JEE (Main) MATHEMATICS SOLVED PAPER

Section A

Q.1. The points of intersection of the line $a x+b y=0$, $(a \neq b)$ and the circle $x^{2}+y^{2}-2 x=0$ are $A(\alpha, 0)$ and $B(1, \beta)$. The image of the circle with $A B$ as a diameter in the line $x+y+2=0$ is:
(1) $x^{2}+y^{2}+3 x+3 y+4=0$
(2) $x^{2}+y^{2}+3 x+5 y+8=0$
(3) $x^{2}+y^{2}-5 x-5 y+12=0$
(4) $x^{2}+y^{2}+5 x+5 y+12=0$
Q. 2. The distance of the point $(6-2 \sqrt{2})$ from the common tangent $y=m x+c, m>0$, of the curves $x=2 y^{2}$ and $x=1+y^{2}$ is:
(1) $\frac{14}{3}$
(2) $5 \sqrt{3}$
(3) $\frac{1}{3}$
(4) 5
Q.3. Let \vec{a}, \vec{b} and \vec{c} be three non zero vectors such that $\vec{b} . \vec{c}=0$ and $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}-\vec{c}}{2}$. If \vec{d} be a vector such that $\vec{b} \cdot \vec{d}=\vec{a} \cdot \vec{b}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ is equal to
(1) $-\frac{1}{4}$
(2) $\frac{1}{4}$
(3) $\frac{3}{4}$
(4) $\frac{1}{2}$
Q.4. The vector $\vec{a}=-\hat{i}+2 \hat{j} \hat{+} \hat{k}$ is rotated through a right angle, passing through the y-axis in its way and the resulting vector is \vec{b}. Then the projection of $3 \vec{a}+\sqrt{2 \vec{b}}$ on $\vec{c}=5 \hat{i}+4 \hat{j}+3 \hat{k}$ is:
(1) $2 \sqrt{3}$
(2) 1
(3) $3 \sqrt{2}$
(4) $\sqrt{6}$
Q. 5. Let $z_{1}=2+3 i$ and $z_{2}=3+4 i$. The set $S=\{z \in$ C: $\left.\left|z-z_{1}\right|^{2}-\left|z-z_{2}\right|^{2}\right\}$ represents a
(1) hyperbola with the length of the transverse axis 7
(2) hyperbola with eccentricity 2
(3) straight line with the sum of its intercepts on the coordinate axes equals -18
(4) straight line with the sum of its intercepts on the coordinate axes equals 14
Q.6. The mean and variance of the marks obtained by the students in a test are 10 and 4 respectively. Later, the marks of one of the students is increased from 8 to 12 . If the new mean of the marks is 10.2 , then their new variance is equal to :
(1) 3.96
(2) 4.08
(3) 4.04
(4) 3.92
Q. 7. Let S_{1} and S_{2} be respectively the sets of all $a \in \mathrm{R}$ $-[0]$ for which the system of linear equations

$$
\begin{aligned}
& a x+2 a y-3 a z=1 \\
& (2 a+1) x+(2 a+3) y+(a+1) z=2 \\
& (3 a+5) x+(a+5) y+(a+2) z=3
\end{aligned}
$$

has unique solution and infinitely many solutions. Then
(1) S_{1} is an infinite set and $n\left(\mathrm{~S}_{2}\right)=2$
(2) $\mathrm{S}_{1}=\Phi$ and $\mathrm{S}_{2}=\mathrm{R}-\{0\}$
(3) $n\left(\mathrm{~S}_{1}\right)=2$ and S_{1} is an infinite set
(4) $\mathrm{S}_{1}=\mathrm{R}-\{0\}$ and $\mathrm{S}_{2}=\Phi$
Q. 8. The value of
$\lim _{n \rightarrow \infty} \frac{1+2-3+4+5-6+\ldots+(3 n-2)+(3 n-1)-3 n}{\sqrt{2 n^{4}+4 n+3}-\sqrt{n^{4}+5 n+4}}$
(1) $\frac{3}{2}(\sqrt{2}+1)$
(2) $\frac{3}{2 \sqrt{2}}$
(3) $\frac{\sqrt{2}+1}{2}$
(4) $3(\sqrt{2}+1)$
Q. 9. The statement $(p \wedge(\sim q)) \Rightarrow(p \Rightarrow(\sim q))$ is
(1) a tautology
(2) a contradiction
(3) equivalent to $p \vee q$
(4) equivalent to $(\sim p) \vee(\sim q)$
Q. 10. Consider the lines L_{1} and L_{2} given by
$L_{1}: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2}$
$L_{2}: \frac{x-2}{1}=\frac{y-2}{2}=\frac{z-3}{3}$
A line L_{3} having direction ratios $1,-1,-2$, intersects L_{1} and L_{2} at the points P and Q respectively. Then the length of line segment PQ is
(1) $3 \sqrt{2}$
(2) $4 \sqrt{3}$
(3) 4
(4) $2 \sqrt{6}$
Q. 11. Let $f(x)=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$.

If $f(3)=\frac{1}{2}\left(\log _{e} 5-\log _{e} 6\right)$, then $f(4)$ is equal to
(1) $\log _{e} 19-\log _{e} 20$
(2) $\log _{e} 17-\log _{e} 18$
(3) $\frac{1}{2}\left(\log _{e} 19-\log _{e} 17\right)$
(4) $\frac{1}{2}\left(\log _{e} 17-\log _{e} 19\right)$
Q.12. The minimum value of the function $f(x)=\int_{0}^{2} e^{|x-t|} d t$ is:
(1) $e(e-1)$
(2) $2(e-1)$
(3) 2
(4) $2 e-1$
Q. 13. Let M be the maximum value of the product of two positive integers when their sum is 66. Let the sample space $\mathrm{S}=\left\{x \in Z: x(66-x) \geq \frac{5}{9} \mathrm{M}\right\}$ and the event $\mathrm{A}=\{x \in \mathrm{~S}: x$ is a multiple of 3$\}$. Then $P(A)$ is equal to
(1) $\frac{7}{22}$
(2) $\frac{1}{5}$
(3) $\frac{15}{44}$
(4) $\frac{1}{3}$
Q. 14. Let $x_{4}=2$ be a local minima of the function $f(x)$ $=2 x^{4}-18 x^{2}+8 x+12, x \in(-4,4)$. If M is local maximum value of the function f in $(-4,4)$, then $\mathrm{M}=$
(1) $18 \sqrt{6}-\frac{31}{2}$
(2) $18 \sqrt{6}-\frac{33}{2}$
(3) $12 \sqrt{6}-\frac{33}{2}$
(4) $12 \sqrt{6}-\frac{31}{2}$
Q. 15. Let $f:(0,1) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{1}{1-e^{-x}}$, and $g(x)=(f(-x)-f(x))$. Consider two statements:
(I) g is an increasing function in $(0,1)$
(II) g is one-one in $(0,1)$
(1) Both (I) and (II) are true
(2) Neither (I) nor (II) is true
(3) Only (I) is true
(4) Only (II) is true
Q. 16. Let $y(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{16}\right)$. The y $y^{\prime}-y^{\prime \prime}$ at $x=-1$ is equal to :
(1) 976
(2) 944
(3) 464
(4) 496
Q. 17. The distance of the point $P(4,6,-2)$ from the line passing through the point $(-3,2,3)$ and parallel to a line with direction ratios $3,3,-1$ is equal to :
(1) $\sqrt{14}$
(2) 3
(3) $\sqrt{6}$
(4) $2 \sqrt{3}$
Q. 18. Let $x, y, z>1$ and $A=\left[\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]$. Then $\left|\operatorname{adj}\left(\operatorname{adj} \mathrm{A}^{2}\right)\right|$ is equal to
(1) 2^{8}
(2) 4^{8}
(3) 6^{4}
(4) 2^{4}
Q. 19. If a_{r} is the coefficient of x^{10-r} in the Binomial expansion of $(1+x)^{10}$, then $\sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}$ is
equal to equal to
(4) 1210
Q. 20. Let $y=y(x)$ be the solution curve of the differential equation
$\frac{d y}{d x}=\frac{y}{x}\left(1+x y^{2}\left(1+\log _{e} x\right)\right), x>0, y(1)=3$. Then $\frac{y^{2}(x)}{9}$ is equal to :
(1) $\frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}$
(2) $\frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}$
(3) $\frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}$
(4) $\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}$

