## JEE (Main) MATHEMATICS SOLVED PAPER

## Section A

Q.1. A vector $\vec{v}$ in the first octant is inclined to the $x$-axis at $60^{\circ}$, to the $y$-axis at $45^{\circ}$ and to the $z$-axis at an acute angle. If a plane passing through the points $(\sqrt{2},-1,1)$ and $(a, b, c)$, is normal to $\vec{v}$, then
(1) $\sqrt{2} a+b+c=1$
(2) $a+\sqrt{2 b}+c=1$
(3) $a+b+\sqrt{2} c=1$
(4) $\sqrt{2} a-b+c=1$
Q. 2. Let $a, b, c>1, a^{3}, b^{3}$ and $c^{3}$ be in A.P., and $\log _{a} b, \log _{c} a$ and $\log _{b} c$ be in G.P. If the sum of first 20 terms of an A.P., whose first term is $\frac{a+4 b+c}{3}$ and the common difference is $\frac{a-8 b+c}{10}$ is -444 , then $a b c$ is equal to:
(1) $\frac{125}{8}$
(2) 216
(3) 343
(4) $\frac{343}{8}$
Q.3. Let $a_{1}=1, a_{2}, a_{3}, a_{4}, \ldots$. be consecutive natural numbers.
Then $\tan ^{-1}\left(\frac{1}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{1}{1+a_{2} a_{3}}\right)+\ldots$.

$$
+\tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right)
$$

is equal to
(1) $\cot ^{-1}(2022)-\frac{\pi}{4}$
(2) $\frac{\pi}{4}-\cot ^{-1}(2022)$
(3) $\tan ^{-1}(2022)-\frac{\pi}{4}$
(4) $\frac{\pi}{4}-\tan ^{-1}(2022)$
Q.4. Let $\lambda \in R, \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k}$

If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}$, then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^{2}$ is equal to
(1) 132
(2) 136
(3) 140
(4) 144
Q. 5. Let $q$ be the maximum integral value of $p$ in $[0,10]$ for which the roots of the equation $x^{2}-p x+$ $\frac{5}{4} p=0$ are rational. Then the area of the region $\left\{(x, y): 0 \leq y \leq(x-q)^{2}, 0 \leq x \leq q\right\}$ is
(1) 243
(2) 164
(3) $\frac{125}{3}$
(4) 25
Q. 6. Let $f, g$ and $h$ be the real valued functions defined on $R$ as
$f(x)=\left\{\begin{array}{cl}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}, g(x)=\left\{\begin{array}{cl}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.\right.$
and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$. Then the value of $\lim _{x \rightarrow 1} g(h(x-1))$ is
(1) -1
(2) 0
(3) $\sin (1)$
(4) 1
Q.7. Let $S$ be the set of all values of $a_{1}$ for which the mean deviation about the mean of 100 consecutive positive integers $a_{1}, a_{2}, a_{3}, \ldots . a_{100}$ is 25. Then $S$ is
(1) N
(2) $\phi$
(3) $\{99\}$
(4) $\{9\}$
Q. 8. For $\alpha, \beta \in \mathbb{R}$, suppose the system of linear equations

$$
\begin{aligned}
& x-y+z=5 \\
& 2 x+2 y+\alpha z=8 \\
& 3 x-y+4 z=\beta
\end{aligned}
$$

has infinitely many solutions. Then $\alpha$ and $\beta$ are the roots of
(1) $x^{2}+14 x+24=0$
(2) $x^{2}+18 x+56=0$
(3) $x^{2}-18 x+56=0$
(4) $x^{2}-10 x+16=0$
Q.9. Let $\vec{a}$ and $\vec{b}$ be two vectors. Let $|\vec{a}|=1,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=2$ If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$. then the value of $\vec{b} \cdot \vec{c}$ is
(1) -24
(2) -84
(3) -48
(4) -60
Q.10. If the functions $f(x)=\frac{x^{2}}{3}+2 b x+\frac{a x^{2}}{2}$ and $g(x)=\frac{x^{2}}{3}+a x+b x^{2}, a \neq 2 b$ have a common extreme point, then $a+2 b+7$ is equal to:
(1) $\frac{3}{2}$
(2) 3
(3) 4
(4) 6
Q. 11. If P is $a 3 \times 3$ real matrix such that $\mathrm{P}^{\mathrm{T}}=a \mathrm{P}+$ ( $a-1$ )I, where $a>1$, then
(1) $|\operatorname{Adj} \mathrm{P}|=\frac{1}{2}$
(2) $|\operatorname{Adj} \mathrm{P}|=1$
(3) P is a singular matrix
(4) $\mid$ Adj $\mathrm{P} \mid>1$
Q.12. The number of ways of selecting two numbers $a$ and $b, a \in\{2,4,6, \ldots, 100\}$ and $b \in\{1,3,5, \ldots$, $99\}$ such that 2 is the remainder when $a+b$ is divided by 23 is
(1) 268
(2) 108
(3) 54
(4) 186
Q. 13. $\lim _{n \rightarrow \infty} \frac{3}{n}\left\{4+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\ldots+\left(3-\frac{1}{n}\right)^{2}\right\}$ is equal to
(1) 12
(2) $\frac{19}{3}$
(3) 0
(4) 19
Q. 14. Let A be a point on the $x$-axis. Common tangents are drawn from A to the curves $x^{2}+y^{2}=8$ and $y^{2}=16 x$. If one of these tangents touches the two curves at $Q$ and $R$, then $(Q R)^{2}$ is equal to
(1) 81
(2) 72
(3) 76
(4) 64
Q.15. If a plane passes through the points $(-1, k$, $0),(2, k,-1),(1,1,2)$ and is parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$ then the value of $\frac{k^{2}+1}{(k-1)(k-2)}$ is
(1) $\frac{17}{5}$
(2) $\frac{13}{6}$
(3) $\frac{6}{13}$
(4) $\frac{5}{17}$
Q. 16. The range of the function $f(x)=\sqrt{3-x}+\sqrt{2+x}$ is:
(1) $[2 \sqrt{2}, \sqrt{11}]$
(2) $[\sqrt{5}, \sqrt{13}]$
(3) $[\sqrt{2}, \sqrt{7}]$
(4) $[\sqrt{5}, \sqrt{10}]$
Q.17. The solution of the differential equation $\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0$ is
(1) $\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0$
(2) $\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0$
(3) $\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0$
(4) $\log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0$
Q. 18. The parabolas : $a x^{2}+2 b x+c y=0$ and $d x^{2}+2 e x$ $+f y=0$ intersect on the line $y=1$. If $a, b, c, d, e$, $f$ are positive real numbers and $a, b, c$ are in G.P., then
(1) $d, e, f$ are in G.P.
(2) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.
(3) $d, e, f$ are in A.P.
(4) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in G.P.
Q. 19. Consider the following statements:

