JEE (Main) MATHEMATICS SOLVED PAPER

Section A

Q.1. Let $\quad \vec{u}=\hat{i}-\hat{j}-2 \hat{k}, \vec{v}=2 \hat{i}+\hat{j}-\hat{k}, \vec{v} \cdot \vec{w}=2 \quad$ and $\vec{v} \times \vec{w}=\vec{u}+\lambda \vec{v}$. Then $\vec{u} . \vec{w}$ is equal to
(1) 2
(2) $\frac{3}{2}$
(3) 1
(4) $-\frac{2}{3}$
Q. 2. $\lim _{t \rightarrow 0}\left(\frac{1}{1^{\sin ^{2} t}}+2^{\frac{1}{\sin ^{2} t}}+\ldots+n^{\frac{1}{\sin ^{2} t}}\right)^{\sin ^{2} t}$ is equal to
(1) n^{2}
(2) $\frac{n(n+1)}{2}$
(3) n
(4) $n^{2}+n$
Q.3. Let α be a root of the equation $(a-c) x^{2}+(b-a) x$ $(c-b)=0$ where a, b, c are distinct real numbers such that the matrix $\left[\begin{array}{ccc}\alpha^{2} & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & c\end{array}\right]$ is singular. Then, the value of $\frac{(a-c)^{2}}{(b-a)(c-b)}+\frac{(b-a)^{2}}{(a-c)(c-b)}+$ $\frac{(c-b)^{2}}{(a-c)(b-a)}$ is
(1) 12
(2) 9
(3) 3
(4) 6
Q.4. The area enclosed by the curves $y^{2}+4 x=4$ and $y-2 x=2$ is:
(1) 9
(2) $\frac{22}{3}$
(3) $\frac{23}{3}$
(4) $\frac{25}{3}$
Q. 5. Let $p, q \in \mathbb{R}$ and $(1-\sqrt{3} i)^{200}=2^{199}(p+i q)$, $i=\sqrt{-1}$. Then $p+q+q^{2}$ and $p-q+q^{2}$ are roots of the equation.
(1) $x^{2}-4 x-1=0$
(2) $x^{2}-4 x+1=0$
(3) $x^{2}+4 x-1=0$
(4) $x^{2}+4 x+1=0$
Q. 6. Let N denote the number that turns up when a fair die is rolled. If the probability that the system of equations
$x+y+z=1$

$$
2 x+\mathrm{N} y+2 z=2
$$

$3 x+3 y+\mathrm{N} z=3$
has unique solution is $\frac{k}{6}$, then the sum of value of k and all possible values of N is
(1) 21
(2) 18
(3) 20
(4) 19
Q. 7. For three positive integers $p, q, r, x^{p q^{2}}=y^{q r}=z^{p^{2} r}$ and $r=p q+1$ such that $3,3 \log _{y} x, 3 \log _{z} y$,
$7 \log _{x} z$ are in A.P. with common difference $\frac{1}{2}$. Then $r-p-q$ is equal to
(1) -6
(2) 12
(3) 6
(4) 2
Q. 8. The relation $\mathrm{R}=\{(a, b)$: $g c d(a, b)=1,2 a \neq b, a, b$ $\in Z\}$ is:
(1) reflexive but not symmetric
(2) transitive but not reflexive
(3) symmetric but not transitive
(4) neither symmetric nor transitive
Q.9. Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such that $\frac{\mathrm{QA}}{\mathrm{AR}}=\frac{\mathrm{RB}}{\mathrm{BP}}=\frac{\mathrm{PC}}{\mathrm{CQ}}=\frac{1}{2}$. Then $\frac{\operatorname{Area}(\triangle \mathrm{PQR})}{\operatorname{Area}(\triangle \mathrm{ABC})}$ is equal to
(1) 4
(2) 3
(3) 1
(4) 2
Q.10. Let $y=y(x)$ be the solution of the differential equation $x^{3} d y+(x y-1) d x=0, x>0$, $y\left(\frac{1}{2}\right)=3-e$. Then $y(1)$ is equal to
(1) 1
(2) e
(3) 3
(4) $2-e$
Q. 11. If A and B are two non-zero $n \times n$ matrices such that $A^{2}+B=A^{2} B$, then
(1) $A^{2}=I$ or $B=I$
(2) $\mathrm{A}^{2} \mathrm{~B}=\mathrm{I}$
(3) $\mathrm{AB}=\mathrm{I}$
(4) $\mathrm{A}^{2} \mathrm{~B}=\mathrm{BA}^{2}$
Q. 12. The equation $x^{2}-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has :
(1) a unique solution in $(-\infty, 1)$
(2) no solution
(3) exactly two solutions in $(-\infty, \infty)$
(4) a unique solution in $(-\infty, \infty)$
Q. 13. Let a tangent to the curve $y^{2}=24 x$ meet the curve $x y=2$ at the points A and B. Then the mid points of such line segment $A B$ lie on a parabola with the
(1) length of latus rectum $\frac{3}{2}$
(2) directrix $4 x=-3$
(3) length of latus rectum 2
(4) directrix $4 x=3$
Q. 14. Let Ω be the sample space and $A \subseteq \Omega$ be an event. Given below are two statements :
$\left(\mathrm{S}_{1}\right):$ If $\mathrm{P}(\mathrm{A})=0$, then $\mathrm{A}=\phi$
$\left(S_{2}\right)$: If $P(A)=1$, then $A=\Omega$, Then
(1) both $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ are true
(2) only $\left(\mathrm{S}_{1}\right)$ is true
(3) only $\left(\mathrm{S}_{2}\right)$ is true
(4) both $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ are false
Q. 15. The value of $\sum_{r=0}^{22}{ }^{22} C_{r}{ }^{23} C_{r}$ is
(1) ${ }^{44} \mathrm{C}_{23}$
(2) ${ }^{45} \mathrm{C}_{23}$
(3) ${ }^{44} \mathrm{C}_{22}$
(4) ${ }^{45} \mathrm{C}_{24}$
Q.16. The distance of the point $(-1,9,-16)$ from the plane $2 x+3 y-z=5$ measured parallel to the line $\frac{x+4}{3}=\frac{2-y}{4}=\frac{z-3}{12}$ is
(1) 31
(2) $13 \sqrt{2}$
(3) $20 \sqrt{2}$
(4) 26
Q. 17. $\tan ^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right)+\sec ^{-1}\left(\sqrt{\frac{8+4 \sqrt{3}}{6+3 \sqrt{3}}}\right)$ is equal to:
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{2}$
Q. 18. Let $f(x)=\left\{\begin{array}{cc}x^{2} \sin \left(\frac{1}{x}\right) & , x \neq 0 \\ 0 & , x=0\end{array}\right.$