Section B

Q.21. The constant term in the expansion of $\left(2 x+\frac{1}{x^{7}}+3 x^{2}\right)^{5}$ is
Q. 22. For some $a, b, c \in \mathbf{N}$, let $f(x)=a x-3$ and $g(x)$ $=x^{b}+c, x \in \mathbb{R}$. If $(f \circ g)^{-1}(x)=\left(\frac{x-7}{2}\right)^{\frac{1}{3}}$ then $(f \circ g)(a c)+(g \circ f) b$ is equal to
Q. 23. Let $S=\{1,2,3,5,7,10,11\}$. The number of non-empty subsets of S that have the sum of all elements a multiple of 3 , is
Q.24. Let the equation of the plane passing through the line $x-2 y-z-5=0=x+y+z-5$ and parallel to the line $x+y+2 z-7=2 x+3 y+z-2$ be $a x+b y+c z=65$. Then the distance of the point (a, b, c) from the plane $2 x+2 y-z+16=0$ is
Q.25. If the sum of all the solutions of $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3},-1<x<1$, $x \neq 0$, is $\alpha-\frac{4}{\sqrt{3}}$ then α is equal to
Q. 26. The vertices of a hyperbola H are $(\pm 6,0)$ and its eccentricity is $\frac{\sqrt{5}}{2}$. Let N be the normal to H at a point in the first quadrant and parallel to the line $\sqrt{2} x+y=2 \sqrt{2}$. If d is the length of the line segment of N between H and the y-axis then d^{2} is equal to
Q. 27. Let x and y be distinct integers where $1 \leq x \leq 25$ and $1 \leq y \leq 25$. Then, the number of ways of
choosing x and y, such that $x+y$ is divisible by 5 , is
Q. 28. \quad Let $S=\left\{a: \log _{2}\left(9^{2 \alpha-4}+13\right)-\log _{2}\left(\frac{5}{2} \cdot 3^{2 \alpha-4}+1\right)=2\right\}$. Then the maximum value of β for which the equation $x^{2}-2\left(\sum_{\alpha \in S} \alpha\right)^{2} x+\sum_{\alpha \in S}(\alpha+1)^{2} \beta=0$ has real roots, is
Q. 29. It the area enclosed by the parabolas $\mathrm{P}_{1}: 2 y=5 x^{2}$ and $P_{2}: x^{2}-y+6=0$ is equal to the area enclosed by P_{1} and $y=\alpha x, \alpha>0$, then a^{3} is equal to
Q. 30. Let A_{1}, A_{2}, A_{3} be the three A.P. with the same common difference d and having their first terms as A, A $+1, \mathrm{~A}+2$, respectively. Let $a b, c$ be the $7^{\text {th }}, 9^{\text {th }}, 17^{\text {th }}$ terms of $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, respectively such that $\left|\begin{array}{ccc}a & 7 & 1 \\ 2 b & 17 & 1 \\ c & 17 & 1\end{array}\right|+70=0$

If $a=29$, then the sum of first 20 terms of an AP whose first term is $c-a-b$ and common difference is $\frac{d}{12}$, is equal to.

Answer Key

Q. No.	Answer	Topic Name	Chapter Name
1	(4)	Equation of circle	Circle
2	(4)	Tangent to a Parabola	Parabola
3	(2)	Triple Product	Vector Algebra
4	(3)	Scalar and Vector Product	Vector Algebra
5	(4)	Algebra of Complex Numbers	Complex Numbers
6	(1)	Measures of Dispersion	Statistics
7	(4)	Solution of linear equation	Matrices and Determinants
8	(1)	Limit	Limit, Continuity and Differentiability
9	(1)	Tautology and Contradiction	Mathematical Reasoning
10	(4)	Line	Three Dimensional Geometry
11	(4)	Integration by substitution	Indefinite Integration
12	(2)	Maxima and Minima	Application of Derivatives
13	(4)	Basics of Probability	Probability
14	(3)	Maxima and Minima	Application of Derivatives
15	(1)	Monotonicity	Application of Derivatives
16	(4)	Higher order derivatives	Differentiation
17	(1)	Line and a Point	Three Dimensional Geometry
18	(1)	Adjoint of a matrix	Matrices and Determinants
19	(4)	Properties of Binomial coefficients	Binomial Theorem
20	(4)	Linear Differential Equation	Differential Equations
21	[1080]	Binomial Theorem for Positive Integral Index	Binomial Theorem
22	[2039]	Composition of functions	Function
23	[43]	Basics of set	Set Theory
24	[9]	Planes in 3D	Three Dimensional Geometry
25	[2]	Properties of Inverse trigonometric functions	Inverse Trigonometric Functions
26	[216]	Tangent and Normal	Hyperbola
27	[120]	Combination	Permutation and Combination
28	[25]	Nature of roots	Quadratic Equations
29	[600]	Area Bounded by Curves	Area under Curves
30	[495]	Arithmetic Progressions	Sequences and Series

Solutions

Section A

1. Option (4) is correct.

Given: Equation of circle is $x^{2}+y^{2}-2 x=0$
Equation of line is $a x+b y=0$
\because Point A lies on given line
$\therefore a \alpha+b(0)=0$
$\Rightarrow \alpha=0$
And point B lies on line and circle
So, $a+b \beta=0$
And $1+\beta^{2}-2=0$

$\Rightarrow \beta=1$
So, $A=(0,0)$ and $B=(1,1)$
Now, centre of circle as $A B$ diameter is $\left(\frac{1}{2}, \frac{1}{2}\right)$ and radius $=\frac{1}{\sqrt{2}}$
Now, for image of $\left(\frac{1}{2}, \frac{1}{2}\right)$ in $x+y+2=0$, we get
$\frac{x-\frac{1}{2}}{1}=\frac{y-\frac{1}{2}}{1}=\frac{-2\left(\frac{1}{2}+\frac{1}{2}+2\right)}{1^{2}+1^{2}}$
$\Rightarrow x=\frac{-5}{2}, y=\frac{-5}{2}$
\therefore Equation of required circle is
$\left(x+\frac{5}{2}\right)^{2}+\left(y+\frac{5}{2}\right)^{2}=\frac{1}{2}$
$\Rightarrow x^{2}+y^{2}+5 x+5 y+12=0$

HINT:

(1) Find α and β by satisfying points A and B in given equation of line and circle.
(2) Mirror image of point $\mathrm{A}\left(x_{1}, y_{1}\right)$ in line $a x+b y+c=0$ is given by

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{-2\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}
$$

2. Option (4) is correct.

Equation of tangent to $y^{2}=\frac{x}{2}$ is given by in slope form, $y=m x+\frac{1}{8 m}$
Equation of tangent to $y^{2}=x-1$ in slope form is given by $y=(x-1) m+\frac{1}{4 m}$
\because Equation (i) and equation (ii) represents the same equation.
$\therefore \frac{1}{8 m}=-m+\frac{1}{4 m}$
$\therefore 1=-8 m^{2}+2$
$\Rightarrow m^{2}=\frac{1}{8} \Rightarrow m= \pm \frac{1}{2 \sqrt{2}}$
$\because m>0$ So, $m=\frac{1}{2 \sqrt{2}}$
So, equation of common tangent to both given curve
is $y=\frac{x}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}$
$\Rightarrow 2 \sqrt{2} y-x-1=0$
Now, distance of the point $(6,-2 \sqrt{2})$ from $2 \sqrt{2} y-x$ $-1=0$ is
$d=\left|\frac{2 \sqrt{2}(-2 \sqrt{2})-6-1}{\sqrt{(2 \sqrt{2})^{2}+(-1)^{2}}}\right|$
$\Rightarrow d=\left|\frac{-15}{3}\right|=5$
3. Option (2) is correct.