P : I have fever
Q: I will not take medicine
R : I will take rest.
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to:
(1) $((\sim P) \vee \sim Q) \wedge((\sim P) \vee R)$
(2) $(P \vee Q) \wedge((\sim P) \vee R)$
(3) $((\sim P) \vee \sim Q) \wedge((\sim P) \vee \sim R)$
(4) $(\mathrm{P} \vee \sim \mathrm{Q}) \wedge(\mathrm{P} \vee \sim \mathrm{R})$
Q. 20. $x=(8 \sqrt{3}+13)^{13}$ and $y=(7 \sqrt{2}+9)^{9}$. If $[t]$ denotes the greatest integer $\leq t$, then
(1) $[x]$ is odd but $[y]$ is even
(2) $[x]+[y]$ is even
(3) $[x]$ and $[y]$ are both odd
(4) $[x]$ is even but $[y]$ is odd

## Section B

Q.21. Let a line $L$ pass through the point $P(2,3,1)$ and be parallel to the line $x+3 y-2 z-2=0=x-y$ $+2 z$. If the distance of L from the point $(5,3,8)$ is $\alpha$, then $3 \alpha^{2}$ is equal to $\qquad$ .
Q. 22. A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is $p$. Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colour is $q$. If $p: q=m: n$, where $m$ and $n$ are coprime, then $m+n$ is equal to $\qquad$ -.
Q. 23. Let $\mathrm{P}\left(a_{1}, b_{1}\right)$ and $\mathrm{Q}\left(a_{2}, b_{2}\right)$ be two distinct points on a circle with center $C(\sqrt{2}, \sqrt{3})$. Let $O$ be the origin and OC be perpendicular to both CP and CQ.
If the area of the triangle OCP is $\frac{\sqrt{35}}{2}$, the $a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}$ is equal to $\qquad$ .
Q. 24. Let A be the area of the region $\left\{(x, y): y \geq x^{2}, y\right.$ $\left.\geq(1-x)^{2}, y \leq 2 x(1-x)\right\}$. Then 540 A is equal to
$\qquad$ -
Q. 25. The $8^{\text {th }}$ common term of the series
$\mathrm{S}_{1}=3+7+11+15+19+\ldots$
$S_{2}=1+6+11+16+21+\ldots$
is $\qquad$ .
Q. 26. Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $f: \mathrm{A} \rightarrow \mathrm{A}$ such that $f(m \cdot n)=$ $f(m) . f(n)$ for every $m, n \in \mathrm{~A}$ with $m . n \in \mathrm{~A}$ is equal to $\qquad$ -.
Q. 27. If $\int \sqrt{\sec 2 x-1} d x=\alpha \log _{e}$
$\left|\cos 2 x+\beta+\sqrt{\cos 2 x\left(1+\cos \frac{1}{\beta} x\right)}\right|+$ constant, then, $\beta-\alpha$ is equal to
Q.28. If the value of real number $a>0$ for which $x^{2}-$ $5 a x+1=0$ and $x^{2}-a x-5=0$ have a common real root is $\frac{3}{\sqrt{2 \beta}}$ then $\beta$ is equal to $\qquad$ -.
Q. 29. $50^{\text {th }}$ root of a number $x$ is 12 and $50^{\text {th }}$ root of another number $y$ is 18 . Then the remainder obtained on dividing $(x+y)$ by 25 is $\qquad$ -.
Q.30. The number of seven digits odd numbers, that can be formed using all the seven digits $1,2,2,2$, $3,3,5$ is $\qquad$ .

## Answer Key

| Q. No. | Answer | Topic Name | Chapter Name |
| :---: | :---: | :---: | :---: |
| 1 | (2) | Direction cosines | Three dimensional geometry |
| 2 | (2) | G.P. | Sequences and series |
| 3 | $(2,3)$ | Inverse trigonometry | Trigonometry |
| 4 | (3) | Vector triple product | Vector algebra |
| 5 | (1) | Area between the curves | Integral Calculus |
| 6 | (4) | Limit of a Function | Limits |
| 7 | (1) | Mean deviation | Statistics |
| 8 | (3) | Ssystem of equations | Matrices and determinants |
| 9 | (3) | Dot and Cross product | Vector algebra |
| 10 | (4) | Extreme Value | Application of derivative |
| 11 | (2) | Adjoint | Matrices and determinants |
| 12 | (2) | General rule | Permutation and combination |
| 13 | (4) | Limit as a sum | Definite Integral |
| 14 | (2) | Common tangent | Coordinate geometry |
| 15 | (2) | Equation of plane | Three dimensional geometry |
| 16 | (4) | Range | Relations and functions |
| 17 | (2) | Homogeneous differential equation | Differential equations |
| 18 | (2) | Parabola | Conic section |
| 19 | (1) | Mathematical statement | Mathematical Reasoning |
| 20 | (2) | General rule | Binomial theorem |
| 21 | [158] | Distance from point to line | Three dimensional geometry |
| 22 | [14] | Basic Probability | Probability |
| 23 | [24] | Circle | Conic Section |
| 24 | [25] | Area between the curves | Integral calculus |
| 25 | [151] | A.P. | Sequences and series |
| 26 | [432] | Number of functions | Relations and functions |
| 27 | [1] | Indefinite Integral | Integral calculus |
| 28 | [13] | Roots of equation | Quadratic equation |
| 29 | [23] | Remainder | Binomial theorem |
| 30 | [240] | General rule | Permutation and combination |