Then at $x=0$
(1) f is continuous but not differentiable
(2) fand f^{\prime} both are continuous
(3) f^{\prime} is continuous but not differentiable
(4) f is continuous but f^{\prime} is not continuous
Q.19. The compound statement $(\sim(P \wedge Q)) \vee$ $((\sim P) \wedge Q) \Rightarrow((\sim P) \wedge(\sim Q))$ is equivalent to
(1) $(\sim Q) \vee P$
(2) $((\sim P) \vee Q) \wedge(\sim Q)$
(3) $(\sim P) \vee Q$
(4) $((\sim \mathrm{P}) \vee \mathrm{Q}) \wedge((\sim \mathrm{Q}) \vee \mathrm{P})$
Q. 20. The distance of the point $(7,-3,-4)$ from the plane passing through the points $(2,-3,1)$, $(-1,1,-2)$ and $(3,-4,2)$ is :
(1) 5
(2) 4
(3) $5 \sqrt{2}$
(4) $4 \sqrt{2}$

Section B

Q. 21. Let $\lambda \in \mathbb{R}$ and let the equation E be $|x|^{2}-2|x|+$ $|\lambda-3|=0$. Then the largest element in the set S $=\{x+\lambda: x$ is an integer solution of E$\}$ is
Q.22. Let a tangent to the curve $9 x^{2}+16 y^{2}=144$ intersect the coordinate axes at the points A and B. Then, the minimum length of the line segment $A B$ is
Q. 23. The shortest distance between the lines $\frac{x-2}{3}$ $=\frac{y+1}{2}=\frac{z-6}{2}$ and $\frac{x-6}{3}=\frac{1-y}{2}=\frac{z+8}{0}$ is equal to
Q. 24. Suppose $\sum_{r=0}^{2023} r^{2}{ }^{2023} C_{r}=2023 \times \alpha \times 2^{2022}$. Then the value of α is
Q. 25. The value of $\frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023}+(\cos x)^{2023}} d x$ is
Q.26. The number of 9 digit numbers, that can be formed using all the digits of the number 123412341 so that the even digits occupy only even places, is
Q.27. A boy needs to select five courses from 12 available courses, out of which 5 courses are language courses. If he can choose at most two language courses, then the number of ways he can choose five courses is
Q. 28. The $4^{\text {th }}$ term of a GP is 500 and its common ratio is $\frac{1}{m}, m \in \mathrm{~N}$. Let S_{n} denote the sum of the first n terms of this GP. If $\mathrm{S}_{6}>\mathrm{S}_{5}+1$ and $\mathrm{S}_{7}<\mathrm{S}_{6}+\frac{1}{2}$, then the number of possible values of m is
Q.29. Let C be the largest circle centred at $(2,0)$ and inscribed in the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$. If $(1, \alpha)$ lies on C, then $10 \alpha^{2}$ is equal to
Q. 30. The value of $12 \int_{0}^{3}\left|x^{2}-3 x+2\right| d x$ is

Answer Key

Q. No.	Answer	Topic Name	Chapter Name
$\mathbf{1}$	$\mathbf{(3)}$	Triple Products	Vector Algebra
$\mathbf{2}$	$\mathbf{(3)}$	Methods of Evaluation of Limits	Limits
$\mathbf{3}$	$\mathbf{(3)}$	Quadratic Equation and its Solution	Quadratic Equations
$\mathbf{4}$	$\mathbf{(1)}$	Area Bounded by Curves	Area under Curves
$\mathbf{5}$	$\mathbf{(2)}$	Euler's law	Complex Numbers
$\mathbf{6}$	$\mathbf{(3)}$	System of linear equations	Matrices and Determinants
$\mathbf{7}$	$\mathbf{(4)}$	Arithmetic Progressions	Sequences and Series
$\mathbf{8}$	$\mathbf{(4)}$	Equivalence Relations	Set Theory and Relations
$\mathbf{9}$	$\mathbf{(2)}$	Scalar and Vector Products	Vector Algebra
$\mathbf{1 0}$	$\mathbf{(1)}$	Solution of Linear Differential Equations	Differential Equations
$\mathbf{1 1}$	$\mathbf{(4)}$	Operations on Matrices	Matrices and Determinants
$\mathbf{1 2}$	$\mathbf{(4)}$	Quadratic Equations and its solution	Quadratic Equations

Q. No.	Answer	Topic Name	
$\mathbf{1 3}$	$\mathbf{(4)}$	Interaction Between Two Conics	Hyperbola
$\mathbf{1 4}$	$\mathbf{(1)}$	Basics of Probability	Probability
$\mathbf{1 5}$	$\mathbf{(2)}$	Properties of Binomial Coefficients	Binomial Theorem
$\mathbf{1 6}$	$\mathbf{(4)}$	Intersection of a Line and a Plane	Three Dimensional Geometry
$\mathbf{1 7}$	$\mathbf{(1)}$	Basics of Inverse Trigonometric Functions	Inverse Trigonometric Functions
$\mathbf{1 8}$	$\mathbf{(4)}$	Differentiability of a Function	Continuity and Differentiability
$\mathbf{1 9}$	$\mathbf{(3)}$	Logical Operations	Mathematical Reasoning
$\mathbf{2 0}$	$\mathbf{(3)}$	Plane and a Point	Three Dimensional Geometry
$\mathbf{2 1}$	$\mathbf{[5]}$	Algebra of Functions	Function
$\mathbf{2 2}$	$[7]$	Properties of Ellipse	Ellipse
$\mathbf{2 3}$	$[\mathbf{1 4]}$	Skew Lines	Three Dimensional Geometry
$\mathbf{2 4}$	$[\mathbf{1 0 1 2]}$	Properties of Binomial Coefficients	Binomial Theorem
$\mathbf{2 5}$	$[2]$	Properties of Definite Integrals	Definite Integration
$\mathbf{2 6}$	$[60]$	Permutations	Permutations and Combinations
$\mathbf{2 7}$	$[546]$	Combinations	Permutations and Combinations
$\mathbf{2 8}$	$[\mathbf{1 2]}$	Geometric Progressions	Sequences and Series
$\mathbf{2 9}$	$[118]$	Interaction between Two Conics	Ellipse
$\mathbf{3 0}$	$[22]$	Properties of Definite Integrals	Definite Integration

Solutions

Section A

1. Option (3) is correct.

Given, $\vec{v} \times \vec{w}=\vec{u}+\lambda \vec{v}$
Taking dot product with \vec{v}
$\Rightarrow(\vec{v} \times \vec{w}) \cdot \vec{v}=(\vec{u}+\lambda \vec{v}) \cdot \vec{v}$
$\Rightarrow 0=\vec{u} \cdot \vec{v}+\lambda \vec{v} \cdot \vec{v}$
$\Rightarrow 0=(\hat{i}-\hat{j}-2 \hat{k}) \cdot(2 \hat{i}+\hat{j}-\hat{k})+\lambda|\vec{v}|^{2}$
$\Rightarrow 0=2-1+2+\lambda(4+1+1)$
$\Rightarrow \lambda=\frac{-3}{6}=\frac{-1}{2}$
So, $\vec{v} \times \vec{w}=\vec{u}+\lambda \vec{v}=\vec{u}-\frac{1}{2} \vec{v}$
Taking dot product with \vec{w}

$$
\begin{aligned}
& \Rightarrow(\vec{v} \times \vec{w}) \cdot \vec{w}=\vec{u} \cdot \vec{w}-\frac{1}{2} \vec{v} \cdot \vec{w} \\
& \Rightarrow 0=\vec{u} \cdot \vec{w}-\frac{1}{2}(2) \\
& \Rightarrow \vec{u} \cdot \vec{w}=1
\end{aligned}
$$

