5 & : & 7 \\ 0 & -3 & 9 & : & -9 \\ 0 & 0 & \lambda-17 & : & \mu+13\end{array}\right]$
For inifinite solutions
$\lambda=17$ and $\mu=-13$
Hence $(\lambda+\mu)^{2}+(\lambda-\mu)^{2}=(17-13)^{2}+(17+13)^{2}$
$=(30)^{2}+(4)^{2}=900+16=916$
10. Option (1) is correct.

Given that

$$
\begin{aligned}
& (p \wedge(\sim q)) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q)) \\
& \equiv(p \wedge(\sim q)) \vee(((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))) \\
& \equiv(p \wedge(\sim q)) \vee((\sim p) \wedge(q \vee(\sim q))) \\
& \equiv(p \wedge(\sim q)) \vee(\sim p \wedge t) \\
& \equiv(p \wedge(\sim q)) \vee(\sim p) \\
& \equiv(p \vee(\sim p)) \wedge((\sim p) \vee(\sim q)) \\
& \equiv \mathrm{t} \wedge((\sim p) \vee(\sim q)) \\
& \equiv(\sim p) \vee(\sim q)
\end{aligned}
$$

11. Option (1) is correct.

Given that $S=\left\{z \in C: \bar{z}=i\left(z^{2}+\operatorname{Re}(\bar{z})\right\}\right.$
Let $z=x+i y$
then $\bar{z}=i\left(z^{2}+\operatorname{Re}(\bar{z})\right)$
$\Rightarrow x-i y=i\left(x^{2}-y^{2}+2 i x y+x\right)$
$=-2 x y+i\left(x^{2}-y^{2}+x\right)$
Comparing real \& imaginary parts -
$x=-2 x y$ and $-y=x^{2}-y^{2}+x$
$\Rightarrow x(1+2 y)=0$ and $(x+y)(x-y)+(x+y)=0$
$\Rightarrow x=0$ or $y=\frac{-1}{2}$ and $(x+y)(x-y+1)=0$
Now, if $x=0$, then $y=0,1$

$$
\begin{aligned}
& \text { If } y=\frac{-1}{2} \text { then }\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}+1\right)=0 \\
& \Rightarrow x=\frac{1}{2}, \frac{-3}{2} \\
& \therefore z=0+0 i,=0+i, \frac{1}{2}-i\left(\frac{1}{2}\right), \frac{-8}{2}-i\left(\frac{1}{2}\right) \\
& \sum_{z \in S}|z|^{2}=0+0+0+1+\frac{1}{4}+\frac{1}{4}+\frac{9}{4}+\frac{1}{4}=4
\end{aligned}
$$

12. Option (3) is correct.

Given that $x^{2}-\sqrt{2} x+2=0$

$$
\begin{aligned}
& \Rightarrow x=\frac{\sqrt{2} \pm \sqrt{2-4 \times 2}}{2 \times 1}=\frac{\sqrt{2} \pm i \sqrt{6}}{2} \\
& x=\sqrt{2}\left(\frac{1 \pm i \sqrt{3}}{2}\right)=-\sqrt{2} \omega,-\sqrt{2} \omega^{2} \\
& \Rightarrow \therefore \alpha=-\sqrt{2} \omega \text { and } \beta=-\sqrt{2} \omega^{2} \\
& \text { and } \alpha^{14}+\beta^{14}=2^{7} \omega^{14}+2^{7} \omega^{28} \\
& =2^{7}\left(\omega^{3}\right)^{4} \omega^{2}+2^{7}\left(\omega^{3}\right)^{9} \omega \\
& =2^{7}\left[1 . \omega^{2}+1 . \omega\right]=2^{7}(-1)=-128
\end{aligned}
$$

13. Option (3) is correct.

Given that $|\vec{a}|=2,|\vec{b}|=3, \theta=\frac{\pi}{4}$
$|(\vec{a}+2 \vec{b}) \times(2 \vec{a}-3 \vec{b})|^{2}$
$=|2 \vec{a} \times \vec{a}-3 \vec{a} \times \vec{b}+4 \vec{b} \times \vec{a}-6 \vec{b} \times \vec{b}|^{2}$
$=|0-3 \vec{a} \times \vec{b}-4 \vec{a} \times \vec{b}-0|^{2}$
$=|-7 \vec{a} \times \vec{b}|^{2}$
$=49|\vec{a}|^{2}|\vec{b}|^{2}\left(\sin \frac{\pi}{4}\right)^{2}$
$=49 \times 4 \times 9 \times \frac{1}{2}=882$