## Solutions

## Section A

1. Option (2) is correct.

According to question

$$
\begin{aligned}
& l=\cos 60^{\circ}=\frac{1}{2}, m=\cos 45^{\circ}=\frac{1}{\sqrt{2}} \\
& \because l^{2}+m^{2}+n^{2}=1 \Rightarrow \frac{1}{4}+\frac{1}{2}+n^{2}=1 \\
& \Rightarrow \frac{3}{4}+n^{2}=1 \Rightarrow n^{2}=1-\frac{3}{4}=\frac{1}{4} \\
& \Rightarrow n=\frac{1}{2} \\
& \therefore \vec{v}=\frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{2} \hat{k}
\end{aligned} \quad(\because \text { acute angle })
$$

Direction vector of line passes through points
$(\sqrt{2},-1,1)$ and $(a, b, c)$ is
$(a-\sqrt{2}),(b+1),(c-1)$
$\because$ This line and $\vec{v}$ are perpendicular
$\therefore \frac{1}{2}(a-\sqrt{2})+\frac{1}{\sqrt{2}}(b+1)+\frac{1}{2}(c-1)=0$
$\Rightarrow(a-\sqrt{2})+\sqrt{2}(b+1)+(c-1)=0$
$\Rightarrow a+\sqrt{2} b+c=1$
2. Option (2) is correct.

Given that $a^{3}, b^{3}$ and $c^{3}$ are in A.P.
$\therefore 2 b^{3}=a^{3}+c^{3}$
$\log _{a} b, \log _{c} a$ and $\log _{b} c$ are in G.P.
$\therefore\left(\log _{c} a\right)^{2}=\log _{a} b \times \log _{b} c=\log _{a} c$
$\Rightarrow\left(\log _{c} a\right)^{2}=\frac{1}{\log _{c} a} \Rightarrow\left(\log _{c} a\right)^{3}=1$
$\Rightarrow \log _{c} a=1 \Rightarrow a=c$
$2 b^{3}=a^{3}+b^{3}$
[from (i)]
$\Rightarrow a=b=c$
First term $=\frac{a+4 b+c}{3}=\frac{a+4 a+a}{3}=2 a$
Common difference $=\frac{a-8 b+c}{10}=\frac{a-8 a+a}{10}=\frac{-3 a}{5}$
$\mathrm{S}_{20}=\frac{20}{2}\left[2(2 a)+(20-1)\left(\frac{-3 a}{5}\right)\right]$
$\Rightarrow-444=10\left[4 a-\frac{57 a}{5}\right] \Rightarrow-444=10\left[\frac{20 a-57 a}{5}\right]$
$\Rightarrow-444=10 \times \frac{-37 a}{5}$
$\Rightarrow-444=-74 a \Rightarrow a=6$
$\Rightarrow a b c=6 \times 6 \times 6=216$
3. Option $(2,3)$ is correct.

Given that $a_{1}=1, a_{2}, a_{3}, a_{4} \ldots$. are consecutive natural numbers.

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{1}{1+a_{2} a_{3}}\right)+\ldots+ \\
& \tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right) \\
& =\tan ^{-1}\left(\frac{a_{2}-a_{1}}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{a_{3}-a_{2}}{1+a_{2} a_{3}}\right)+\ldots .+ \\
& \tan ^{-1}\left(\frac{a_{2022}-a_{2021}}{1+a_{2021} \cdot a_{2022}}\right) \\
& =\tan ^{-1} a_{2}-\tan ^{-1} a_{1}+\tan ^{-1} a_{3}-\tan ^{-1} a_{2}+\ldots .+ \\
& \tan ^{-1} a_{2022}-\tan ^{-1} a_{2021} \\
& =\tan ^{-1} a_{2022}-\tan ^{-1} a_{1}=\tan ^{-1} a_{2022}-\tan ^{-1} 1 \\
& =\tan ^{-1} 2022-\frac{\pi}{4}=\frac{\pi}{2}-\cot ^{-1} 2022-\frac{\pi}{4} \\
& =\frac{\pi}{4}-\cot ^{-1} 2022
\end{aligned}
$$

4. Option (3) is correct.

$$
\begin{aligned}
& {[(\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})] \times(\vec{a}-\vec{b})} \\
& =[\vec{a} \times(\vec{a} \times \vec{b})+\vec{b} \times(\vec{a} \times \vec{b})] \times(\vec{a}-\vec{b}) \\
& =[(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}+(\vec{b} \cdot \vec{b}) \vec{a}-(\vec{b} \cdot \vec{a}) \vec{b}] \times(\vec{a}-\vec{b}) \\
& =0-|\vec{a}|^{2}(\vec{b} \times \vec{a})+0-(\vec{b} \cdot \vec{a})(\vec{b} \times \vec{a})-(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{b})
\end{aligned}
$$

$$
+0-|\vec{b}|^{2}(\vec{a} \times \vec{b})-0
$$

$$
=|\vec{a}|^{2}(\vec{a} \times \vec{b})+(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{b})-(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{b})-|\vec{b}|^{2}(\vec{a} \times \vec{b})
$$

$$
=\left[|\vec{a}|^{2}-|\vec{b}|^{2}\right](\vec{a} \times \vec{b})
$$

$$
=\left[\left(\lambda^{2}+4+9\right)-\left(1+\lambda^{2}+4\right)\right](\vec{a} \times \vec{b})
$$

$$
=\left(\lambda^{2}+13-5-\lambda^{2}\right)(\vec{a} \times \vec{b})
$$

$$
=8(\vec{a} \times \vec{b})=8\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\lambda & 2 & -3 \\
1 & -\lambda & 2
\end{array}\right|
$$

$$
=8\left[(4-3 \lambda) \hat{i}-(2 \lambda+3) \hat{j}+\left(-\lambda^{2}-2\right) \hat{k}\right]
$$

$$
\begin{aligned}
& =8[\hat{i}-5 \hat{j}-3 \hat{k}] \\
& 4-3 \lambda=1 \Rightarrow \lambda=1 \\
& 2 \lambda+3=5 \Rightarrow \lambda=1 \\
& -\lambda^{2}-2=-3 \\
& \lambda= \pm 1 \\
& \text { So }, \lambda=1 \\
& \text { Now, }|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^{2}=|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^{2} \\
& =|0-\vec{a} \times \vec{b}+\vec{b} \times \vec{a}-0|^{2} \\
& =|2(\vec{a} \times \vec{b})|^{2}=4|\vec{a} \times \vec{b}|^{2}=4(1+25+9)=140
\end{aligned}
$$