Given: $\vec{b} \cdot \vec{c}=0, \vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}-\vec{c}}{2}$ and $\vec{b} \cdot \vec{d}=\vec{a} \cdot \vec{b}$
$\because \vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}-\vec{c}}{2}$
$\Rightarrow(\vec{a} . \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\frac{\vec{b}}{2}-\frac{\vec{c}}{2}$
$\Rightarrow\left[(\vec{a} . \vec{c})-\frac{1}{2}\right] \vec{b}-\left[(\vec{a} \cdot \vec{b})-\frac{1}{2}\right] \vec{c}=0$
$\Rightarrow \vec{a} \cdot \vec{c}-\frac{1}{2}=0$ and $\vec{a} \cdot \vec{b}-\frac{1}{2}=0$
$\Rightarrow \vec{a} \cdot \vec{c}=\frac{1}{2}$ and $\vec{a} \cdot \vec{b}=\frac{1}{2}$
Now, $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\vec{a} \cdot(\vec{b} \times(\vec{c} \times \vec{d}))$
$=\vec{a} \cdot[(\vec{b} \cdot \vec{d}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{d}]$
$=\vec{a} \cdot\left[\frac{1}{2} \vec{c}-0\right]=\frac{1}{2} \vec{a} \cdot \vec{c}=\frac{1}{4}$
4. Option (3) is correct.

Given : $\vec{c}=5 \hat{i}+4 \hat{j}+3 \hat{k}$
And vector $\vec{a}=-\hat{i}+2 \hat{j}+\hat{k}$ is rotated through a right angle, and passing through the y-axis in its way.
Let $\vec{b}=m \vec{a}+n \hat{j}$
$\because \vec{b} \perp \vec{a}$
$\therefore \vec{b} \cdot \vec{a}=0$
$\Rightarrow(m \vec{a}+n \hat{j}) \cdot \vec{a}=0$
$\Rightarrow m|\vec{a}|^{2}+n(\hat{j}) \cdot(-\hat{i}+2 \hat{j}+\hat{k})=0$
$\Rightarrow m(6)+2 n=0 \Rightarrow 6 m+2 n=0$

So, $\vec{b}=m \vec{a}+(-3 m) \hat{j}$
$\Rightarrow \vec{b}=m(-\hat{i}+2 \hat{j}+\hat{k})-3 m \hat{j}$
$\Rightarrow \vec{b}=m(-\hat{i}-\hat{j}+\hat{k})$
Also, $|\vec{b}|=|\vec{a}|$
$\Rightarrow|\vec{b}|^{2}=|\vec{a}|^{2} \Rightarrow m= \pm \sqrt{2}$
Case-1: When $m=\sqrt{2}$
$\vec{b}=\sqrt{2}(-\hat{i}-\hat{j}+\hat{k})$
$3 \vec{a}+\sqrt{2} \vec{b}=3(-\hat{i}+2 \hat{j}+\hat{k})+\sqrt{2}(\sqrt{2}(-\hat{i}-\hat{j}+\hat{k}))$
$=-5 \hat{i}+4 \hat{j}+5 \hat{k}$
So, projection of $3 \vec{a}+\sqrt{2} \vec{b}$ on $\vec{c}=\frac{(3 \vec{a}+\sqrt{2} \vec{b}) \cdot \vec{c}}{|\vec{c}|}$
$=\frac{(-5 \hat{i}+4 \hat{j}+5 \hat{k}) \cdot(5 \hat{i}+4 \hat{j}+3 \hat{k})}{\sqrt{25+16+9}}$
$=\frac{-25+16+15}{\sqrt{50}}=\frac{3 \sqrt{2}}{5}$
Case 2: When $m=-\sqrt{2}$
$\vec{b}=-\sqrt{2}(-\hat{i}-\hat{j}+\hat{k})$
So, $3 \vec{a}+\sqrt{2} \vec{b}=-\hat{i}+8 \hat{j}+\hat{k}$
Now, projection of $3 \vec{a}+\sqrt{2} \vec{b}$ on \vec{c}

$$
\begin{aligned}
& =\frac{(-\hat{i}+8 \hat{j}+\hat{k}) \cdot(5 \hat{i}+4 \hat{j}+3 \hat{k})}{\sqrt{50}}=\frac{-5+32+3}{\sqrt{50}} \\
& =\frac{30}{\sqrt{50}}=3 \sqrt{2}
\end{aligned}
$$

5. Option (4) is correct.

Given: $z_{1}=2+3 \vec{i}, z_{2}=3+4 \vec{i}$
And $S=\left\{z \in C:\left|z-z_{1}\right|^{2}-\left|z-z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2}\right\}$
Let $z=x+\mathrm{i} y$
Now, $\left(z-z_{1}\right)=(x-2)+i(y-3)$
$\left(z-z_{2}\right)=(x-3)+i(y-4)$
$\left(z_{1}-z_{2}\right)=-1-i$
$\because\left|z-z_{1}\right|^{2}-\left|z-z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2}$
$\Rightarrow\left[(x-2)^{2}+(y-3)^{2}\right]-\left[(x-3)^{2}+(y-4)^{2}\right]=1+1$
$\Rightarrow x+y=7$
$\Rightarrow \frac{x}{7}+\frac{y}{7}=1$
So, S represents a straight line with the sum of its intercepts on coordinate axis equals 14.

HINT:

Assume $z=x+i y$ and solved further using the concept of modulus of complex number.
6. Option (1) is correct.

Given : $($ mean $)=10$ and variance $=4$
Let number of observations be n.
So, $\frac{\sum x_{i}}{n}=10$

Also given that marks of one student is increased from 8 to 12.
And (mean) new $=10.2$

$$
\begin{aligned}
& \Rightarrow \frac{\Sigma x_{i}-8+12}{n}=10.2 \\
& \Rightarrow \Sigma x_{i}+4=(10.2) n \\
& \Rightarrow 10 n+4=10.2 n \\
& \Rightarrow n=20 \\
& \because \text { Variance }=4 \\
& \Rightarrow \frac{\Sigma x_{i}^{2}}{n}-(\bar{x})^{2}=4 \\
& \Rightarrow \frac{\Sigma x_{i}^{2}}{20}-100=4 \Rightarrow \Sigma x_{i}^{2}=2080
\end{aligned}
$$

Now, after change $\Sigma x_{i}^{2}=2080-64+144=2160$
So, $(\text { variance })_{\text {new }}=\frac{2160}{20}-(10.2)^{2}$
$=108-104.04=3.96$

HINT:

Use mean $=\frac{\Sigma x_{i}}{n}$ and variance $=\frac{\Sigma x_{i}^{2}}{n}-(\vec{x})^{2}$
7. Option (4) is correct.