2. Option (3) is correct.

Let $l=\lim _{t \rightarrow 0}\left(\frac{1}{\sin ^{2} t}+2^{\frac{1}{\sin ^{2} t}}+\ldots+n^{\frac{1}{\sin ^{2} t}}\right)^{\sin ^{2} t}$

$$
=\lim _{t \rightarrow 0} n\left[\left(\frac{1}{n}\right)^{\operatorname{cosec}^{2} t}+\left(\frac{2}{n}\right)^{\operatorname{cosec}^{2} t}+\ldots+\left(\frac{n}{n}\right)^{\operatorname{cosec}^{2} t}\right]^{\sin ^{2} t}
$$

$$
\begin{aligned}
& =n \lim _{t \rightarrow 0}\left[\sum_{r=1}^{n-1}\left(\frac{r}{n}\right)^{\operatorname{cosec}^{2} t}+1\right]^{\sin ^{2} t}=n \lim _{t \rightarrow 0}\left[\sum_{r=1}^{n-1} 0+1\right]^{\sin ^{2} t} \\
& {\left[\text { as }\left(\frac{r}{n}\right)^{\operatorname{cosec}^{2} t} \rightarrow 0 \because 0<\frac{r}{n}<1 \& \operatorname{cosec}^{2} t \rightarrow \infty\right]} \\
& =n
\end{aligned}
$$

HINT:

(1) As $n \rightarrow \infty, \frac{r}{n} \rightarrow 0$, for $0<r<n$
(2) As $x \rightarrow 0, \operatorname{cosec}^{2} x \rightarrow \infty$

3. Option (3)is correct.

Let $\mathrm{P}=\left[\begin{array}{ccc}\alpha^{2} & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & c\end{array}\right]$
Given that P is singular
$\Rightarrow|\mathrm{P}|=0$
$\Rightarrow \alpha^{2}(c-b)-\alpha(c-a)+1(b-a)=0$
$\Rightarrow \alpha^{2}(c-b)+\alpha(a-c)+(b-a)=0$
Put $\alpha=1, c-b+a-c+b-a=0$
So, $\alpha=1$ is a root
Now, $\sum \frac{(a-c)^{2}}{(b-a)(c-b)}=M$ (say)
$=\sum \frac{(a-c)^{2}}{(b-a)(c-b)} \cdot\left(\frac{a-c}{a-c}\right)=\sum \frac{(a-c)^{3}}{(b-a)(c-b)(a-c)}$
$=\frac{(a-c)^{3}+(c-b)^{3}+(b-a)^{3}}{(b-a)(c-b)(a-c)}$
Here, $(a-c)+(c-b)+(b-a)=0$

$$
\begin{aligned}
& \Rightarrow(a-c)^{3}+(c-b)^{3}+(b-a)^{3}=3(a-c)(c-b)(b-a) \\
& \therefore \mathrm{M}=\frac{3(a-c)(c-b)(b-a)}{(b-a)(c-b)(a-c)} \\
& \Rightarrow \mathrm{M}=3
\end{aligned}
$$

4. Option (1) is correct.

Let $\mathrm{C}_{1}: y^{2}+4 x=4 \& \mathrm{C}_{2}: y-2 x=2$
Solving $C_{1} \& C_{2}$
$\Rightarrow y^{2}+4\left(\frac{y}{2}-1\right)=4$
$\Rightarrow y=-4,2$
Area $=\int\left(x_{2}-x_{1}\right) d y$

\Rightarrow Area $=\int_{-4}^{2}\left\{\left(\frac{4-y^{2}}{4}\right)-\left(\frac{y-2}{2}\right)\right\} d y$
\Rightarrow Area $=\int_{-4}^{2}\left(2-\frac{y}{2}-\frac{y^{2}}{4}\right) d y$
\Rightarrow Area $=\left[2 y-\frac{y^{2}}{4}-\frac{y^{3}}{12}\right]_{-4}^{2}$
\Rightarrow Area $=2(2-(-4))-\frac{1}{4}(4-16)-\frac{1}{12}(8-(-64))$
\Rightarrow Area $=12+3-6$
\Rightarrow Area $=9$ sq. units

HINT:

(1) Solve both the curves to get the point of intersection.
(2) Plot both the curves \& think of a strip either horizontal or vertical and then integrate.

5. Option (2) is correct.

Given $2^{199}(p+i q)=(1-\sqrt{3} i)^{200}$
$\Rightarrow \frac{2^{199}}{2^{200}}(p+i q)=\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{200}$
$\Rightarrow p+i q=2\left(\mathrm{C} \text { is }\left(-\frac{\pi}{3}\right)\right)^{200}$
$\Rightarrow p+i q=2\left(e^{-i \frac{\pi}{3}}\right)^{200 \pi}$
$\Rightarrow p+i q=2 e^{-i \frac{200 \pi}{3}}$
$\Rightarrow p+i q=2\left(\cos \left(\frac{200 \pi}{3}\right)-i \sin \left(\frac{200 \pi}{3}\right)\right)$
$\Rightarrow p+i q=2\left[\cos \left(66 \pi+\frac{2 \pi}{3}\right)-i \sin \left(66 \pi+\frac{2 \pi}{3}\right)\right]$
$\Rightarrow p+i q=2\left[\cos \left(\frac{2 \pi}{3}\right)-i \sin \left(\frac{2 \pi}{3}\right)\right]$
$\Rightarrow p+i q=2\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)$
$\Rightarrow p=-1, q=-\sqrt{3}$
Now, $p+q+q^{2}=-1-\sqrt{3}+(-\sqrt{3})^{2}=2-\sqrt{3}$
$p-q+q^{2}=-1-(-\sqrt{3})+(-\sqrt{3})^{2}=2+\sqrt{3}$
Equation whose roots are $p+q+q^{2} \& p-q+q^{2}$ having
Sum of roots $(S)=(2-\sqrt{3})+(2+\sqrt{3})=4$
and product of roots $(\mathrm{P})=(2-\sqrt{3})(2+\sqrt{3})=4-3=1$
Required quadratic equation is $x^{2}-(\mathrm{S}) x+\mathrm{P}=0$
$\Rightarrow x^{2}-4 x+1=0$

HINT:

(1) Use $\cos \theta+i \sin \theta=e^{i \theta}$
(2) Quadratic equation whose roots are α and β is

$$
x^{2}-(\alpha+\beta) x+\alpha \beta=0
$$

6. Option (3) is correct.

System of equations is,

$$
\begin{aligned}
& x+y+z=1 \\
& 2 x+\mathrm{N} y+2 z=2 \\
& 3 x+3 y+\mathrm{N} z=3
\end{aligned}
$$