5. Option (1) is correct.

Given that $x^{2}-p x+\frac{5 p}{4}=0$ have rational roots
$\therefore \mathrm{D}$ is a perfect square
$\Rightarrow p^{2}-4(1) \frac{5}{4} p=p^{2}-5 p=p(p-5)$
For perfect square
$p=0, p=5$ and $p=9$
Maximum integral value of $p$ is 9 .
$q=9$
$\left.\therefore(x, y) ; 0 \leq y \leq(x-9)^{2}, 0 \leq x \leq 9\right\}$


Area $=\int_{0}^{9}(x-9)^{2} d x=\left[\frac{(x-9)^{3}}{3}\right]_{0}^{9}$ $=\left|0+\frac{9 \times 9 \times 9}{3}\right|=243$
6. Option (4) is correct.
$\lim _{x \rightarrow 1}$ of $g(h(x-1))$
L.H.L. $=\lim _{k \rightarrow 0} g(h(1-k-1))$
$=\lim _{k \rightarrow 0} g(h(-k))=\lim _{k \rightarrow 0} g(-2+1)=\lim _{k \rightarrow 0} g(-1)=1$
R.H.L. $\left.=\lim _{k \rightarrow 0} g(h(k+1)-1)\right)$
$=\lim _{k \rightarrow 0} g(h(k))=\lim _{k \rightarrow 0} g(2 \times 0-1)=\lim _{k \rightarrow 0} g(-1)=1$
$\because$ L.H.L. $=$ R.H.L.
$\therefore \lim _{x \rightarrow 1} g(h(x-1))=1$
7. Option (1) is correct.

Let 100 consecutive positive integers
$\underset{=n+99}{a_{1}=n, a_{2}=n+1, a_{3}=n+1, a_{3}=n+2, \ldots \ldots, a_{100}}$ $=n+99$
Mean $\vec{x}=\frac{n+(n+1)+(n+2)+\ldots .+(n+99)}{100}$

$$
=\frac{100 n+\frac{99(99+1)}{2}}{100}=\frac{100 n+\frac{100 \times 99}{2}}{100}=n+\frac{99}{2}
$$

Mean deviation about the mean $=\frac{\Sigma\left|x_{i}-\bar{x}\right|}{100}$
$=\frac{1}{100}\left[\frac{99}{2}+\frac{97}{2}+\frac{95}{2}+\ldots+\frac{97}{2}+\frac{99}{2}\right]$
$=\frac{2}{100}\left[\frac{99}{2}+\frac{97}{2}+\frac{95}{2}+\ldots .50\right.$ terms $]$
$=\frac{2}{100} \times \frac{1}{2} \times(50)^{2}$ [Sum odd natural number is $\left.n^{2}\right]=25$
So, for all natural number $n$, mean deviation always 25.
$\therefore \mathrm{S}=\mathrm{N}$
8. Option (3) is correct.

Given that system of linear equations has infinitely many solutions.
$\therefore\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 2 & \alpha \\ 3 & -1 & 4\end{array}\right|=0$
$\Rightarrow 1(8+\alpha)+1(8-3 \alpha)+1(-2-6)=0$
$\Rightarrow 8+\alpha+8-3 \alpha-8=0$
$\Rightarrow 8-2 \alpha=0 \Rightarrow \alpha=4$
$D_{Z}=\left|\begin{array}{ccc}1 & -1 & 5 \\ 2 & 2 & 8 \\ 3 & -1 & \beta\end{array}\right|=0$
$\Rightarrow 1(2 \beta+8)+1(2 \beta-24)+5(-2-6)=0$
$\Rightarrow 2 \beta+8+2 \beta-24-40=0$
$\Rightarrow 4 \beta-56=0 \Rightarrow \beta=14$
Now, quadratic equation whose roots are $\alpha, \beta$ is
$x^{2}-(\alpha+\beta) x+\alpha \cdot \beta=0$
$\Rightarrow x^{2}-(4+14) x+4 \times 14=0$
$\Rightarrow x^{2}-18 x+56=0$
9. Option (3) is correct.