Given : System of linear equations
$a x+2 a y-3 a z=1$
$(2 a+1) x+(2 a+3) y+(a+1) z=2$
$(3 a+5) x+(a+5) y+(a+2) z=3$
Now, $\Delta=\left|\begin{array}{ccc}a & 2 a & -3 a \\ 2 a+1 & 2 a+3 & a+1 \\ 3 a+5 & a+5 & a+2\end{array}\right|$
$\Rightarrow \Delta=a\left|\begin{array}{ccc}1 & 2 & -3 \\ 2 a+1 & 2 a+3 & a+1 \\ 3 a+5 & a+5 & a+2\end{array}\right|$
Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-2 \mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+3 \mathrm{C}_{1}$, we get
$\Delta=a\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 a+1 & -2 a+1 & 7 a+4 \\ 3 a+5 & -5 a-5 & 10 a+17\end{array}\right|$
$\Rightarrow \Delta=a[(-2 a+1)(10 a+17)+(5 a+5)(7 a+4)]$
$\Rightarrow \Delta=a\left(15 a^{2}+31 a+37\right)$
For unique solution, $\Delta \neq 0$
$\Rightarrow a \neq 0$ So, $\mathrm{S}_{1}=\mathrm{R}-\{0\}$
For infinite many solutions, $\Delta=0$
$\Rightarrow a=0$
But $a \in \mathrm{R}-\{0\}$ So, $\mathrm{S}_{2}=\phi$

HINT:

Recall cramer rule and use for unique solution, $\Delta \neq 0$ For infinite solutions, $\Delta=0$

8. Option (1) is correct.

Let $\mathrm{A}=$
$\lim _{n \rightarrow \infty} \frac{1+2-3+4+5-6+\ldots+(3 n-2)+(3 n-1)-3 n}{\sqrt{2 n^{4}+4 n+3}-\sqrt{n^{4}+5 n+4}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{A}=\lim _{n \rightarrow \infty} \frac{(1+2+3+\ldots .+3 n)-2(3+6+9+\ldots+3 n)}{\sqrt{2 n^{4}+4 n+3}-\sqrt{n^{4}+5 n+4}} \\
& \Rightarrow \mathrm{~A}=\lim _{n \rightarrow \infty} \frac{\frac{3 n(3 n+1)}{2}-\frac{6 n(n+1)}{2}}{\sqrt{2 n^{4}+4 n+3}-\sqrt{n^{4}+5 n+4}} \\
& \Rightarrow \mathrm{~A}=\lim _{n \rightarrow \infty} \frac{\frac{3}{2} n(n-1)\left[\sqrt{2 n^{4}+4 n+3}+\sqrt{n^{4}+5 n+4}\right]}{n^{4}-n-1} \\
& \Rightarrow \mathrm{~A}=\lim _{n \rightarrow \infty} \frac{\frac{3}{2} n^{4}\left(1-\frac{1}{n}\right)\left[\sqrt{2+\frac{4}{n^{3}}+\frac{3}{n^{4}}}+\sqrt{1+\frac{5}{n^{3}}+\frac{4}{n^{4}}}\right]}{n^{4}\left[1-\frac{1}{n^{3}}-\frac{1}{n^{4}}\right]} \\
& \Rightarrow \mathrm{A}=\frac{\frac{3}{2}(1-0)[\sqrt{2+0}+\sqrt{1}]}{[1-0-0]} \\
& \Rightarrow \mathrm{A}=\frac{3}{2}(1+\sqrt{2})
\end{aligned}
$$

9. Option (1) is correct.

Given statement is $(p \wedge(\sim q)) \Rightarrow(p \Rightarrow(\sim q))$
As we know $\mathrm{A} \Rightarrow \mathrm{B}=\sim \mathrm{A} \vee \mathrm{B}$
So, $p \Rightarrow(\sim q)=\sim p \vee(\sim q)$
Now, $(p \wedge(\sim q)) \Rightarrow(p \Rightarrow(\sim q))$
$=\sim[p \wedge(\sim q)] \vee[\sim p \vee(\sim q)]$
$=[\sim p \vee q] \vee[\sim p \vee(\sim q)]$
$=\sim p \vee q \vee(\sim q)=\sim p \vee \mathrm{~T}=\mathrm{T}$
So, given statement is tautology.

HINT:

(1) Use $\mathrm{A} \Rightarrow \mathrm{B}=\sim \mathrm{A} \vee \mathrm{B}$
(2) $\mathrm{A} \vee \mathrm{T}=\mathrm{T}$
10. Option (4) is correct.

Given lines $\mathrm{L}_{1}: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2}$
$\mathrm{L}_{2}: \frac{x-2}{1}=\frac{y-2}{2}=\frac{z-3}{3}$
And direction ratios of
$\mathrm{L}_{3}=1,-1,-2$
Let parametric coordinates of point $\mathrm{P}=(2 k+1, k+3,2 k+2)$
And parametric coordinates of

point $Q=(\lambda+2,2 \lambda+2,3 \lambda+3)$
Now, direction ratios of $\mathrm{PQ}=2 k-\lambda-1, k-2 \lambda+1$,
$2 k-3 \lambda-1$
\because direction ratios of $\mathrm{L}_{3}=1,-1,-2$
So, $\frac{2 k-\lambda-1}{1}=\frac{k-2 \lambda+1}{-1}=\frac{2 k-3 \lambda-1}{-2}$
$\Rightarrow 2 k-\lambda-1=-k+2 \lambda-1$
and $(2 k-\lambda-1)(-2)=2 k-3 \lambda-1$
$\Rightarrow 3 k-3 \lambda=0$ and $6 k-5 \lambda=3$
$\Rightarrow k=\lambda$ and $6 k-5 \lambda=3$
$\Rightarrow k=\lambda=3$
So, $\mathrm{P}=(7,6,8)$ and $\mathrm{Q}=(5,8,12)$

$$
\begin{aligned}
& \text { Now, } P Q=\sqrt{(7-5)^{2}+(6-8)^{2}+(8-12)^{2}} \\
& =\sqrt{4+4+16} \Rightarrow P Q=2 \sqrt{6}
\end{aligned}
$$

HINT:

Assume parametric coordinates of point P and Q and then solve further using the concept of direction ratios.

11. Option (4) is correct.

Given, $f(x)=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$
Let $x^{2}=u \Rightarrow 2 x d x=d u$
$\Rightarrow f(x)=\int \frac{d u}{(u+1)(u+3)}$
$\Rightarrow f(x)=\int\left(\frac{1}{u+1}-\frac{1}{u+3}\right) \frac{d u}{2}$
$\Rightarrow f(x)=\frac{1}{2} \ln \left(\frac{u+1}{u+3}\right)+c$
$\Rightarrow f(x)=\frac{1}{2} \ln \left(\frac{x^{2}+1}{x^{2}+3}\right)+c$
Put $x=3$ in above equation, we get
$f(3)=\frac{1}{2} \ln \left(\frac{10}{12}\right)+c$
$\Rightarrow \frac{1}{2} \ln \left(\frac{5}{6}\right)=\frac{1}{2} \ln \left(\frac{5}{6}\right)+c \Rightarrow c=0$
So, $f(x)=\frac{1}{2} \ln \left(\frac{x^{2}+1}{x^{2}+3}\right)$
$\Rightarrow f(4)=\frac{1}{2} \ln \left(\frac{17}{19}\right) \Rightarrow f(4)=\frac{1}{2}[\ln 17-\ln 19]$

HINT:

Substitute $x^{2}=u$ and solved further.