14. Option (3) is correct.

We have

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} e^{-x}\left(\tan ^{49} x+\tan ^{51} x d x\right) \\
& \qquad=\int_{0}^{\frac{\pi}{4}} e^{-x} \tan ^{49} x\left(1+\tan ^{2} x\right) d x \\
& =\int_{0}^{\frac{\pi}{4}} e_{\mathrm{I}}^{-x} \underbrace{\tan ^{44} x \sec ^{2}}_{\mathrm{II}} x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left[e^{-x} \frac{\tan ^{50} x}{50}\right]_{0}^{\frac{\pi}{4}}+\int_{0}^{\frac{\pi}{4}} e^{-x} \frac{\tan ^{50} x}{50} d x \\
& \int_{0}^{\frac{\pi}{4}} e^{-x}\left(\tan ^{44} x+\tan ^{51} x\right) d x=\frac{e^{-\frac{\pi}{4}}}{50}+\frac{1}{50} \\
& \Rightarrow \frac{e_{0}^{\frac{\pi}{4}} e^{-x} \tan ^{50} x d x}{\int_{0}^{\frac{\pi}{4}} e^{-x}\left(\tan ^{49} x+\tan ^{51} x\right) d x}=50
\end{aligned}
$$

15. Option (1) is correct.

Given that $\left(2 x^{3}-\frac{1}{3 x^{2}}\right)^{5}$
$\mathrm{T}_{r+1}={ }^{5} \mathrm{C}_{r}\left(2 x^{3}\right)^{5-r}\left(-\frac{1}{3 x^{2}}\right)^{r}$
$={ }^{5} \mathrm{C}_{r}(-1)^{r}(2)^{5-r} \times\left(\frac{1}{3}\right)^{r} x^{15-5 r}$
For coefficient of $x^{5}, 15-5 r=5$
$\Rightarrow r=2$
So, coefficient of x^{5} is ${ }^{5} \mathrm{C}_{2}(-1)^{2}(2)^{3} \times\left(\frac{1}{3}\right)^{2}$
$=10 \times 8 \times \frac{1}{9}=\frac{80}{9}$
16. Option (2) is correct.

Given that $2 P(X=2)=3 P(X=1)$

$$
\begin{align*}
& \Rightarrow 2 \times{ }^{n} \mathrm{C}_{2} p^{2}(1-p)^{n-2}=3 \times{ }^{n} \mathrm{C}_{1} p(1-p)^{n-1} \\
& \Rightarrow \frac{2(n)(n-1)}{2} p^{2}(1-p)^{n-2}=3 \times n \times p(1-p)^{n-1} \\
& \Rightarrow(n-1) p=3(1-p) \\
& \Rightarrow n p-p=3-3 p \\
& \Rightarrow n p+2 p=3 \tag{1}
\end{align*}
$$

Also,
mean - variance $=1$
$\Rightarrow n p-n p q=1$
$\Rightarrow 3-2 p-(3-2 p)(1-p)=1$
$\Rightarrow 3-2 p-3+3 p+2 p-2 p^{2}=1$
$\Rightarrow 2 p^{2}-3 p+1=0$
$\Rightarrow(2 p-1)(p-1)=0$
$\Rightarrow p=\frac{1}{2}(p=1)$ rejected also $q=\frac{1}{2}$
and $\frac{n}{2}+1=3 \Rightarrow n=4$
Now, $n^{2} \mathrm{P}(\mathrm{X}>1)=\left(1-\mathrm{P}(\mathrm{X}=0)-\mathrm{P}(\mathrm{X}=1) n^{2}\right.$
$=\left(1-{ }^{4} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{4}-{ }^{4} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{3}\right) 4^{2}$
$=\left(1-\frac{1}{16}-\frac{4}{16}\right) 16$
$=\left(\frac{16-5}{16}\right) 16=11$
17. Option (3) is correct.

Since, $3 x+4 y=24$ and $3 x-4 y=32$ be two tangents $\& 4 x+3 y=1$ be a normal and (α, β) be the centre, then the centre lies on the normal

$$
\begin{equation*}
\Rightarrow 4 \alpha+3 \beta=1 \tag{1}
\end{equation*}
$$

Also, $\left|\frac{3 \alpha+4 \beta-24}{5}\right|=\left|\frac{3 \alpha-4 \beta-32}{5}\right|$
$\Rightarrow 3 \alpha+4 \beta-24= \pm(3 \alpha-4 \beta-32)$
Taking (+) sign
$3 \alpha+4 \beta-24=3 \alpha-4 \beta-32$
$\Rightarrow \beta=-1$ and $\alpha=1$
and $r=\frac{|3 \times 1+4 \times(-1)-24|}{5}=\frac{25}{5}=5<8$
Here, $\alpha-\beta+\gamma=1+1+5=7$
18. Option (2) is correct.