Given that
$\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b} \Rightarrow \vec{b} \cdot \vec{c}=\vec{b} \cdot(2 \vec{a} \times \vec{b})-3 \cdot \vec{b} \cdot \vec{b}$
$=0-3|\vec{b}|^{2}=-3(4)^{2}=-48$
10. Option (4) is correct.
$\because f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}$
$f(x)=x^{2}+2 b+a x=0$
$g(x)=\frac{x^{3}}{3}+a x+b x^{2}$
$g^{\prime}(x)=x^{2}+a+2 b x=0$
Given that $f(x)$ and $g(x)$ have common extreme point
$\therefore x^{2}+2 b+a x=x^{2}+a+2 b x=0$
Since $a \neq 2$ so, it is possible when $x=1$
$\therefore 1+2 b+a=0$
$\Rightarrow a+2 b+1+6=6 \Rightarrow a+2 b+7=6$
11. Option (2) is correct.
$\because \mathrm{P}^{\mathrm{T}}=a \mathrm{P}+(a-1) \mathrm{I}$
$\Rightarrow\left(\mathrm{P}^{\mathrm{T}}\right)^{\mathrm{T}}=(a p)^{\mathrm{T}}+[(a-1) \mathrm{I}]^{\mathrm{T}}$
$\Rightarrow \mathrm{P}=a \mathrm{P}^{\mathrm{T}}+(a-1) \mathrm{I} \quad\left[\because\left(\mathrm{P}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{P}\right.$ and $\left.\mathrm{I}^{\mathrm{T}}=\mathrm{I}\right]$
From (i)
$\Rightarrow \mathrm{P}=a[a \mathrm{P}+(a-1) \mathrm{I}]+(a-1) \mathrm{I}$
$\Rightarrow \mathrm{P}=a^{2} \mathrm{P}+a(a-1) \mathrm{I}+(a-1) \mathrm{I}$
$\Rightarrow \mathrm{P}-a^{2} \mathrm{P}=\left(a^{2}-a+a-1\right) \mathrm{I}$
$\Rightarrow \mathrm{P}\left(1-a^{2}\right)=-\left(1-a^{2}\right) \mathrm{I} \Rightarrow \mathrm{P}=-\mathrm{I}$
Now, $\mid$ Adj $\mathrm{P}\left|=|\mathrm{P}|^{3-1}=(-1)^{2}=1\right.$.
12. Option (2) is correct.
$\because a \in\{2,4,6, \ldots .100\}$ and $b \in\{1,3,5,77, \ldots . .99\}$
So, maximum value of $a+b$ is 199 and minimum value is 3 . Sum of odd and even is a always odd.
So, number between 3 and 199 which gives remainder 2 when divided by 23 are $25,71,117$ and 163
Case 1: Order pair $(a, b)$ such that $a+b=25$ are
$(2,23),(4,21),(6,19),(8,17),(10,15),(12,13),(14,11)$,
$(16,9),(18,7),(20,5),(22,3),(24,1)$
Total ways $=12$
Case 2: Order pair $(a, b)$ such that $a+b=71$ are $(2,69),(4,67)$...... $(70,1)$
Total ways $=35$
Case 3: Order pair $(a, b)$ such that $a+b=117$ are $(18,99),(20,97)$, ..... $(100,17)$
Total ways $=42$
Case 4: Order pair $(a, b)$ such that $a+b=163$ are $(64,99),(66,97)$..... $(100,63)$
Total ways $=19$
Hence, total ways $=12+35+42+19=108$
13. Option (4) is correct.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{3}{n}\left\{4+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\ldots+\left(3-\frac{1}{n}\right)^{2}\right\} \\
= & \lim _{n \rightarrow \infty} \frac{3}{n}\left\{\left(2+\frac{0}{n}\right)^{2}+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\ldots+\left(2+\frac{n-1}{n}\right)^{2}\right\} \\
= & \lim _{n \rightarrow \infty} \frac{3}{n} \sum_{r=0}^{n-1}\left(2+\frac{r}{n}\right)^{2}
\end{aligned}
$$

Let $\stackrel{r}{-}=x$ when $r=0$ and $n \rightarrow \infty \Rightarrow x=0$
whek $r=n-x$ and $n \rightarrow \infty \Rightarrow x=1$
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=0}^{n-1} 3\left(2+\frac{r}{n}\right)^{2}=\int_{0}^{1} 3(2+x)^{2} d x$
$=\left[3 \frac{(2+x)^{3}}{3}\right]_{0}^{1}=\left[(2+x)^{3}\right]_{0}^{1}$
$=27-8=19$
14. Option (2) is correct.

Equation of tangent to the circle $x^{2}+y^{2}=8$ is
$y=m x \pm 2 \sqrt{2} \sqrt{1+m^{2}}$
Equation of tangent to the parabola $y^{2}=16 x$ is
$y=m x+\frac{4}{m}$
Comparing equation (i) and (ii), we get
$\frac{4}{m}= \pm 2 \sqrt{2} \sqrt{1+m^{2}}$
$\Rightarrow \frac{16}{m^{2}}=8\left(1+m^{2}\right)$
$\Rightarrow 2=m^{4}+m^{2}$
$\Rightarrow m^{4}+m^{2}-2=0$

$\Rightarrow m^{4}+2 m^{2}-m^{2}-2=0$
$\Rightarrow m^{2}\left(m^{2}+2\right)-1\left(m^{2}+2\right)=0$
$\Rightarrow\left(m^{2}-1\right)\left(m^{2}+2\right)=0 \Rightarrow m= \pm 1$
$\therefore$ Let $m=1$
$\therefore y=x+4$
Contact point on parabola
$\mathrm{R}\left(\frac{4}{m^{2}}, \frac{8}{m}\right)=\mathrm{R}(4,8)$
for contanct point on circle solve
$y=x+4$ and $x^{2}+y^{2}=8$
$x^{2}+(x+4)^{2}=8$
$\Rightarrow 2 x^{2}+8 x+8=0 \Rightarrow x^{2}+4 x+4=0$
$\Rightarrow(x+2)^{2}=0 \Rightarrow x=-2$
$\therefore y=-2+4=2$
$\therefore \mathrm{Q}=(-2,2)$
$\mathrm{QR}^{2}=\left(\sqrt{(4+2)^{2}+(8-2)^{2}}\right)^{2}=36+36=72$
15. Option (2) is correct.

Equation of plane passes through the points $(-1, k, 0)$, $(2, k,-1),(1,1,2)$ is
$\left|\begin{array}{ccc}x+1 & y-k & z \\ 2+1 & k-k & -1-0 \\ 1+1 & 1-k & 2-0\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}x+1 & y-k & z \\ 3 & 0 & -1 \\ 2 & 1-k & 2\end{array}\right|=0$
$\Rightarrow(x+1)[1-k]-(y-k)(6+2)+z(3-3 k)=0$
$\Rightarrow(1-k) x-8 y+(3-3 k) z+(1-k+8 k)=0$
$\Rightarrow(1-k) x-8 y+(3-3 k) z+(1+7 k)=0$
Given equation of line is
$\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1} \Rightarrow \frac{x-1}{1}=\frac{y+\frac{1}{2}}{1}=\frac{z+1}{-1}$
Since plane is parallel to line
$\therefore 1(1-k)+1(-8)-1(3-3 k)=0$
$\Rightarrow 1-k-8-3+3 k=0$
$\Rightarrow-10+2 k=0 \Rightarrow k=5$
Now, $\frac{k^{2}+1}{(k-1)(k-2)}=\frac{25+1}{4 \times 3}=\frac{26}{12}=\frac{13}{6}$
16. Option (4) is correct.
$f(x)=\sqrt{3-x}+\sqrt{2+x}$
For domain
$3-x \geq 0 \Rightarrow x \leq 3$
$2+x \geq 0 \Rightarrow x \geq-2$
Domain $=[-2,3]$
$f^{\prime}(x)=\frac{-1}{2 \sqrt{3-x}}+\frac{1}{2 \sqrt{2+x}}=0$
$\Rightarrow \frac{1}{\sqrt{2+x}}=\frac{1}{\sqrt{3-x}} \Rightarrow 3-x=2+x \Rightarrow x=\frac{1}{2}$
$f(-2)=\sqrt{3+2}+0=\sqrt{5}$
$f(3)=0+\sqrt{2+3}=\sqrt{5}$
$f\left(\frac{1}{2}\right)=\sqrt{3-\frac{1}{2}}+\sqrt{2+\frac{1}{2}}=\sqrt{\frac{5}{2}}+\sqrt{\frac{5}{2}}=2 \sqrt{\frac{5}{2}}=\sqrt{10}$
$\therefore$ Range $=[\sqrt{5}, \sqrt{10}]$