For unique solution, $\Delta \neq 0$
$\Rightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & \mathrm{~N} & 2 \\ 3 & 3 & \mathrm{~N}\end{array}\right| \neq 0$
$\Rightarrow 1\left(\mathrm{~N}^{2}-6\right)-(2 \mathrm{~N}-6)+(6-3 \mathrm{~N}) \neq 0$
$\Rightarrow \mathrm{N}^{2}-5 \mathrm{~N}+6 \neq 0$
$\Rightarrow(\mathrm{N}-2)(\mathrm{N}-3) \neq 0$
Therefore $\mathrm{N} \neq 2, \mathrm{~N} \neq 3$
So, favourable cases are $\{1,4,5,6\}$
Total cases $\equiv\{1,2,3,4,5,6\}$
Hence, probability $=\frac{\text { Number of favourable cases }}{\text { Total cases }}$
$\Rightarrow \frac{k}{6}=\frac{4}{6} \Rightarrow k=4$
So, sum of all possible values of $k \& N$
$=4+(1+4+5+6)=20$
7. Option (4) is correct.

Given than, $x^{p q^{2}}=y^{q r}=z^{p^{2} r}$
Also, $3,3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ are in A.P.

$$
\begin{aligned}
& \Rightarrow 3+\frac{1}{2}=3 \log _{y} x \\
& \Rightarrow \log _{y} x=\frac{7}{6} \\
& \Rightarrow x=(y)^{7 / 6} \Rightarrow x^{6}=y^{7}
\end{aligned}
$$

$$
\begin{align*}
& 3 \log _{z} y=3+2\left(\frac{1}{2}\right)=4 \tag{2}\\
& \Rightarrow \log _{z} y=\frac{4}{3} \Rightarrow y=(z)^{4 / 3} \\
& \Rightarrow y^{3}=z^{4} \tag{3}\\
& 7 \log _{x}(z)=3+3\left(\frac{1}{2}\right)=\frac{9}{2} \\
& \Rightarrow \log _{x}(z)=\frac{9}{14} \Rightarrow z=(x)^{9 / 14} \\
& \Rightarrow z^{14}=x^{9} \tag{4}
\end{align*}
$$

Now from (1), we have
$x^{p q^{2}}=\left(x^{\frac{6}{7}}\right)^{q r}=\left(x^{\frac{9}{14}}\right)^{p^{2} r}$
$\Rightarrow p q^{2}=\frac{6}{7} q r=\frac{9}{14} p^{2} r$
$\Rightarrow p q=\frac{6}{7} r, q^{2}=\frac{9}{14} p r$
Also, $r=p q+1$
$\Rightarrow r=\frac{6}{7} r+1 \Rightarrow \frac{r}{7}=1 \Rightarrow r=7$
Now, $q^{2}=\frac{9}{14} p r$
$\Rightarrow q\left(q^{2}\right)=\left(\frac{9}{14} r\right)(p q)$
$\Rightarrow q^{3}=\left(\frac{9}{14}\right) r\left(\frac{6}{7}\right) r$
$\Rightarrow q^{3}=\frac{9 \times 6}{14 \times 7} \times(7)^{2}$
$\Rightarrow q^{3}=27 \Rightarrow q=3$
And, $p q=\frac{6}{7} r$
$\Rightarrow p=\frac{6}{7} \times \frac{7}{3} \Rightarrow p=2$
So, $r-p-q=7-2-3=2$
8. Option (4) is correct.
$\mathrm{R}=\{(a, b): g c d(a, b)=1,2 a \neq b, a, b \in \mathrm{Z}\}$

Reflexive:

Check for (a, a)
$\operatorname{gcd}(a, a)=a$
So, R is not reflexive

Symmetric:

$(a, b) \in \mathrm{R} \Rightarrow \operatorname{gcd}(a, b)=1$
Now check for (b, a)
$\operatorname{gcd}(b, a)=\operatorname{gcd}(a, b)=1$
But $\operatorname{gcd}(1,2)=\operatorname{gcd}(2,1)=1$
But $b \neq 2 a$, So R is not symmetric.

Transitive:

Consider, $\operatorname{gcd}(2,3)=1$
$\Rightarrow(2,3) \in R$
Now, $\operatorname{gcd}(3,4)=1$
$\Rightarrow(3,4) \in R$
Again, $g c d(2,4)=2 \neq 1$
$\Rightarrow(2,4) \notin \mathrm{R}$
$\Rightarrow R$ is not Transitive.

HINT:

(1) R is reflexive if $(a, a) \in \mathrm{R} \forall a \in \mathrm{~A}$
(2) If $a, b \in A,(a, b) \in \mathrm{R} \Rightarrow(b, a) \in \mathrm{R}$, then R is symmetric.
(3) If $a, b, c \in \mathrm{~A},(a, b) \in \mathrm{R},(b, c) \in \mathrm{R} \Rightarrow(a, c) \in \mathrm{R}$, then R is transitive.
9. Option (2) is correct. Let position vector of Q, P, and R be \vec{o}, \vec{p} and \vec{r} respectively.
Again, let position vector of points

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ be $\vec{a}, \vec{b} \& \vec{c}$ respectively.
Using section formula

$$
\begin{aligned}
& \vec{a}=\frac{\vec{r}}{3}, \vec{b}=\frac{\vec{p}+2 \vec{r}}{3}, \vec{c}=\frac{2 \vec{p}}{3} \\
& \text { Area of } \left.\triangle \mathrm{PQR}=\left|\frac{1}{2}\right| \overrightarrow{\mathrm{QP}} \times \overrightarrow{\mathrm{QR}}\left|=\frac{1}{2}\right| \vec{r} \times \vec{p} \right\rvert\, \\
& \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}| \\
& =\frac{1}{2}\left|\left(\frac{\vec{r}}{3} \times\left(\frac{\vec{p}+2 \vec{r}}{3}\right)\right)+\left(\frac{\vec{p}+2 \vec{r}}{3}\right) \times\left(\frac{2 \vec{p}}{3}\right)+\left(\frac{2 \vec{p}}{3} \times \frac{\vec{r}}{3}\right)\right| \\
& =\frac{1}{2}\left|\frac{\vec{r} \times \vec{p}}{9}+4\left(\frac{\vec{r} \times \vec{p}}{9}\right)+\frac{2}{9}(\vec{p} \times \vec{r})\right| \text {, as } \vec{r} \times \vec{r}=0 \\
& =\frac{1}{18}|\vec{r} \times \vec{p}+4(\vec{r} \times \vec{p})-2(\vec{r} \times \vec{p})| \text { as } \vec{p} \times \vec{r}=-(\vec{r} \times \vec{p}) \\
& =\frac{|\vec{r} \times \vec{p}|}{6} \\
& \text { So, } \frac{\text { area of } \Delta \mathrm{PQR}}{\text { area of } \Delta \mathrm{ABC}}=3
\end{aligned}
$$