12. Option (2) is correct.

Given, $f(x)=\int_{0}^{2} e^{|x-t|} d t$
Case-1: When $x<0$
$f(x)=\int_{0}^{2} e^{-(x-t)} d t$
$\Rightarrow f(x)=\int_{0}^{2} e^{-x} \cdot e^{t} d t \Rightarrow f(x)=e^{-x}\left[e^{t}\right]_{0}^{2}$
$\Rightarrow f(x)=e^{-x}\left(e^{2}-1\right)$
Case-2: When $x \in[0,2]$

$$
\begin{aligned}
& f(x)=\int_{0}^{2} e^{|x-t|} d t \\
& \Rightarrow f(x)=\int_{0}^{x} e^{x-t} d t+\int_{x}^{2} e^{-(x-t)} d t \\
& \Rightarrow f(x)=e^{x}\left[-e^{-t}\right]_{0}^{x}+e^{-x}\left[e^{t}\right]_{x}^{2} \\
& \Rightarrow f(x)=e^{x}\left[-e^{-x}+1\right]+e^{-x}\left[e^{2}-e^{x}\right] \\
& \Rightarrow f(x)=e^{x}+e^{2-x}-2
\end{aligned}
$$

Case-3: When $x>2$
$f(x)=\int_{0}^{2} e^{x-t} d t$
$\Rightarrow f(x)=e^{x}\left[-e^{-t}\right]_{0}^{2} \Rightarrow f(x)=e^{x}\left[1-e^{-2}\right]$
So, $[f(x)]_{\text {min }}=e^{2}-1 ; x<0$
$=2(e-1) ; x \in[0,2]=e^{2}-1 ; x>2$
So, minimum value of $f(x)=2(e-1)$
13. Option (4) is correct.

Let two positive integers be a and b.
Given, $\mathrm{S}=\left\{x \in z: x(66-x) \geq \frac{5}{9} \mathrm{M}\right\}$:
Where $\max \mathrm{M}=(a b)$
$\mathrm{A}=\{x \in \mathrm{~S}: x$ is a multiple of 3$\}$
As we know for positive numbers, A.M. \geq G.M.
So, $\frac{a+b}{2} \geq \sqrt{a b}$
$\Rightarrow \sqrt{a b} \leq \frac{66}{2}$
$\{\because a+b=66\}$
$\Rightarrow(a b)_{\text {max }}=33^{2} \Rightarrow \mathrm{M}=(33)^{2}$
$\because x(66-x) \geq \frac{5}{5} \mathrm{M} \Rightarrow x(66-x) \geq \frac{5}{9}(33)^{2}$
$\Rightarrow x(66-x) \geq 605 \Rightarrow(x-11)(x-55) \leq 0$
$\Rightarrow x \in[11,55]$
$\Rightarrow S=[11,12,13, \ldots .55]$
$\Rightarrow A=[12,15,18, \ldots ., 54]$
So, $n(\mathrm{~S})=45$ and $n(\mathrm{~A})=15$
Now, $\mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{15}{45}=\frac{1}{3}$
14. Option (3) is correct.

Given, $f(x)=2 x^{4}-18 x^{2}+8 x+12 ; x \in(-4,4)$
$\Rightarrow f(x)=8 x^{3}-36 x+8$
$\Rightarrow f(x)=4\left(2 x^{3}-9 x+2\right)$
$\because x=2$ is local minima of $f(x)$
$\therefore(x-2)$ is a factor of $f(x)=4\left(2 x^{3}-9 x+2\right)$
So, $f(x)=4(x-2)\left(2 x^{2}+4 x-1\right)$
$\Rightarrow f^{\prime}(x)=4(x-2)\left[x-\left(\frac{-2+\sqrt{6}}{2}\right)\right]\left[x-\left(\frac{-2-\sqrt{6}}{2}\right)\right]$

\because Sign of $f^{\prime}(x)$ changes from + ve to -ve of $x=\frac{-2+\sqrt{6}}{2}$.
So, $f(x)$ has local maxima at $x=\frac{-2+\sqrt{6}}{2}$
Now, $f\left(\frac{-2+\sqrt{6}}{2}\right)=2\left(\frac{-2+\sqrt{6}}{2}\right)^{4}-18\left(\frac{-2+\sqrt{6}}{2}\right)^{2}+$

$$
8\left(\frac{-2+\sqrt{6}}{2}\right)+12
$$

$=2\left[\frac{5-2 \sqrt{6}}{2}\right]^{2}-18\left[\frac{5-2 \sqrt{6}}{2}\right]+8\left(-1+\sqrt{\frac{3}{2}}\right)+12$
$=2\left[\frac{49-20 \sqrt{6}}{4}\right]-45+18 \sqrt{6}-8+4 \sqrt{6}+12$
$=\frac{49}{2}-10 \sqrt{6}-41+22 \sqrt{6}=12 \sqrt{6}-\frac{33}{2}$
So, $\mathrm{M}=12 \sqrt{6}-\frac{33}{2}$
15. Option (1) is correct.

Given, $f(x)=\frac{1}{1-e^{-x}}$
And $g(x)=f(-x)-f(x)$
So, $g(x)=\frac{1}{1-e^{x}}-\frac{1}{1-e^{-x}}$
$\Rightarrow g(x)=\frac{1}{1-e^{x}}-\frac{e^{x}}{e^{x}-1} \Rightarrow g(x)=\frac{1+e^{x}}{1-e^{x}}$
$\Rightarrow g^{\prime}(x)=\frac{\left(1-e^{x}\right) \frac{d}{d x}\left(1+e^{x}\right)-\left(1+e^{x}\right) \frac{d}{d x}\left(1-e^{x}\right)}{\left(1-e^{x}\right)^{2}}$
$\Rightarrow g^{\prime}(x)=\frac{\left(1-e^{x}\right) e^{x}-\left(1+e^{x}\right)\left(-e^{x}\right)}{\left(1-e^{x}\right)^{2}}$
$\Rightarrow g^{\prime}(x)=\frac{2 e^{x}}{\left(1-e^{x}\right)^{2}}>0$
$\Rightarrow g(x)$ is increasing function and one-one function.
16. Option (4) is correct.

Given, $y(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{6}\right)\left(1+x^{16}\right)$
$\Rightarrow y(x)=\frac{(1-x)(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left(1+x^{16}\right)}{(1-x)}$
$\Rightarrow y(x)=\frac{1-x^{32}}{1-x} \Rightarrow y(-1)=0$
$\because y=\frac{1-x^{32}}{1-x} \Rightarrow y(1-x)=1-x^{32}$
Differentiate above equation w.r.t. x, we get
$y^{\prime}(1-x)+y(-1)=-32 x^{31}$
$\Rightarrow y^{\prime}(1-x)-y=-32 x^{31}$
Put $x=-1$ in above equation, we get
$y^{\prime}(2)-0=-32(-1)$
$\Rightarrow\left[y^{\prime}\right]=16$
Differentiate equation (i) w.r.t. x, we get
$y^{\prime \prime}(1-x)-y^{\prime}-y^{\prime}=(-32)(31) x^{30}$
$\Rightarrow y^{\prime \prime}(1-x)-2 y^{\prime}=-992 x^{30}$
Put $x=-1$ in above equation, we get
$y^{\prime \prime}(2)-2(16)=-992$
$\left[y^{\prime \prime}\right]_{x=-1}=-480$
$\Rightarrow\left[y^{\prime}-y^{\prime \prime}\right]_{x=-1}=16+480=496$

HINT:

Multiply and divide the expression of y by $(1-x)$ and solved further.
17. Option (1) is correct.

Given, Point $P=(4,6,-2)$
Equation of line passing through $(-3,2,3)$ and parallel to a line with direction ratios $3,3,-1$ is given by

$\mathrm{L}: \frac{x+3}{3}=\frac{y-2}{3}=\frac{z-3}{-1}=m$
Let coordinates of point Q in parametric form be $(3 m-3,3 m+2,-m+3)$
Now, direction ratios of $\mathrm{PQ}=3 m-7,3 m-4,-m+5$
$\because \mathrm{PQ} \perp$ Line L
$\therefore(3 m-7)(3)+(3 m-4)(3)+(5-m)(-1)=0$
$\Rightarrow 19 m=38 \Rightarrow m=2$
$\therefore \mathrm{Q}=(3,8,1)$
Now, $\mathrm{PQ}=\sqrt{(4-3)^{2}+(6-8)^{2}+(-2-1)^{2}}=\sqrt{14}$
18. Option (1) is correct.