## 17. Option (2) is correct.

Given differential equation is
$\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right)$
Let $y=v x$
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore v+x \frac{d v}{d x}=-\left(\frac{x^{2}+3 v^{2} x^{2}}{3 x^{2}+v^{2} x^{2}}\right)$
$\Rightarrow v+x \frac{d v}{d x}=-\left(\frac{1+3 v^{2}}{3+v^{2}}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{x d v}{d x}=\frac{-1-3 v^{2}-3 v-v^{3}}{3+v^{2}} \\
& \Rightarrow \int \frac{3+v^{2}}{v^{3}+3 v^{2}+3 v+1} d v=-\int \frac{1}{x} d x \\
& \Rightarrow \int \frac{v^{2}+3}{(v+1)^{3}} d v=-\ln x+\mathrm{C}
\end{aligned}
$$

Let $v+1=t \Rightarrow d v=d t$
$\int \frac{(t-1)^{2}+3}{t^{3}} d t=-\ln x+C$
$\Rightarrow \int \frac{t^{2}-2 t+4}{t^{3}} d t=-\ln x+C$
$\Rightarrow \int\left(\frac{1}{t}-\frac{2}{t^{2}}+\frac{4}{t^{3}}\right) d t=-\ln x+\mathrm{C}$
$\Rightarrow \ln t+\frac{2}{t}-\frac{2}{t^{2}}=-\ln x+C$
$\Rightarrow \ln (1+v)+\frac{2}{1+v}-\frac{2}{(1+v)^{2}}=-\ln x+\mathrm{C}$
$\Rightarrow \ln \frac{(y+x)}{x}+\frac{2 x}{x+y}-\frac{2 x^{2}}{(x+y)^{2}}=-\ln x+C$
$\Rightarrow \ln |x+y|-\ln x+\frac{2 x}{x+y}-\frac{2 x^{2}}{(x+y)^{2}}=-\ln x+C$
$\Rightarrow \ln (x+y)+\frac{2 x(x+y)-2 x^{2}}{(x+y)^{2}}=\mathrm{C}$
$\Rightarrow \ln (x+y)+\frac{2 x y}{(x+y)^{2}}=\mathrm{C}$
Using $y(1)=0$, we get
$\ln (1+0)+\frac{0}{(1)^{2}}=c \Rightarrow c=0$
So, the solution is:
$\ln (x+y)+\frac{2 x y}{(x+y)^{2}}=0$
18. Option (2) is correct.

Since both curve intersect at $y=1$
$\therefore a x^{2}+2 b x+c=0$
$d x^{2}+2 e x+f=0$
Given that $a, b, c$ are in G.P
$\Rightarrow b^{2}=a c$
From equation (i)
$\mathrm{D}=4 b^{2}-4 a c=4 a c-4 a c=0$
So, roots are equal.
$\because$ Sum of the roots $=\frac{-2 b}{a}$
$\Rightarrow \alpha+\alpha=\frac{-2 b}{a} \Rightarrow \alpha=\frac{-b}{a}$
Since, $\alpha=\frac{-b}{a}$ is also root of equation (ii)
$d\left(\frac{-b}{a}\right)^{2}+2 e\left(\frac{-b}{a}\right)+f=0 \Rightarrow d \frac{b^{2}}{a^{2}}-\frac{2 b e}{a}+f=0$
$\Rightarrow d b^{2}-2 a b e+a^{2} f=0 \Rightarrow d b^{2}+a^{2} f=2 a b e$
$\Rightarrow d a c+a^{2} f=2 a b e \Rightarrow \frac{d c}{b^{2}}+\frac{a f}{b^{2}}=\frac{2 b e}{b^{2}}$
$\Rightarrow \frac{d c}{a c}+\frac{a f}{a c}=\frac{2 e}{b} \Rightarrow \frac{d}{a}+\frac{f}{c}=\frac{2 e}{b}$
$\therefore \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in AP.
19. Option (1) is correct.

Given that
$P$ : I have fever
Q : I will not take medicine
R : I will take rest
Statement: "If I have fever, then I will take medicine and I will take rest", is
$P \rightarrow(\sim Q \wedge R)$
$\equiv \sim P \vee(\sim Q \wedge R)$
$\equiv(\sim P \vee \sim Q) \wedge(\sim P \vee R)$
20. Option (2) is correct.
$x=(8 \sqrt{3}+13)^{13}={ }^{13} \mathrm{C}_{0}(8 \sqrt{3})^{13}+{ }^{13} \mathrm{C}_{1}(8 \sqrt{3})^{12} 13^{1}$

$$
+\ldots+{ }^{13} \mathrm{C}_{13} 13^{13}
$$

$x^{\prime}=(8 \sqrt{3}-13)^{13}={ }^{13} \mathrm{C}_{0}(8 \sqrt{3})^{13}-{ }^{13} \mathrm{C}_{1}(8 \sqrt{3})^{12} 13^{1}$
$\therefore x-x^{\prime}=2\left[{ }^{13} \mathrm{C}_{1}(8 \sqrt{3})^{12} 13^{1}+{ }^{13} \mathrm{C}_{3}(8 \sqrt{3})^{10} .13^{3}{ }_{+}+\stackrel{13}{ } \mathrm{C}_{13} 13^{13}\right.$

$$
\left.\ldots+{ }^{13} \mathrm{C}_{13} 13^{13}\right)
$$

So, $x-x^{\prime}$ is even integer, hence $[x]$ is even.