HINT:

(1)

$$
\left(\frac{\lambda \vec{\beta}+\vec{\alpha}}{\lambda+1}\right)
$$

(2) Think of calculating the area of triangle using cross product.
10. Option (1) is correct.
$x^{3} d y+(x y-1) d x=0$
Also, $y\left(\frac{1}{2}\right)=3-e \& x>0$
Now, $x^{3} \frac{d y}{d x}+x y-1=0$
$\Rightarrow x^{3} \frac{d y}{d x}=1-x y \Rightarrow x^{3} \frac{d y}{d x}+x y=1$
$\Rightarrow \frac{d y}{d x}+\left(\frac{1}{x^{2}}\right) y=\frac{1}{x^{3}}$
This is a linear differential equation
I.F. $=e^{\int \frac{1}{x^{2}} d x}=e^{\frac{-1}{x}}$

So, differential equation becomes,
$y e^{\frac{-1}{x}}=\int e^{\frac{-1}{x}} \cdot \frac{1}{x^{3}} d x$
Put $\frac{-1}{x}=t \Rightarrow \frac{1}{x^{2}} d x=d t$
R.H.S. $=\int-\underset{\mathrm{I}}{\mathrm{II}} \underset{\mathrm{U}^{t}}{t} d t$

Integrating by parts
R.H.S. $=-\left[t e^{t}-\int e^{t} d t\right]=-t e^{t}+e^{t}+c$

So, solution of differential equation is
$y e^{\frac{-1}{x}}=-e^{\frac{-1}{x}}\left(\frac{-1}{x}-1\right)+c$
$\Rightarrow y=\left(\frac{1}{x}+1\right)+c e^{\frac{1}{x}}$
At $x=\frac{1}{2}, y=3-e$
$\Rightarrow 3-e=\frac{1}{\left(\frac{1}{2}\right)}+1+c e^{\frac{1}{\left(\frac{1}{2}\right)}}$
$\Rightarrow 3-e=(2+1)+c e^{2}$
$\Rightarrow c e^{2}=-e$
$\Rightarrow c=\frac{-1}{e}$
So, $y=\left(\frac{1}{x}+1\right)+\left(-\frac{1}{e}\right) e^{\frac{1}{x}}$
Now, at $x=1, y=\left(\frac{1}{1}+1\right)+\left(\frac{-1}{e}\right) e^{\frac{1}{1}}$
$\Rightarrow y=2-1=1$
11. Option (4) is correct.

Given, $A^{2}+B=A^{2} B$
$\Rightarrow A^{2}-A^{2} B+B=0$
$\Rightarrow A^{2}(I-B)-(-B+I-I)=0$
$\Rightarrow A^{2}(I-B)-(I-B)=-I$
$\Rightarrow\left(\mathrm{A}^{2}-\mathrm{I}\right)(\mathrm{I}-\mathrm{B})=-\mathrm{I}$
$\Rightarrow\left(\mathrm{I}-\mathrm{A}^{2}\right)(\mathrm{I}-\mathrm{B})=\mathrm{I}$
$\Rightarrow(\mathrm{I}-\mathrm{B})\left(\mathrm{I}-\mathrm{A}^{2}\right)=\mathrm{I}$
$\Rightarrow \mathrm{I}-\mathrm{B}-\mathrm{A}^{2}+\mathrm{BA}^{2}=\mathrm{I}$
$\Rightarrow \mathrm{BA}^{2}-\mathrm{B}-\mathrm{A}^{2}=0$
$(1)+(2) \Rightarrow A^{2} B=B A^{2}$

HINT:

(1) $-(-\mathrm{A})=\mathrm{A}$
(2) $\mathrm{A}\left(\mathrm{BC}^{2}\right)=\mathrm{ABC} C^{2}$
(3) $\left(A^{2} B\right) C=A^{2} B C$
12. Option (4) is correct.
$x^{2}-4 x+[x]+3=x[x]$, where [.] $=$ GIF
$\Rightarrow x^{2}-4 x+3=x[x]-[x]$
$\Rightarrow(x-1)(x-3)=(x-1)[x]$
$\Rightarrow(x-1)(x-3-[x])=0$
$\Rightarrow x=1, x-3=[x]$
$\Rightarrow x=1, x-[x]=3$
$\Rightarrow x=1,\{x\}=3$, where $\{\}=$. Fractional part function
But $\{x\} \in[0,1)$
So, $\{x\} \neq 3$
$\Rightarrow x=1$

HINT:

(1) Take terms containing GIF on R.H.S. \& factorize
(2) For $y=\{x\}$, where $\{\}=$. FPF, $y \in[0,1)$
13. Option (4) is correct.

$$
\mathrm{P} \equiv\left(a t^{2}, 2 a t\right), \text { here } a=6
$$

$\Rightarrow \mathrm{P} \equiv\left(6 t^{2}, 12 t\right)$
Tangent to parabola at $\mathrm{P}(\mathrm{t})$
$\Rightarrow t y=x+6 t^{2}$
Let $\mathrm{M}(h, k)$ be the mid-point of chord AB to hyperbola $x y=2$
$\mathrm{AB} \equiv \frac{x}{h}+\frac{y}{k}=2$
Comparing (1) \& (2), we get
$\frac{-1}{\left(\frac{1}{h}\right)}=\frac{t}{\left(\frac{1}{k}\right)}=\frac{6 t^{2}}{2}$
$\Rightarrow-h=t k=3 t^{2}$
$\Rightarrow h=-3 t^{2}, k=3 t$
So, $h=-3\left(\frac{k}{3}\right)^{2}$

$\Rightarrow k^{2}=-3 h$
$\Rightarrow y^{2}=-3 x$

But $4 a=3$
$\Rightarrow a=\frac{3}{4}$
\therefore Directrix is $x=\frac{3}{4}$

HINT:

(1) Write equation of tangent to parabola in parametric form.
(2) Write equation of chord to rectangular hyperbola $x y=c^{2}$ whose middle point is given as (h, k).
14. Option (1) is correct.

Let $\Omega \equiv\{1,2,3,4,5,6\}$ i.e., they are outcome of throwing a dice.
Let $A \equiv$ Getting a number 7
Now, $\mathrm{P}(\mathrm{A})=\frac{\text { Favourable cases }}{\text { Total cases }}=\frac{0}{6}=0$
But $\mathrm{A}=\phi$
$\Rightarrow S_{2}$ is true.
$\mathrm{B} \equiv$ Getting a number <7
$\mathrm{P}(\mathrm{B})=\frac{\text { Favourable cases }}{\text { Total cases }}$
$\Rightarrow P(B)=\frac{6}{6}=1$
Since, $\mathrm{B}=\Omega$
$\Rightarrow S_{2}$ is true.

HINT:

(1) Think of a case that can never happen.
(2) Think of a case that will always happen.