Given, $\mathrm{A}=\left[\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]$
Now, adj $\left(\operatorname{adj} A^{2}\right)=\left|A^{2}\right|^{(3-2)} A^{2}$

$$
\begin{aligned}
& \Rightarrow \operatorname{adj}\left(\operatorname{adj} A^{2}\right)=\left|A^{2}\right| A^{2} \\
& \Rightarrow\left|\operatorname{adj}\left(\operatorname{adj} A^{2}\right)\right|=\left|A^{2}\right||A|^{2}=\left|A^{2}\right|^{4} \\
& \Rightarrow\left|\operatorname{adj}\left(\operatorname{adj} A^{2}\right)\right|=|A|^{8}
\end{aligned}
$$

$$
\text { Now, }|\mathrm{A}|=\left|\begin{array}{ccc}
1 & \log _{x} y & \log _{x} z \\
\log _{y} x & 2 & \log _{y} z \\
\log _{z} x & \log _{z} y & 3
\end{array}\right|
$$

$$
\Rightarrow|\mathrm{A}|=\left|\begin{array}{ccc}
1 & \frac{\ln y}{\ln x} & \frac{\ln z}{\ln x} \\
\frac{\ln x}{\ln y} & 2 & \frac{\ln z}{\ln y} \\
\frac{\ln x}{\ln z} & \frac{\ln y}{\ln z} & 3
\end{array}\right|
$$

$$
\Rightarrow|\mathrm{A}|=\frac{1}{\ln x \ln y \ln z}\left|\begin{array}{ccc}
\ln x & \ln y & \ln z \\
\ln x & 2 \ln y & \ln z \\
\ln x & \ln y & 3 \ln z
\end{array}\right|
$$

$$
\Rightarrow|\mathrm{A}|=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 3
\end{array}\right|
$$

$$
\Rightarrow|\mathrm{A}|=1(6-1)-1(3-1)+1(1-2)
$$

$$
\Rightarrow|\mathrm{A}|=2
$$

$$
\overrightarrow{\text { So, }}\left|\operatorname{adj}\left(\operatorname{adj} \mathrm{A}^{2}\right)\right|=|\mathrm{A}|^{8}=2^{8}
$$

HINT:

(1) Use $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
(2) Use $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{n-}$

19. Option (4) is correct.

Given $a_{r}=$ coefficient of x^{10-r} in $(1+x)^{10}$

Now, general term of binomial expansion of $(1+x)^{10}$

$$
\begin{aligned}
& \text { is } \mathrm{T}_{r+1}{ }^{=10} \mathrm{C}_{r} x^{r} \\
& \therefore a_{r}={ }^{10} \mathrm{C}_{10-r} \\
& \Rightarrow a_{r}={ }^{10} \mathrm{C}_{r}
\end{aligned}
$$

Now, $\frac{a_{r}}{a_{r-1}}=\frac{{ }^{10} \mathrm{C}_{r}}{{ }^{10} \mathrm{C}_{r-1}}=\frac{10-r+1}{r}=\frac{11-r}{r}$
So, $\sum_{r=1}^{10} r^{3}\left(\frac{a_{r}}{a_{r-1}}\right)^{2}=\sum_{r=1}^{10} r^{3}\left(\frac{11-r}{r}\right)^{2}$
$=\sum_{r=1}^{10} r(11-r)^{2}=\sum_{r=1}^{10} r\left(r^{2}+121-22 r\right)$
$=\sum_{r=1}^{10}\left(r^{3}-22 r^{2}+121 r\right)$
$=\sum_{r=1}^{10} r^{3}-22 \sum_{r=1}^{10} r^{2}+121 \sum_{r=1}^{10} r$
$=\left[\frac{10(11)}{2}\right]^{2}-22\left[\frac{10(11)(21)}{6}\right]+121\left(\frac{10 \times 11}{2}\right)$
$=1210$
20. Option (4) is correct.

Given, $\frac{d y}{d x}=\frac{y}{x}\left(1+x y^{2}(1+\ln x)\right), y(1)=3$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x}+y^{3}(1+\ln x)$
$\Rightarrow \frac{1}{y^{3}} \frac{d y}{d x}-\frac{1}{y^{2}}\left(\frac{1}{x}\right)=1+\ln x$
Let $-\frac{1}{y^{2}}=u \Rightarrow \frac{1}{y^{3}} \frac{d y}{d x}=\frac{1}{2} \frac{d u}{d x}$
$\Rightarrow \frac{1}{2} \frac{d u}{d x}+\frac{u}{x}=1+\ln x$
$\Rightarrow \frac{d u}{d x}+\frac{2 u}{x}=2(1+\ln x)$, which is linear differential equation,
Now, I.F. $=e^{\int \frac{2}{x} d x}$
\Rightarrow I.F. $=e^{2 \ln x}=x^{2}$
So, solution of given differential equation is
u (I.F.) $=\int 2(1+\ln x)($ I.F. $) d x+$ C
$\Rightarrow u x^{2}=\int 2 x^{2}(1+\ln x) d x+C$
$\Rightarrow u x^{2}=2(1+\ln x) \frac{x^{3}}{3}-2 \int\left(\frac{1}{x}\right) \cdot \frac{x^{3}}{3} d x+C$
$\Rightarrow u x^{2}=\frac{2 x^{3}}{3}(1+\ln x)-\frac{2 x^{3}}{9}+C$
$\Rightarrow-\frac{1}{y^{2}} x^{2}=\frac{2 x^{3}}{3}(1+\ln x)-\frac{2 x^{3}}{9}+C$
Put $x=1$ in above equation, we get
$-\frac{1}{9}(1)=\frac{2}{3}(1+0)-\frac{2}{9}+C$
$\Rightarrow \mathrm{C}=-\frac{5}{9}$
$\therefore-\frac{x^{2}}{y^{2}}=\frac{2 x^{3}}{3}(1+\ln x)-\frac{2 x^{3}}{9}-\frac{5}{9}$
$\Rightarrow \frac{x^{2}}{y^{2}}=-\frac{1}{9}\left[6 x^{3}(1+\ln x)-2 x^{3}-5\right]$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{1}{9}\left[5-4 x^{3}-6 x^{3} \ln x\right]$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{1}{9}\left[5-2 x^{3}\left(2+\ln x^{3}\right)\right]$
$\Rightarrow \frac{y^{2}}{9}=\frac{x^{2}}{5-2 x^{3}\left(2+\ln x^{3}\right)}$

Section B

21. Correct answer is [1080].

Let $\mathrm{A}=$ constant term in $\left(2 x+\frac{1}{x^{7}}+3 x^{2}\right)^{5}$
$\Rightarrow \mathrm{A}=$ constant term in $\frac{1}{x^{35}}\left(2 x^{8}+1+3 x^{9}\right)^{5}$
$\Rightarrow \mathrm{A}=$ coefficient of x^{35} in $\left(1+x^{8}(3 x+2)\right)^{5}$
$\Rightarrow \mathrm{A}=$ coefficient of x^{35} in ${ }^{5} \mathrm{C}_{4}\left[x^{8}(3 x+2)\right]^{4}$
$\Rightarrow \mathrm{A}=$ coefficienf of x^{3} in ${ }^{5} \mathrm{C}_{4}(3 x+2)^{4}$
$\Rightarrow \mathrm{A}={ }^{5} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{3}(3)^{3}(2)^{1}$
$\Rightarrow A=5 \times 4 \times 27 \times 2 \Rightarrow A=1080$
22. Correct answer is [2039].