Eqn. of line AB

$\frac{x-1}{3}=\frac{y+7}{12}=\frac{z-5}{3}=\lambda$
$\Rightarrow \mathrm{N}(x, y, z) \equiv(3 \lambda+1,12 \lambda-7,3 \lambda+5)$
Also, $\mathrm{PN} \perp \mathrm{AB}$
$\Rightarrow 3(3 \lambda+1-1)+12(12 \lambda-7+2)+3(3 \lambda+5-3)=0$
$\Rightarrow 9 \lambda+144 \lambda-60+9 \lambda+6=0$
$\Rightarrow 162 \lambda=53 \Rightarrow \lambda=\frac{1}{3}$
So, N is $(2,-3,6)$
and distance of $2 x-2 y+z+5=0$ from $N(2,-3,6)$ is
$=\left|\frac{2 \times 2+3 \times 2+6 \times 1+5}{\sqrt{4+4+1}}\right|=\frac{21}{3}=7$
19. Option (2) is correct.

Given word is MONDAY which can be written as ADMNOY
No. of words starting with A are 5!
No. of words starting with D are 5!
No. of words starting with MA are 4!
No. of words starting with MN are 4!
No. of words starting with MON are 4!
No. of words starting with MOD are 3!
No. of words starting with MONA are 2 !
No. of words starting with MONDAY are 1 !
Hence, required rank is $=5!\times 2+4!\times 3+3!\times 2+$ $2+1$
$=240+72+12+3=327$
20. Option (1) is correct.

Given eqn of sides are $15 x-y=82$
$6 x-5 y=-4$
and $9 x+4 y=17$
Solving eqns (1), (2), (3) simultaneously, we get the vertices of Δ as $(6,8),(1,2)$ and $(5,-7)$
If (α, β) is the centroid of Δ, then
$\alpha=\frac{6+1+5}{3}=\frac{12}{3}=4$
$\beta=\frac{8+2-7}{3}=\frac{3}{3}=1$
So, $\alpha+2 \beta==4+2=6$
and $2 \alpha-\beta=8-1=7$
Hence, required quadratic eqn is

$$
x^{2}-(6+7) x+6 \times 7=0
$$

$\Rightarrow x^{2}-13 x+42=0$

Section B

21. Correct answer is [7].

Given that $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$
$\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$, or $b^{2}=\mathrm{a}+1 \mid$
$\Rightarrow R=\{(-4,4),(4,4),(-3,3),(3,3),(0,0),(0,1),(1,1)$, $(3,-2)\}$
Now, for reflexive R must contain ($-2,-2$), $(-3,-3)$, $(-4,-4)$
and for symmetric R must contain $(4,-4),(3,-3),(-2$, 3), $(1,0)$
22. Correct answer is [41].

Given that
$f_{n}=\int_{0}^{\frac{\pi}{2}}\left(\sum_{k=1}^{n} \sin ^{k-1} x\right)\left(\sum_{k=1}^{n}(2 k-1) \sin ^{k-1} x\right) \cos x d x$
Putting $t=\sin x \Rightarrow d t=\cos x d x$

$$
\begin{align*}
& x=0, t=0 \text { and } x=\frac{\pi}{2}, t=1 \\
& \Rightarrow f_{n}=\int_{0}^{1}\left(\sum_{k=1}^{n} t^{k-1}\right)\left(\sum_{k=1}^{n}(2 k-1) t^{k-1}\right) d t \\
& \Rightarrow f_{n}=\int_{0}^{1} \frac{\left\{1+t+t^{2}+\ldots .+t^{n-1}\right\}}{a} \\
& \frac{\left\{1+3 t+5 t^{2}+\ldots .+(2 n-1) t^{n-1}\right\} d t}{b} \\
& \Rightarrow f_{n}=\int_{0}^{1} a b d t \tag{1}\\
& \text { and } f_{n+1}=\int_{0}^{1}\left(a+t^{n}\right)\left(b+(2 n+1) t^{n}\right) d t \tag{2}
\end{align*}
$$

from (1) and (2)
$f_{n+1}-f_{n}=\int_{0}^{1}\left\{\left(a+t^{n}\right)\left(b+(2 n+1) t^{n}\right)-a b\right\} d t$
$=\int_{0}^{1}\left[a b+t^{n}\{(2 n+1) a+b\}+(2 n+1) t^{n}-a b\right] d t$
$=\int_{0}^{1} t^{n}\left\{(2 n+1) t^{n}+(2 n+2)+(2 n+4) t+(2 n+6) t^{2}+\ldots\right.$. $\left.+4 n t^{n-1}\right\} d t$
$=\int_{0}^{1}\left\{(2 n+2) t^{n}+(2 n+4) t^{n+1}+(2 n+6) t^{n+1}+\ldots .+\right.$ $\left.4 n t^{2 n-1}+(2 n+1) t^{2 n}\right\} d t$