15. Option (2) is correct.

Let $S=\sum_{r=0}^{22}\left({ }^{22} \mathrm{C}_{r}\right)\left({ }^{23} \mathrm{C}_{r}\right)$
Consider, $(1+x)^{22}={ }^{22} \mathrm{C}_{0} x^{0}+{ }^{22} \mathrm{C}_{1} x^{1}+\ldots . .+{ }^{22} \mathrm{C}_{22} x^{22}$

Again, $(x+1)^{23}={ }^{23} \mathrm{C}_{0} x^{23}+{ }^{23} \mathrm{C}_{1} x^{22}+\ldots .+{ }^{23} \mathrm{C}_{23} x^{0}$
(1) $\times(2)$ gives
$(1+x)^{45}=\left({ }^{22} \mathrm{C}_{0} x^{0}+{ }^{22} \mathrm{C}_{1} x^{1}+\ldots .+{ }^{22} \mathrm{C}_{22} x^{22}\right) \times$

$$
\begin{equation*}
\left({ }^{23} \mathrm{C}_{0} x^{23}+{ }^{23} \mathrm{C}_{1} x^{22}+\ldots .+{ }^{23} \mathrm{C}_{23} x^{0}\right) \tag{3}
\end{equation*}
$$

Again, $\mathrm{S}=\sum_{r=0}^{22}\left({ }^{22} \mathrm{C}_{22-r}\right)\left({ }^{23} \mathrm{C}_{r}\right)$,
Using ${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}$
$\Rightarrow S=\left({ }^{22} \mathrm{C}_{22}\right)\left({ }^{23} \mathrm{C}_{0}\right)+\left({ }^{22} \mathrm{C}_{21}\right)\left({ }^{23} \mathrm{C}_{1}\right)+$ $\ldots . .+\left({ }^{22} \mathrm{C}_{0}\right)\left({ }^{23} \mathrm{C}_{22}\right)$
From (3), comparing coefficient of x^{23} on both sides or $\quad \mathrm{S}={ }^{45} \mathrm{C}_{23}$
16. Option (4) is correct.

Plane (P) : $2 x+3 y-z=5$

where $\mathrm{A} \equiv(-1,9,-16) \& \mathrm{~L}_{1} \equiv \frac{x+4}{3}=\frac{y-2}{-4}=\frac{z-3}{12}$ Equation of line AN is,

$$
\frac{x-(-1)}{3}=\frac{y-9}{-4}=\frac{z-(-16)}{12}=\lambda \text { (say) }
$$

$\Rightarrow x=3 \lambda-1, y=-4 \lambda+9, z=12 \lambda-16$
This point lies on plane (P)
$\Rightarrow 2(3 \lambda-1)+3(-4 \lambda+9)-(12 \lambda-16)=5$
$\Rightarrow-18 \lambda+41=5 \Rightarrow \lambda=2$
So, $N \equiv(3(2)-1,-4(2)+9,12(2)-16)$
$\Rightarrow \mathrm{N} \equiv(5,1,8)$
$\mathrm{AN}=\sqrt{(5-(-1))^{2}+(1-9)^{2}+(8-(-16))^{2}}$
$=\sqrt{36+64+576}=\sqrt{676}=26$

HINT:

(1) Write equation of line passing through $(-1,9,-16)$ \& parallel to $\frac{x+4}{3}=\frac{2-y}{4}=\frac{z-3}{12}$
(2) Find point where it intersects the plane and then the required distance.

17. Option (1) is correct.

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right)+\sec ^{-1}\left(\sqrt{\frac{8+4 \sqrt{3}}{6+3 \sqrt{3}}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{3}+1}{\sqrt{3}(\sqrt{3}+1)}\right)+\sec ^{-1}\left(\sqrt{\frac{4(2+\sqrt{3})}{3(2+\sqrt{3})}}\right) \\
& =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\sec ^{-1}\left(\sqrt{\frac{4}{3}}\right) \\
& =\frac{\pi}{6}+\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}
\end{aligned}
$$

HINT:

Take common \& simplify the given expressions.
18. Option (4) is correct.

Given: $f(x)=\left\{\begin{array}{cc}x^{2} \sin \left(\frac{1}{x}\right) & , x \neq 0 \\ 0 & , x=0\end{array}\right.$
As we know function is said to be continuous at a point if limiting value of the function at that point is equal to the functional value of the function at that point.
Now, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0=f(0)$
$\therefore f(x)$ is continuous at $x=0$.
As we know function is said to be differentiable at a point if LHD $=$ RHD at that point.
Now, L.H.D. at $x=0, f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{0-h}$

$$
=\lim _{h \rightarrow 0} \frac{-h^{2} \sin \left(\frac{1}{h}\right)-0}{-h}=\lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right)=0
$$

Now, R.H.D. at $x=0, f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right)=0$
\because L.H.D. $=$ R.H.D. at $x=0$
$\therefore f(x)$ is differentiable at $x=0$
Now, $f^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)+x^{2} \cos \left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right) & , x \neq 0 \\ 0 & , x=0\end{cases}$
$f^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) & , x \neq 0 \\ 0 & , x=0\end{cases}$
\because limit of $f^{\prime}(x)=0$ oscillates
$\therefore f^{\prime}(x)$ is not continuous at $x=0$
19. Option (3) is correct.

As we know $A \Rightarrow B \equiv \sim A \vee B$
So, $\sim(\sim P \wedge Q) \Rightarrow(\sim(P \vee Q)$
$=\sim[\sim(\sim P \wedge Q)] \vee(\sim P \vee Q)$
$=(\sim P \wedge Q) \vee(\sim P \vee Q)$
$=[\sim P \vee(\sim P \vee Q)] \wedge[Q \vee(\sim P \vee Q)]$
$=[\sim P \vee Q] \wedge[\sim P \vee Q] \equiv \sim P \vee Q$

HINT:

(1) Use $A \Rightarrow B=\sim A \vee B$
(2) Use $\sim(\mathrm{A} \vee \mathrm{B})=\sim \mathrm{A} \wedge \sim \mathrm{B}$
20. Option (3) is correct.