Given, $f(x)=a x-3$ and $g(x)=x^{b}+c, x \in \mathrm{R}$
And $(f \circ g)^{-1}(x)=\left(\frac{x-7}{2}\right)^{\frac{1}{3}}$
Now, $f \circ g=f[g(x)]$
$=a\left[x^{b}+c\right]-3$
$=a x^{b}+a c-3$
$\Rightarrow(f \circ g)^{-1}(x)=\left(\frac{x+3-a c}{a}\right)^{\frac{1}{b}}$
$\Rightarrow\left(\frac{x-7}{2}\right)^{\frac{1}{3}}=\left(\frac{x+3-a c}{a}\right)^{\frac{1}{b}}$
$\Rightarrow a=2, b=3, c=5$
So, $f(x)=2 x-3$ and $g(x)=x^{3}+5$
Now, $f \circ g(a c)+g \circ f(b)=f \circ g(10)+g \circ f(3)$
$=f[g(10)]+g[f(3)]$
$=f[1005]+g[3]=2(1005)-3+3^{3}+5$
$=2007+32=2039$

HINT:

Use $f \circ g(x)=f[g(x)]$ and recall method for finding inverse of a function.
23. Correct answer is [43].
$S=\{1,2,3,5,7,10,11\}$
For sum of elements to be multiple of 3 , elements can be of type $3 k, 3 k+1,3 k+2$
$3 k \in\{3\}, 3 k+1 \in\{1,7,10\}, 3 k+2 \in\{2,5,11\}$
Subsets having one element $=\{3 \mathrm{k}\}$
No. of subsets = 1
Subets having two elements $=\{3 k+1,3 k+2\}$
No. of subsets $={ }^{3} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}=9$
Subsets having three elements $=\{3 k, 3 k+1,3 k+2\}$
or $\{3 k+1,3 k+1,3 k+1\}$ or $\{3 k+2,3 k+2,3 k+2\}$
No. of subsets $=\left(1 \times{ }^{3} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}\right)+(1)+(1)$
$=9+1+1=11$
Subsets having four elements $=\{3 k, 3 k+1,3 k+1$,
$3 k+1\}$ or $\{3 k, 3 k+2,3 k+2,3 k+2\}$ or $\{3 k+1$, $3 k+2,3 k+1,3 k+2\}$
No. of subsets $=\left(1 \times{ }^{3} \mathrm{C}_{3}\right)+\left(1 \times{ }^{3} \mathrm{C}_{3}\right)+\left({ }^{3} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}\right)$ $=1+1+(3 \times 3)=11$
Subsets having five elements $=\{3 k, 3 k+1,3 k+2,3 k$ $+1,3 k+2\}$
No. of subsets $=1 \times{ }^{3} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}=(1 \times 3 \times 3)=9$
Subsets having six elements $=\{3 k+1,3 k+2,3 k+1$, $3 k+2,3 k+1,3 k+2\}$
No. of subsets $={ }^{3} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{3}=1$
Subsets having seven elements $=\mathrm{S}$........
No. of subset = 1
Total no. of subsets $=1+9+11+11+9+1+1$
$=43$

HINT:

For sum of elements to be multiple of 3, elements can be of type $3 k, 3 k+1,3 k+2$
$3 k \in\{3\}, 3 k+1 \in\{1,7,10\}, 3 k+2 \in\{2,5,11\}$
24. Correct answer is [9].

Let the equation of plane is
$(x-2 y-z-5)+k(x+y+3 z-5)=0$
\because Plane is parallel to the line $x+y+2 z-7=0$
$=2 x+3 y+z-2$
So, vector along the line $=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 2 \\ 2 & 3 & 1\end{array}\right|$
$=\hat{i}(1-6)-\hat{j}(1-4)+\hat{k}(3-2)$
$=-5 \hat{i}+3 \hat{j}+\hat{k}$
So, direction ratios of line $=-5,3,1$
\because Plane is parallel to the line
$\therefore-5(1+k)+3(k-2)+1(3 k-1)=0$
$\Rightarrow k=12$
So, required plane is $13 x+10 y+35 z=65$
$\therefore a=13, b=10, c=35$
Now, distance of $(13,10,35)$ from $2 x+2 y-z+16$ $=0$ is
$d=\left|\frac{2(13)+2(10)-35+16}{\sqrt{4+4+1}}\right|$
$\Rightarrow d=9$
25. Correct answer is [2].

Given,

$$
\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3},-1<x<1, x \neq 0
$$

Case-1: $x \in(-1,0)$
$\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\pi+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$
$\Rightarrow \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=-\frac{\pi}{3}$
$\Rightarrow x=-\frac{1}{\sqrt{3}}$
Case-2: $x \in(0,1)$
$\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$
$\Rightarrow \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{6}$
$\Rightarrow x=2-\sqrt{3}$
So, sum of all solutions of given equation is
$-\frac{1}{\sqrt{3}}+2-\sqrt{3}=\alpha-\frac{4}{\sqrt{3}}$
$\Rightarrow 2-\frac{4}{\sqrt{3}}=\alpha-\frac{4}{\sqrt{3}} \Rightarrow \alpha=2$
26. Correct answer is [216].

Given, vertices of hyperbola $=(\pm 6,0)$
Eccentricity, $e=\frac{\sqrt{5}}{2}$
As we know vertices of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$ is $(\pm a, 0)$
So, $a=6$
As we know for $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, e^{2}=1+\frac{b^{2}}{a^{2}}$
$\Rightarrow \frac{5}{4}=1+\frac{b^{2}}{36}$
$\Rightarrow b^{2}=9$
So, $\mathrm{H}: \frac{x^{2}}{36}-\frac{y^{2}}{9}=1$

Let coordinates of A in parametric form be $(6 \sec \theta$, $3 \tan \theta$)
So, slope of tangent at $A=\frac{3}{6} \frac{\sec \theta}{\tan \theta}=\frac{1}{2 \sin \theta}$
\because Normal is parallel to the line $\sqrt{2} x+y=2 \sqrt{2}$
$\therefore \frac{1}{2 \sin \theta} \times(-\sqrt{2})=-1$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=\frac{\pi}{4}$
$\{\because$ A lies in first quadrant $\}$
$\therefore \mathrm{A}=(6 \sqrt{2}, 3)$
Now, equation of normal is $\sqrt{2} x+y=k$
\because Normal is passing through the $(6 \sqrt{2}, 3)$
$\Rightarrow \sqrt{2}(6 \sqrt{2})+3=k \Rightarrow k=15$

So, equation of normal is $\sqrt{2} x+y=15$
So, $B=(0,15)$
Now, $d=\mathrm{AB}$
$\Rightarrow d^{2}=\mathrm{AB}^{2}$
$\Rightarrow d^{2}=\left[\sqrt{(6 \sqrt{2})^{2}+(12)^{2}}\right]^{2}$
$\Rightarrow d^{2}=72+144 \Rightarrow d^{2}=216$
27. Correct answer is [120].

Given : x and y are distinct integers $1 \leq x, y \leq 25$
$\Rightarrow x+y$ must be multiple of 5 .
$\Rightarrow x+y=5 k$ where $1 \leq k \leq 9$
Case 1: $x=5 k_{2}$, and $y=5 k_{2}$ where $k_{1}, k_{2} \in\{1,2,3,4,5\}$
\Rightarrow No. of ways $=5 \times 4=20$
Case 2: $x=5 k_{1}+1$ and $y=5 k_{2}+4$
\Rightarrow No. of ways $=5 \times 5=25$
Case 3: $x=5 k_{1}+2$ and $y=5 k_{2}+3$
\Rightarrow No. of ways $=5 \times 5=25$
Case 4: $x=5 k_{1}+3$ and $y=5 k_{2}+2$
\Rightarrow No. of ways $=5 \times 5=25$
Case 5: $x=5 k_{1}+4$ and $y=5 k_{2}+1$
\Rightarrow No. of ways $=5 \times 5=25$
\Rightarrow Total no. of ways $=20+25+25+25+25=120$
28. Correct answer is [25].