$$
\begin{aligned}
& y=(7 \sqrt{2}+9)^{9}={ }^{9} \mathrm{C}_{0}(7 \sqrt{2})^{9}+{ }^{9} \mathrm{C}_{1}(7 \sqrt{2})^{8} \cdot 9 \\
& y^{\prime}=(7 \sqrt{2}-9)^{9}={ }^{9} \mathrm{C}_{0}(7 \sqrt{2})^{9}-{ }^{9} \mathrm{C}_{1}(7 \sqrt{2})^{8} \cdot 9+ \\
& +\ldots+{ }^{9} \mathrm{C}_{9} 9^{9} \\
& \\
& y-y^{\prime}=2\left[{ }^{9} \mathrm{C}_{1}(7 \sqrt{2})^{8} \cdot 9+{ }^{9} \mathrm{C}_{3}(7 \sqrt{2})^{6} 9^{3}+\ldots+{ }^{9} \mathrm{C}_{9} 9^{9} 9^{9}\right]
\end{aligned}
$$

So, $y-y^{\prime}$ is even integer, hence $[y]$ is even.
$\therefore[x]+[y]$ is even.

## Section B

21. Correct answer is [158].

The direction vector $=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -2 \\ 1 & -1 & 2\end{array}\right|$
$=\hat{i}(6-2)-\hat{j}(2+2)+\hat{k}(-1-3)$
$=4 \hat{i}-4 \hat{j}-4 \hat{k}$
$\therefore$ Equation of line L is
$\frac{x-2}{4}=\frac{y-3}{-4}=\frac{z-1}{-4}$
$\Rightarrow \frac{x-2}{1}=\frac{y-3}{-1}=\frac{z-1}{-1}=\lambda$
$\Rightarrow x=\lambda+2, y=-\lambda+3, z=-\lambda+1$
$\mathrm{M}(\lambda+2,-\lambda+3,-\lambda+1)$
D.r of PM are $<\lambda-3,-\lambda,-\lambda-7>$
$\because \mathrm{PM} \perp \mathrm{L}$
$\therefore 1(\lambda-3)-1(-\lambda)-1(-\lambda-7)=0$
$\Rightarrow \lambda-3+\lambda+\lambda+7=0$
$\Rightarrow 3 \lambda+4=0 \Rightarrow \lambda=-\frac{4}{3}$
$\therefore \mathrm{M}\left(\frac{2}{3}, \frac{13}{3}, \frac{7}{3}\right)$
$\mathrm{MP}^{2}=\left(5-\frac{2}{3}\right)^{2}+\left(3-\frac{13}{3}\right)^{2}+\left(8-\frac{7}{3}\right)^{2}$
$\Rightarrow \alpha^{2}=\frac{169}{9}+\frac{16}{9}+\frac{289}{9}=\frac{474}{9}$
$\Rightarrow 3 \alpha^{2}=\frac{3 \times 474}{9}=158$
22. Correct answer is [14].
$p={ }^{6} \mathrm{C}_{1} \times \frac{1}{6} \times \frac{1}{6}=\frac{1}{6}$
$q={ }^{6} \mathrm{C}_{1} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{4!}{3!}=\frac{5}{54}$
$\frac{p}{q}=\frac{\frac{1}{6}}{\frac{5}{54}}=\frac{9}{5}=\frac{m}{n}$
Now, $m+n=9+5=14$
23. Correct answer is [24].

Since, OC is perpendicular to both CP and CQ
$\therefore \mathrm{PQ}$ is a diameter,
Area of $\triangle \mathrm{OCP}=\frac{\sqrt{35}}{2}$
$\Rightarrow \frac{1}{2} \mathrm{CP} \times \mathrm{OC}=\frac{\sqrt{35}}{2}$
$\Rightarrow \mathrm{CP} \times \sqrt{(\sqrt{2})^{2}+(\sqrt{3})^{2}}=\sqrt{35}$
$\Rightarrow \mathrm{CP} \times \sqrt{5}=\sqrt{35} \Rightarrow \mathrm{CP}=\sqrt{7}$
Radius $=\sqrt{7}$
In $\triangle \mathrm{OCP}$
$\mathrm{OP}^{2}=\mathrm{OC}^{2}+\mathrm{CP}^{2}$
$\Rightarrow a_{1}^{2}+b_{1}^{2}=5+7=12$
Similarly $a_{2}^{2}+b_{2}^{2}=12$
$\therefore a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}=12+12=24$
24. Correct answer is [25].
$y \geq x \Rightarrow y=x^{2}$
$y \geq(1-x)^{2} \Rightarrow y=(1-x)^{2}$
$y \leq 2 x(1-x) \Rightarrow y=2 x(1-x)=2 x-2 x^{2}$
$y=-2\left(x^{2}-x+\frac{1}{4}-\frac{1}{4}\right)$
$\Rightarrow y-\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^{2}$
from (i) and (ii)
$x^{2}=(1-x)^{2} \Rightarrow x=\frac{1}{2}$
From (i) and (iii)
$x^{2}=2 x-2 x^{2}$
$\Rightarrow x=0, \frac{2}{3}$
From (ii) and (iii)
$(1-x)^{2}=2 x-2 x^{2}$
$x=1, \frac{1}{3}$


Required area
$\left.=\int_{\frac{1}{3}}^{\frac{1}{2}}\left\{\left(2 x-2 x^{2}\right)-(1-x)^{2}\right\} d x+\int_{\frac{1}{2}}^{\frac{2}{3}}\left(2 x-2 x^{2}\right)-x^{2}\right\} d x$
$=\left[\left(x^{2}-\frac{2 x^{3}}{3}\right)+\frac{(1-x)^{3}}{3}\right]_{\frac{1}{3}}^{\frac{1}{2}}+\left[\left(x^{2}-\frac{2 x^{3}}{3}\right)-\frac{x^{3}}{3}\right]_{\frac{1}{2}}^{\frac{2}{3}}$
$A=\frac{30}{24 \times 27}$
Now, $540 \mathrm{~A}=540 \times \frac{30}{24 \times 27}=25$