As we know equation of plane passing through the points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ is given by
$\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ x_{1}-x_{2} & y_{1}-y_{2} & z_{1}-z_{2} \\ x_{1}-x_{3} & y_{1}-y_{3} & z_{1}-z_{3}\end{array}\right|=0$
So, equation of plane passing through ($2,-3,1$), $(-1,1,-2)$ and $(3,-4,2)$ is given by
$\left|\begin{array}{ccc}x-2 & y+3 & z-1 \\ 3 & -4 & 3 \\ -1 & 1 & -1\end{array}\right|=0$
$\Rightarrow x-z-1=0$
Now, distance of the point $(7,-3,-4)$ from plane $x-z$ $-1=0$ is
$d=\left|\frac{7-(-4)-1}{\sqrt{2}}\right| \Rightarrow d=5 \sqrt{2}$

Section B

21. Correct answer is (5).

Given, $\mathrm{E}:|x|^{2}-2|x|+|\lambda-3|=0$
$\mathrm{S}=\{x+\lambda: x$ is an integer solution of E$\}$.
So, $|x|^{2}-2|x|=-|\lambda-3|$
Lets draw the graph of $f(x)=|x|^{2}-2|x|$

It is clear from the figure, $-1 \leq|x|^{2}-2|x|<\infty$ and $-|\lambda-3| \leq 0$
So, given equation holds only when $|\lambda-3| \leq 1$ and $x \in[-2,2]$
$\Rightarrow-1 \leq \lambda-3 \leq 1 \Rightarrow 2 \leq \lambda \leq 4$
For $x=0, \lambda=3$
For $x=\{-1,1\}, \lambda=4$ or 2
For $x=\{-2,2\}, \lambda=3$
So, largest element in the set S is 5

HINT:

(1) Write given equation as $|x|^{2}-2|x|=-|\lambda-3|$ and draw the graph of $|x|^{2}-2|x|$ and analyse further using the concept of modulus function.
(2) Quadratic function $f(x)=x^{2}+b x+c ; a>0$ has minimum value at $x=\frac{-b}{2 a}$.
22. Correct answer is (7).

Given equation of curve is $9 x^{2}+16 y^{2}=144$
$\Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
As we know equation of tangent to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at any point $(a \cos \phi, b \sin \phi)$ is $\frac{x}{a} \cos \phi+\frac{y}{b} \sin \phi=1$
So, equation of tangent to given ellipse at $(4 \cos \phi, 3 \sin \phi)$ is $\frac{x}{4} \cos \phi+\frac{y}{3} \sin \phi=1$

So, coordinates of $\mathrm{A}=(4 \sec \phi, 0)$
Coordinates of $B=(0,3 \operatorname{cosec} \phi)$
Now, $\mathrm{AB}=\sqrt{16 \sec ^{2} \phi+9 \operatorname{cosec}^{2} \phi}$
$\Rightarrow(\mathrm{AB})_{\min }=\sqrt{25+24}=7$

HINT:

(1) Equation of tangent to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at any point $(a \cos \phi, b \sin \phi)$ is $\frac{x}{a} \cos \phi+\frac{y}{b} \sin \phi=1$
(2) Use $1+\tan ^{2} \theta=\sec ^{2} \theta$ and $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$.
23. Correct answer is (14).

Given lines $\mathrm{L}_{1}: \frac{x-2}{3}=\frac{y+1}{2}=\frac{z-6}{2}$
$\mathrm{L}_{2}: \frac{x-6}{3}=\frac{1-y}{2}=\frac{z+8}{0}$
L_{1} can be written as in vector from
$\vec{r}=(2 \hat{i}-\hat{j}+6 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}+2 \hat{k})$
L_{2} can be written as in vector from
$\vec{r}=(6 \hat{i}+\hat{j}-8 \hat{k})+\mu(3 \hat{i}-2 \hat{j})$
As we know shortest distance between two lines
$\vec{r}=\vec{a}+\lambda \vec{p}$ and $\vec{r}=\vec{b}+\mu \vec{q}$ is given by
$d=\left|\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|}\right|$
Here, $\vec{a}=2 \hat{i}-\hat{j}+6 \hat{k}, \quad \vec{b}=6 \hat{i}+\hat{j}-8 \hat{k}$,
$\vec{p}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{q}=3 \hat{i}-2 \hat{j}$
Now, $\vec{p} \times \vec{q}=\left|\begin{array}{ccc}i & j & k \\ 3 & 2 & 2 \\ 3 & -2 & 0\end{array}\right|$
$\Rightarrow \vec{p} \times \vec{q}=4 \hat{i}+6 \hat{j}-12 \hat{k}=2(2 \hat{i}+3 \hat{j}-6 \hat{k})$
Now, $\vec{b}-\vec{a}=4 \hat{i}+2 \hat{j}-14 \hat{k}=2(2 \hat{i}+\hat{j}-7 \hat{k})$
So, $(\vec{b}-\vec{a}) .(\vec{p} \times \vec{q})=4[4+3+42]=196$
And $|\vec{p} \times \vec{q}|=2 \sqrt{4+9+36}=14$
\therefore Shortest distance between given lines is $d=\left|\frac{196}{14}\right|=14$
24. Correct answer is (1012).

Given: $\sum_{r=0}^{2023} r^{2}{ }^{2023} C_{r}=2023 \times \alpha \times 2^{2022}$
Let $\mathrm{A}=\sum_{r=0}^{2023} r^{2}{ }^{2023} C_{r}$
$\Rightarrow \mathrm{A}=\sum_{r=0}^{2023} r^{2} \frac{2023}{r}{ }^{2022} C_{r-1} \quad\left\{\because{ }^{n} C_{r}=\frac{n}{r}^{n-1} C_{r-1}\right\}$
$\Rightarrow \mathrm{A}=\sum_{r=1}^{2023} r(2023)^{2022} C_{r-1}$
$\Rightarrow \mathrm{A}=2023\left\{\sum_{r=1}^{2023}(r-1)^{2022} C_{r-1}+\sum_{r=1}^{2023}{ }^{2022} C_{r-1}\right\}$
$\Rightarrow A=2023\left\{20222^{2021}+2^{2022}\right\}$
$\left\{\because{ }^{n} \mathrm{C}_{1}+2^{n} \mathrm{C}_{2}+3^{n} \mathrm{C}_{3}+\ldots .+n^{n} \mathrm{C}_{n}=n 2^{n-1}\right.$ and

$$
\left.{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots .+{ }^{n} C_{n}=2^{n}\right\}
$$

$\Rightarrow A=2023 \times 2022 \times 2^{2021}+2^{2022} \times 2023$
$\Rightarrow A=2023 \times 2^{2022}(1011+1)$
$\Rightarrow \mathrm{A}=1012 \times 2023 \times 2^{2022}$
$\Rightarrow 2023 \times \alpha \times 2^{2022}=1012 \times 2023 \times 2^{2022}$
$\Rightarrow \alpha=1012$
25. Correct answer is (2).