$$
\begin{aligned}
& \left.S=\left\{\alpha: \log _{2} 9^{2 \alpha-4}+13\right)-\log _{2}\left(\frac{5}{2} 3^{2 \alpha-4}+1\right)=2\right\} \\
& \log _{2}\left\{\frac{\left(9^{2 \alpha-4}+13\right)}{\left(\frac{5}{2} 3^{2 \alpha-4}+1\right)}\right\}=2 \\
& \Rightarrow \frac{9^{2 \alpha-4}+13}{\frac{5}{2} 3^{2 \alpha-4}+1}=2^{2} \\
& \Rightarrow 9^{2 \alpha-4}+13=4\left\{\frac{5}{2} 3^{2 \alpha-4}+1\right\} \\
& \Rightarrow 9^{2 \alpha-4}+13=10.3^{2 \alpha-4}+4
\end{aligned}
$$

Let $3^{2 \alpha-4}=k$
$\Rightarrow k^{2}+13=10 k+4$
$\Rightarrow k^{2}-10 k+9=0$
$\Rightarrow(k-9)(k-1)=0 \Rightarrow k=1,9$
$\Rightarrow 3^{2 \alpha-4}=3^{0}$ and $3^{2 \alpha-4}=3^{2}$
$\Rightarrow 2 \alpha-4=0$ and $2 \alpha-4=2$
$\Rightarrow \alpha=2,3$
$x^{2}-2\left(\sum_{\alpha \in S} \alpha\right)^{2} x+\sum_{\alpha \in S}(\alpha+1)^{2} \beta=0$
$\Rightarrow x^{2}-2(2+3)^{2} x+\left(3^{2}+4^{2}\right) \beta=0$
$\Rightarrow x^{2}-50 x+25 \beta=0$
The equation has real roots when discriminant ≥ 0.
Discriminant of $a x^{2}+b x+c=0$ is $b^{2}-4 a c$
$\Rightarrow(-50)^{2}-4(25 \beta) \geq 0$
$\Rightarrow 2500-100 \beta \geq 0$
$\Rightarrow \beta \leq 25 \Rightarrow \beta_{\max }=25$
29. Correct answer is [600].

Given $\mathrm{P}_{1}: 2 y=5 x^{2}$ and $\mathrm{P}_{2}: x^{2}-y+6=0$
And $y=\alpha x$
So, $\mathrm{P}_{1}: y=\frac{5}{2} x^{2}$ and $\mathrm{P}_{2}: y=x^{2}+6$
Lets find intersecting points of P_{1} and P_{2}
$\frac{5}{2} x^{2}=x^{2}+6$
$\Rightarrow 3 x^{2}=12 \Rightarrow x= \pm 2$
\Rightarrow Intersecting points are $(2,10)$ and $(--2,10)$

Let $\mathrm{A}_{1}=$ Area enclosed by parabola P_{1} and P_{2}
$\Rightarrow \mathrm{A}_{1}=2 \int_{0}^{2}\left(x^{2}+6-\frac{5}{2} x^{2}\right) d x$
$\Rightarrow \mathrm{A}_{1}=2 \int_{0}^{2}\left(6-\frac{3}{2} x^{2}\right) d x$
$\Rightarrow \mathrm{A}_{1}=2\left[6 x-\frac{1}{2} x^{3}\right]_{0}^{2}$
$\Rightarrow A_{1}=2[12-4]=16$ sq. units.

Lets find intersecting points of $y=\alpha x$ and P_{1} $\alpha x=\frac{5}{2} x^{2} \Rightarrow x\left(\alpha-\frac{5}{2} x\right)=0 \Rightarrow x=0, \frac{2 \alpha}{5}$

So, intersecting points are $(0,0)$ and $\left(\frac{2 \alpha}{5}, \frac{2 \alpha^{2}}{5}\right)$
Let $\mathrm{A}_{2}=$ Area enclosed by P_{1} and $y=\alpha x$
$\Rightarrow \mathrm{A}_{2}=\frac{1}{2}\left(\frac{2 \alpha}{5}\right)\left(\frac{2 \alpha^{2}}{5}\right)-\int_{0}^{\frac{2 \alpha}{5}} \frac{5 x^{2}}{2} d x$
$\Rightarrow \mathrm{A}_{2}=\frac{2 \alpha^{3}}{25}-\frac{5}{2}\left[\frac{x^{3}}{3}\right]_{0}^{\frac{2 \alpha}{5}}$
$\Rightarrow \mathrm{A}_{2}=\frac{2 \alpha^{3}}{25}-\frac{5}{6}\left[\frac{2 \alpha}{5}\right]^{3}$
$\Rightarrow \mathrm{A}_{2}=\frac{2 \alpha^{3}}{25}-\frac{20}{3}\left(\frac{\alpha^{3}}{125}\right) \Rightarrow \mathrm{A}_{2}=\frac{2 \alpha^{3}}{75}$
$\because \mathrm{A}_{1}=\mathrm{A}_{2}$
$\Rightarrow \frac{2 \alpha^{3}}{75}=16 \Rightarrow \alpha^{3}=8 \times 75 \Rightarrow \alpha^{3}=600$

HINT:

Area enclosed by two curve $y_{1}=f(x), y_{2}=g(x)$ and line $x=0, x=b\{b>a\}$ is given by
$\mathrm{A}=\left|\int_{a}^{b}[f(x)-g(x)] d x\right|$
30. Correct answer is [495].
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ are three A.P.s. with common difference d and first terms are $\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2$
As we know, $n^{\text {th }}$ term of A.P. $=a+(n-1) d$.
$\Rightarrow a=\mathrm{A}+6 d, b=(\mathrm{A}+1)+8 d$
and $c=(\mathrm{A}+2)+16 d$

$$
\begin{aligned}
& \therefore\left|\begin{array}{ccc}
a & 7 & 1 \\
2 b & 17 & 1 \\
c & 17 & 1
\end{array}\right|+70=0 \\
& \Rightarrow\left|\begin{array}{ccc}
A+6 d & 7 & 1 \\
2(A+1+8 d) & 17 & 1 \\
A+2+16 d & 17 & 1
\end{array}\right|+70=0
\end{aligned}
$$

Applying $R_{3} \rightarrow R_{3}-R_{2}$, we get

$$
\Rightarrow\left|\begin{array}{ccc}
A+6 d & 7 & 1 \\
2 A+2+16 d & 17 & 1 \\
-A & 0 & 0
\end{array}\right|+70=0
$$

$$
\Rightarrow-\mathrm{A}(7-17)+70=0
$$

$$
\Rightarrow 10 \mathrm{~A}+70=0
$$

$$
\Rightarrow 10 \mathrm{~A}=-70 \Rightarrow \mathrm{~A}=-7
$$

$$
\because a=\mathrm{A}+6 d
$$

$$
\Rightarrow 29=-7+6 d
$$

$$
\Rightarrow 6 d=36 \Rightarrow d=6
$$

$$
\therefore b=(-7+1)+8(6)
$$

$$
\Rightarrow b=42 \text { and } c=(-7+2)+16(6)
$$

$$
\Rightarrow c=91
$$

So, first term of A.P. $=c-a-b$
$=91-29-42=20$
and common difference $=\frac{d}{12}=\frac{1}{2}$
As we know, sum of n terms of AP with common difference d and first term a is $\frac{n}{2}\{2 a+(n-1) d\}$.

$$
\begin{aligned}
& \Rightarrow S_{20}=\frac{20}{2}\left\{2(20)+19\left(\frac{1}{2}\right)\right\} \\
& \Rightarrow S_{20}=10\{40+9.5\} \\
& \Rightarrow S_{20}=495
\end{aligned}
$$

HINT:

Use $n^{\text {th }}$ terms of an A.P. with first term a and common difference d is $a+(n-1) d$ and sum of n terms of AP is $\frac{n}{2}\{2 a+(n-1) d\}$.