## 25. Correct answer is [151].

First common term $=11$
For common difference of the AP
$=$ L.C.M. of $\{4,5\}=20$
$\therefore$ A.P : 11, 31, 51 .......
$\mathrm{T}_{8}=11+(8-1) 20=11+140=151$
26. Correct answer is [432].
$\because f(m . n)=f(m) . f(n)$
Put $m=1$ and $n=1$
$f(1)=(f(1))^{2} \Rightarrow(f(1))^{2}-f(1)=0^{\prime}$
$\Rightarrow f(1)[f(1)-1]=0$
$\Rightarrow f(1)=1$
$f(9)=f(3) \cdot f(3)=(f(3))^{2}$
i.e., $f(9)=1$ or 3
$\therefore$ Total function $=1 \times 6 \times 2 \times 6 \times 6 \times 1=432$
27. Correct answer is [1].

$$
\begin{aligned}
\mathrm{I} & =\int \sqrt{\sec 2 x-1} d x=\int \sqrt{\frac{1-\cos 2 x}{\cos 2 x}} d x \\
& =\int \sqrt{\frac{2 \sin ^{2} x}{2 \cos ^{2} x-1}} d x=\int \frac{\sqrt{2} \sin x}{\sqrt{2 \cos ^{2} x-1}} d x \\
& \text { Let } \sqrt{2} \cos x=t \Rightarrow-\sqrt{2} \sin x d x=d t \\
\mathrm{I} & =-\int \frac{1}{\sqrt{t^{2}-1}} d t=-\ln \left|t+\sqrt{t^{2}-1}\right|+\mathrm{C} \\
& =-\ln \left|\sqrt{2} \cos x+\sqrt{2 \cos ^{2} x-1}\right|+\mathrm{C} \\
& =-\ln |\sqrt{2} \cos x+\sqrt{\cos 2 x}|+\mathrm{C} \\
& =-\frac{1}{2} \ln (\sqrt{2} \cos x+\sqrt{\cos 2 x})^{2}+\mathrm{C} \\
& =-\frac{1}{2} \ln |2 \cos 2 x+\cos 2 x+2 \sqrt{2} \cos x \sqrt{\cos 2 x}|+\mathrm{C} \\
=-\frac{1}{2} & \ln \left|1+\cos 2 x+\cos 2 x+2 \sqrt{2} \sqrt{\cos 2 x} \times \sqrt{\frac{1+\cos 2 x}{2}}\right|+\mathrm{C} \\
& =-\frac{1}{2} \ln |1+2 \cos 2 x+2 \sqrt{\cos 2 x(1+\cos 2 x)}|+\mathrm{C} \\
& =\frac{-1}{2} \ln \left|\cos 2 x+\frac{1}{2}+\sqrt{\cos 2 x(1+\cos 2 x)}\right|+\mathrm{C} \\
& =\alpha \ln \left|\cos 2 x+\beta+\sqrt{\cos 2 x\left(1+\cos \frac{1}{\beta} x\right)}\right|+\mathrm{C}
\end{aligned}
$$

$\therefore \alpha=-\frac{1}{2}$ and $\beta=\frac{1}{2}$
Now, $\beta-\alpha=\frac{1}{2}+\frac{1}{2}=1$
28. Correct answer is [13].
$x^{2}-5 a x+1=x^{2}-a x-5$
$\Rightarrow-5 a x+a x=-5-1$
$\Rightarrow-4 a x=-6 \Rightarrow x=\frac{3}{2 a}$
$\therefore\left(\frac{3}{2 a}\right)^{2}-5 a\left(\frac{3}{2 a}\right)+1=0$
$\Rightarrow \frac{9}{4 a^{2}}-\frac{15}{2}+1=0$
$\Rightarrow \frac{9}{4 a^{2}}=\frac{15}{2}-1=\frac{13}{2}$
$\Rightarrow a^{2}=\frac{2 \times 9}{4 \times 13}=\frac{9}{26}$
$\Rightarrow a=\frac{3}{\sqrt{26}}=\frac{3}{\sqrt{2 \beta}}$
$\Rightarrow \beta=13$
29. Correct answer is [23].

Given that
$x^{\frac{1}{50}}=12 \Rightarrow x=12^{50}$
$y^{\frac{1}{50}}=18 \Rightarrow y=18^{50}$
$\therefore x+y=12^{50}+18^{50}$
$=6^{50}\left(2^{50}+3^{50}\right)$
$=(5+1)^{50}\left[\left(2^{2}\right)^{25}+\left(3^{2}\right)^{25}\right]$
$=\left(25 k_{1}+1\right)\left[4^{25}+9^{25}\right]$
$=\left(25 k_{1}+1\right)\left[(5-1)^{25}+(10-1)^{25}\right]$
$=\left(25 k_{1}+1\right)\left[5 k_{2}-1+10 k_{3}-1\right]$
$=\left(25 k_{1}+1\right)\left[25 k_{2}+25 k_{3}-2\right]$
$=\left(25 k_{1}+1\right)[25 k-2]$
$=625 k k_{1}-50 k_{1}-25 k-2$
$=625 k_{4}-50 k_{1}+25 k-2$
$=25\left[25 k_{4}-2 k_{1}+k\right]-2$
Remainder $=25-2=23$.
30. Correct answer is [240].

For odd numbers unit place contain 1, 3, 5 .
Case 1: When unit place is 1
Total numbers $=\frac{6!}{3!2!}=\frac{720}{12}=60$
Case 2: When unit place is 3
Total numbers $=\frac{6!}{3!}=\frac{720}{6}=120$
Case 3: When unit place is 5
Total numbers $=\frac{6!}{3!2!}=60$
Hence total numbers $=60+60+120=240$