Putting $n=20$
$f_{21-} f_{20}=\int_{0}^{1}\left[42 t^{20}+44 t^{21}+46 t^{22}+\ldots .+80 t^{39}+41 t^{40}\right] d t$
$=\frac{42}{21}+\frac{44}{22}+\frac{45}{23}+\ldots .+\frac{80}{40}+\frac{41}{41}$
$=\underbrace{2+2+2+\ldots .+2}_{20 \text { times }}+1$
$=40+1=41$
23. Correct answer is [6].

Given that
$\frac{d y}{d x}+\frac{4 x}{x^{2}-1} y=\frac{x+2}{\left(x^{2}-1\right)^{\frac{5}{2}}}$
which is LDE, where $\mathrm{P}=\frac{4 x}{x^{2}-1}$ and $\mathrm{Q}=\frac{x+2}{\left(x^{2}-1\right)^{5 / 2}}$
So I.F. $=e^{\int \mathrm{P} d x}=e^{\int \frac{4 x}{x^{2}-1} d x}=e^{2 \log \left(x^{2}-1\right)}=\left(x^{2}-1\right)^{2}$
So, solution of DE is given by

$$
\begin{aligned}
& y \times\left(x^{2}-1\right)^{2}=\int \frac{x+2}{\left(x^{2}-1\right)^{\frac{5}{2}}} \times\left(x^{2}-1\right)^{2} d x+C \\
& =\int \frac{x+2}{\left(x^{2}-1\right)^{\frac{1}{2}}} d x+C \\
& =\int \frac{x}{\sqrt{x^{2}-1}}+2 \int \frac{1}{\sqrt{x^{2}-1}} d x+C \\
& y\left(x^{2}-1\right)^{2}=\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+C \\
& \text { Putting } y(2)=\frac{2}{9} \log (2+\sqrt{3}) \\
& \frac{2}{9} \log (2+\sqrt{3}) \times 9=\sqrt{3}+2 \log |2+\sqrt{3}|+C \\
& \Rightarrow C=-\sqrt{3} \\
& \text { putting } x=\sqrt{2} \\
& y(1)^{2}=\sqrt{1}+2 \log |\sqrt{2}+1|-\sqrt{3} \\
& \Rightarrow y=1-\sqrt{3}+2 \log |1+\sqrt{2}|=\alpha \log (\sqrt{\alpha}+\beta)+\beta-\sqrt{\gamma}
\end{aligned}
$$

On comparing $\Rightarrow \alpha=1, \beta=1, \gamma=3$
and $\alpha \cdot \beta \cdot \gamma=2 \times 1 \times 3=6$
24. Correct answer is [16].

Given numbers are 1,2,3,4,5
Now, a number is divisible by 6 , if it is divisible by both 3 and 2 .
Case I: If 2 is at unit place, then possible pairs of first two places are $(1,3),(3,1),(2,2),(2,5),(5,2),(3,4),(4$, 3), $(5,5)$

Case II: If 4 is at unit place, then possible pairs of first two places are $(1,1),(1,4),(4,1),(2,3),(3,2),(4,4),(3$, 5), $(5,8)$

Hence, total numbers are $8+8=16$
25. Correct answer is [12].
$7^{103} \equiv 7 \times 7^{102}$
$=7\left(7^{2}\right)^{51}$
$=7(51-2)^{51}$
$=7\left(51 k-2^{51}\right)$ where $k \in z^{+}$
$=7 \times 51 k-7 \times 2^{3} \times\left(2^{4}\right)^{12}$
$=7 \times 51 \mathrm{k}-7 \times 8 \times(17-1)^{12}$
$=7 \times 51 k-56 \times(17 q+1)$
$=7 \times 51 k-56 \times 17 q-56$
$=17\{7 \times 3 \mathrm{k}-56 q-4\}+12$
$=17 p+12$
Hence, remainder is 12 .
26. Correct answer is [10].