Let $\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023}+(\cos x)^{2023}} d x$
Using $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$

$$
\begin{align*}
& \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{2023}}{(\cos x)^{2023}+(\sin x)^{2023}} d x \tag{2}\\
& (1)+(2), 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} d x \\
& \Rightarrow \mathrm{I}=\frac{1}{2}\left(\frac{\pi}{2}-0\right) \Rightarrow \mathrm{I}=\frac{\pi}{4} \\
& \text { So, } \frac{8}{\pi}(\mathrm{I})=\frac{8}{\pi} \cdot \frac{\pi}{4}=2
\end{align*}
$$

HINT:

Use property: $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
26. Correct answer is (60).
$1 \rightarrow 3$ times
$2 \rightarrow 2$ times
$3 \rightarrow 2$ times
$4 \rightarrow 2$ times
$\bar{O} \frac{X}{\mathrm{E}}-\frac{X}{\mathrm{E}}-\frac{X}{\mathrm{O}} \frac{X}{\mathrm{O}} \frac{X}{\mathrm{E}}$
O - odd, E-even
Number of ways for even digits to occupy even places
$=\frac{4!}{2!2!}=\frac{24}{2 \times 2}=6$
Total number of 9 digit numbers $=(6)\left(\frac{5!}{3!2!}\right)$
$=(6)\left(\frac{120}{6 \times 2}\right)=60$
27. Correct answer is (546). Total courses $=12$

Number of ways

$=\{\mathrm{O}(\mathrm{LA}), 5(\mathrm{OT})\}+\{1(\mathrm{LA}), 4(\mathrm{OT})\}$

$$
+\{2 \text { (LA), } 3 \text { (OT) }\}
$$

$\Rightarrow\left({ }^{5} \mathrm{C}_{0}\right)\left({ }^{7} \mathrm{C}_{5}\right)+\left({ }^{5} \mathrm{C}_{1}\right)\left({ }^{7} \mathrm{C}_{4}\right)+\left({ }^{5} \mathrm{C}_{2}\right)\left({ }^{7} \mathrm{C}_{3}\right)$
$\Rightarrow(1)\left({ }^{7} \mathrm{C}_{2}\right)+(5)\left({ }^{7} \mathrm{C}_{3}\right)+\left(\frac{5 \times 4}{2}\right)\left({ }^{7} \mathrm{C}_{3}\right)$
$=\left(\frac{7 \times 6}{2}\right)+(5)\left(\frac{7 \times 6 \times 5}{6}\right)+(10)\left(\frac{7 \times 6 \times 5}{6}\right)$
$=21+175+350=546$
28. Correct answer is (12).

Let first term of G.P. be ' a '.
Given, $\mathrm{T}_{4}=a\left(\frac{1}{m}\right)^{3}=500$
$\Rightarrow \frac{a}{m^{3}}=500$
$\Rightarrow a=500 \mathrm{~m}^{3}$
Consider, $\mathrm{S}_{n}-\mathrm{S}_{n-1}$
$=a\left(\frac{1-r^{n}}{1-r}\right)-a\left(\frac{1-r^{n-1}}{1-r}\right)$, where $r=\frac{1}{m}$
$=\frac{a}{(1-r)}\left[1-r^{n}-1+r^{n-1}\right]=\frac{a r^{n-1}}{(1-r)}(1-r)=a r^{n-1}$
$\Rightarrow S_{n}-S_{n-1}=\frac{a}{m^{n-1}} \Rightarrow S_{n}-S_{n-1}=\frac{500 m^{3}}{m^{n-1}}$
$\Rightarrow \mathrm{S}_{n}-\mathrm{S}_{n-1}=500 \mathrm{~m}^{4-n}$
Given, $\mathrm{S}_{6}-\mathrm{S}_{5}>1$
$\Rightarrow 500 \mathrm{~m}^{4-6}>1$
$\Rightarrow \frac{500}{m^{2}}>1$
Again, $\mathrm{S}_{7}-\mathrm{S}_{6}<\frac{1}{2} \Rightarrow 500 m^{4-7}<\frac{1}{2}$
$\Rightarrow \frac{500}{m^{3}}<\frac{1}{2}$
(1) $\Rightarrow m^{2}<500$
(2) $\Rightarrow m^{3}>1000$

So, $m \in\{11,12,13, \ldots ., 22\}$
\therefore Number of possible values of m is 12 .
29. Correct answer is (118).

Let ellipse be $\mathrm{E}: \frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

Circle $(C) \equiv(x-2)^{2}+(y-0)^{2}=r^{2}$
For C to be largest possible circle, its radius has to be maximum.
Point P on ellipse $\equiv(6 \cos \theta, 4 \sin \theta)$
$\mathrm{T}=0$
Normal at P on ellipse should also be normal to circle as ellipse and circle are touching each other at P.
Normal $\equiv 6 x \sec \theta-4 y \operatorname{cosec} \theta=36-16$
It also passes through centre of circle i.e., $(2,0)$
$\Rightarrow 12 \sec \theta=20$
$\Rightarrow \cos \theta=\frac{3}{5}$
So, $\sin \theta=\frac{4}{5}$
$P \equiv\left(6 \times \frac{3}{5}, 4 \times \frac{4}{5}\right) \equiv\left(\frac{18}{5}, \frac{16}{5}\right)$

Now, $r=\sqrt{\left(2-\frac{18}{5}\right)^{2}+\left(0-\frac{16}{5}\right)^{2}}$
$\Rightarrow r=\sqrt{\frac{64}{25}+\frac{256}{25}}$
$\Rightarrow r=\frac{\sqrt{320}}{5}=\frac{8 \sqrt{5}}{5} \Rightarrow r=\frac{8}{\sqrt{5}}$
Now $(1, \alpha)$ lies on c.

$$
\begin{aligned}
& \therefore \sqrt{(2-1)^{2}+(0-\alpha)^{2}}=\frac{8}{\sqrt{5}} \\
& 1+\alpha^{2}=\frac{64}{5} \Rightarrow \alpha^{2}=\frac{64}{5}-1=\frac{59}{5} \\
& 10 \alpha^{2}=\frac{59}{5} \times 10=118
\end{aligned}
$$

HINT:

(1) Think of common normal and remember that normal of circle passes through its centre.
(2) Normal to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\mathrm{P}(a \cos \theta, b \sin \theta)$ is $(a \sec \theta) x-(b \operatorname{cosec} \theta) y=a^{2}-b^{2}$
(3) Finally find radius of circle and make it equal to the distance between $(1, \alpha)$ and $(2,0)$.
30. Correct answer is (22).

$$
\begin{aligned}
& \text { Let } \mathrm{I}=\int_{0}^{3}\left|x^{2}-3 x+2\right| d x \\
& \qquad\left|x^{2}-3 x+2\right|=\begin{array}{|c}
\\
\begin{array}{l}
x^{2}-3 x+2 \\
x \in(-\infty, 1] \cup[2, \infty)
\end{array} \\
\\
-\left(x^{2}-3 x+2\right), \\
x \in(1,2)
\end{array}
\end{aligned}
$$

$$
\text { So, } \mathrm{I}=\int_{0}^{1}\left(x^{2}-3 x+2\right) d x-\int_{1}^{2}\left(x^{2}-3 x+2\right) d x
$$

$$
+\int_{2}^{3}\left(x^{2}-3 x+2\right) d x
$$

$$
\Rightarrow \mathrm{I}=\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right]_{0}^{1}-\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right]_{1}^{2}
$$

$$
+\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right]_{2}^{3}
$$

$\Rightarrow \mathrm{I}=\frac{5}{6}+\frac{1}{6}+\frac{5}{6}=\frac{11}{6}$
So, $12 \mathrm{I}=12\left(\frac{11}{6}\right)=22$
\square