Given that

$$
\begin{aligned}
& f(x)=\sum_{k=1}^{10} k x^{k}, k \in \mathrm{R} \\
& \Rightarrow f(x)=x+2 x^{2}+3 x^{3}+\ldots .+10 x^{10} \\
& x f(x)=x^{2}+2 x^{3}+\quad+9 x^{10}+10 x^{11} \\
& -\quad-\quad-\quad-\quad-\quad-x^{2}+x^{3}+\ldots .+x^{10}-10 x^{11} \\
& (1-x) f(x)=x+x^{2} \\
& (1-x) f(x)=\frac{x\left(1-x^{10}\right)}{1-x}-10 x^{11} \\
& \text { of }(1-x)^{2} f(x)=x\left(1-x^{10}\right)-10 x^{11}(1-x)
\end{aligned}
$$

Putting $x=2$
$f(2)=2\left(1-2^{10}\right)+10 \times 2^{11}$
Also, $(1-x)^{2} f^{\prime}(x)-2(1-x) f(x)=1-x^{10}-x\left(10 x^{9}\right)$

$$
+10 x^{11}-110 x^{10}(1-x)
$$

Putting $x=2$
$f^{\prime}(2)+2 f(2)=1-2^{10}-10 \times 2^{10}+10 \times 2^{11}+110 \times 2^{10}$ $=1+119 \times 2^{10}$
Hence, by comparing we get $n=10$
27. Correct answer is [2].

Let $y=\sin ^{-1} x$ and $y=2 \tan ^{-1} x$

Since, two graphs intersect at 3 points but $x \in(-1,1]$, therefore, there are two solutions.
28. Correct answer is [269].

Mean $=50$,
$\Rightarrow \frac{\Sigma x_{i}}{10}=50$
$\Rightarrow \Sigma x_{i}=500$
Variance $=12^{2}$
$\frac{\Sigma x_{i}^{2}}{10}-(\bar{x})^{2}=12^{2}$
$\Rightarrow \Sigma x_{i}^{2}=(144+2500) \times 10=26440$

Now, correct mean $=\frac{500-45-50+20+25}{10}=\frac{450}{10}$
$=45$
Also, correct $\Sigma x_{i}^{2}=26440-(45)^{2}-(50)^{2}+(20)^{2}+(25)^{2}$
$=26440-70 \times 20-70 \times 30=22940$
\therefore Correct variance $=\frac{22940}{10}-(\text { Correct mean })^{2}$
$=2294-(45)^{2}=2294-2025=269$
29. Correct answer is [12].

Given that $2 a e=4$
$\Rightarrow 2 a\left(\frac{3}{2}\right)=4 \Rightarrow a=\frac{4}{3}$
Also, $e=\sqrt{1+\frac{b^{2}}{a^{2}}} \Rightarrow \frac{3}{4}=\sqrt{1+b^{2}\left(\frac{9}{16}\right)}$
$\Rightarrow b^{2}=\frac{20}{9}$
Slope of tangent $m=\frac{3}{2}$
So eqn. of tangent is given by
$y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$
$\Rightarrow y=\frac{3}{2} x \pm \sqrt{\frac{16}{9} \times \frac{9}{4}-\frac{20}{9}}=\frac{3 x}{2} \pm \frac{4}{3}$
Putting $y=0 \Rightarrow a= \pm \frac{8}{9}$
$x=0 \Rightarrow b= \pm \frac{4}{3}$
and $|6 a|+|5 b|=12$
30. Correct answer is [825].

Since
$1 \leq \sqrt{1}, \sqrt{2}, \sqrt{3}<2$
$2 \leq \sqrt{4}, \sqrt{5}, \ldots . \sqrt{8}<3$
$3 \leq \sqrt{9}, \sqrt{10}, \ldots \ldots . \sqrt{15}<4$
$4 \leq \sqrt{16}, \sqrt{17}, \ldots \ldots . . \sqrt{24}<4$
:
$10 \leq \sqrt{100}, \sqrt{101}, \ldots . ., \sqrt{120}<11$
Hence, $[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+\ldots .+[\sqrt{120}]$

$$
\begin{aligned}
& =1 \times 3+2 \times 5+3 \times 7+4 \times 9+\ldots .+10 \times 21 \\
& =1(2 \times 1+1)+2(2 \times 2+1)+3(2 \times 3+1)+ \\
& \quad \ldots .10(2 \times 10+1) \\
& =2\left\{1^{2}+2^{2}+3^{2}+\ldots .+10^{2}\right\}+\{1+2+3+\ldots .+10\} \\
& =2 \times \frac{10 \times 11 \times 21}{6}+\frac{10 \times 11}{2} \\
& =770+55=825
\end{aligned}
$$

