JEE (Main) PHYSICS SOLVED PAPER

Section A

Q.1. Different combination of 3 resistors of equal resistance R are shown in the figures. The increasing order for power dissipation is:
(a)

(b)

(c)

(d)

(1) $P_{C}<P_{B}<P_{A}<P_{D}$ (2) $P_{C}<P_{D}<P_{A}<P_{B}$
(3) $P_{B}<P_{C}<P_{D}<P_{A}$ (4) $P_{A}<P_{B}<P_{C}<P_{D}$
Q. 2. For the following circuit and given inputs A and B, chose the correct option for output ' Y '

(1)

(2)

(3)

(4)

Q.3. A bullet of 10 g leaves the barrel of gun with a velocity of $600 \mathrm{~m} \mathrm{~s}^{-1}$. If the barrel of gun is 50 cm long and mass of gun is 3 kg , then value of impulse supplied to the gun will be:
(1) 12 N s
(2) 6 N s
(3) 3 N s
(4) 36 N s
Q.4. Which of the following Maxwell's equation is valid for time varying conditions but not valid for static conditions:
(1) $\oint \vec{D} \cdot \overrightarrow{d A}=Q$
(2) $\oint \vec{E} \cdot \overrightarrow{d l}=-\frac{\partial \phi_{B}}{\partial t}$
(3) $\oint \vec{E} \cdot \overrightarrow{d l}=0$
(4) $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I$
Q. 5. Match List - I with List - II

List - I (Layer of atmosphere)	List - II (Approximate height over earth's surface)
(A) F1 - Layer	(I) 10 km
(B) D - Layer	(II) $170-190 \mathrm{~km}$
(C) Troposphere	(III) 100 km
(D) E - layer	(IV $65-75 \mathrm{~km}$

Choose the correct answer from the options given below:
(1) A - II, B - I, C - IV, D - III
(2) A - II, B - IV, C - III, D - I
(3) $\mathrm{A}-\mathrm{II}, \mathrm{B}-\mathrm{IV}, \mathrm{C}-\mathrm{I}, \mathrm{D}-\mathrm{III}$
(4) A - III, B - IV, C - I, D - II
Q. 6. The r.m.s. speed of oxygen molecule in a vessel at particular temperature is $\left(1+\frac{5}{x}\right)^{1 / 2} v$, where v is the average speed of the molecule. The value of x will be: (Take $\pi=\frac{22}{7}$)
(1) 28
(2) 27
(3) 8
(4) 4
Q. 7. The ratio of powers of two motors is $\frac{3 \sqrt{x}}{\sqrt{x}+1}$, that are capable of raising 300 kg water in 5 minutes and 50 kg water in 2 minutes respectively from a well of 100 m deep. The value of x will be
(1) 16
(2) 2
(3) 4
(4) 2.4
Q. 8. Two trains ' A ' and ' B ' of length ' l ' and ' $4 l$ ' are travelling into a tunnel of length ' L ' in parallel tracks from opposite directions with velocities $108 \mathrm{~km} / \mathrm{h}$ and $72 \mathrm{~km} / \mathrm{h}$, respectively. If train 'A' takes 35 s less time than train ' B ' to cross the tunnel then, length 'L' of tunnel is: (Given $L=60 l$)
(1) 2700 m
(2) 1800 m
(3) 1200 m
(4) 900 m
Q.9. Two bodies are having kinetic energies in the ratio $16: 9$. If they have same linear momentum, the ratio of their masses respectively is:
(1) $16: 9$
(2) $4: 3$
(3) $9: 16$
(4) $3: 4$
Q.10. The figure shows a liquid of given density flowing steadily in horizontal tube of varying cross-section. Cross sectional areas at A is $1.5 \mathrm{~cm}^{2}$, and B is $25 \mathrm{~mm}^{2}$, if the speed of liquid at B is 60 cm then $\left(\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}\right)$ is:
(Given P_{A} and P_{B} are liquid pressures at A and B points)
Density $\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$
A and B are on the axis of tube

(1) 175 Pa
(2) 36 Pa
(3) 27 Pa
(4) 135 Pa
Q. 11. ${ }_{92}^{238} A \rightarrow{ }_{90}^{234} B+{ }_{2}^{4} D+Q$

In the given nuclear reaction, the approximate amount of energy released will be:
[Given, mass of ${ }_{92}^{238} A=238.05079 \times 931.5 \mathrm{Me} \mathrm{V} / \mathrm{C}^{2}$, mass of ${ }_{90}^{234} B=234.04363 \times 931.5 \mathrm{MeV} / \mathrm{C}^{2}$, mass of $\left.{ }_{2}^{4} D=4.00260 \times 931.5 \mathrm{MeV} / \mathrm{C}^{2}\right]$
(1) 4.25 Me V
(2) 5.9 MeV
(3) 3.82 MeV
(4) 2.12 Me V
Q. 12. A disc is rolling without slipping on a surface. The radius of the disc is R. At $t=0$, the top most point on the disc is A as shown in figure. When the disc completes half of its rotation, the displacement of point A from its initial position is:

Q.13. Which graph represents the difference between total energy and potential energy of a particle executing SHM vs. its distance from mean position?
(1)

(2)

(3)

(4)

Q.14. Two charges each of magnitude 0.01 C and separated by a distance of 0.4 mm constitute an electric dipole. If the dipole is placed in an uniform electric field ' $\overrightarrow{\mathrm{E}}$ ' of 10 dyne C^{-1} making 30° angle with $\overrightarrow{\mathrm{E}}$, the magnitude of torque acting on dipole is:
(1) $1.5 \times 10^{-9} \mathrm{~N} \mathrm{~m}$
(2) $2.0 \times 10^{-10} \mathrm{~N} \mathrm{~m}$
(3) $1.0 \times 10^{-8} \mathrm{~N} \mathrm{~m}$
(4) $4.0 \times 10^{-10} \mathrm{~N} \mathrm{~m}$
Q. 15. Under isothermal condition, the pressure of a gas is given by $P=a V^{3}$, where a is a constant and V is the volume of the gas. The bulk modulus at constant temperature is equal to
(1) $\frac{P}{2}$
(2) $2 P$
(3) P
(4) $3 P$
Q.16. A planet having mass 9 Me and radius $4 R e$, where Me and Re are mass and radius of earth respectively, has escape velocity in km given by: (Given escape velocity on earth s ${ }^{-1} V_{e}=11.2 \times 10^{3}$ $\mathrm{m} \mathrm{s}^{-1}$)
(1) 11.2
(2) 67.2
(3) 33.6
(4) 16.8
Q.17. A body of mass $(5 \pm 0.5) \mathrm{kg}$ is moving with a velocity of $(20 \pm 0.4) \mathrm{m} \mathrm{s}^{-1}$. Its kinetic energy will be:
(1) $(1000 \pm 140) \mathrm{J}$
(2) $(500 \pm 140) \mathrm{J}$
(3) $(500 \pm 0.14) \mathrm{J}$
(4) $(1000 \pm 0.14) \mathrm{J}$
Q.18. The difference between threshold wavelengths for two metal surfaces A and B having work function, $\phi_{A}=9 \mathrm{e} \mathrm{V}$ and $\phi_{B}=4.5 \mathrm{e} \mathrm{V}$ in n m is: $\{$ Given, $h c=1242 \mathrm{e} \mathrm{V} \mathrm{n} \mathrm{m}\}$
(1) 276
(2) 264
(3) 540
(4) 138
Q. 19. The source of time varying magnetic field may be:
(A) A permanent magnet
(B) An electric field changing linearly with time
(C) Direct current
(D) A decelerating charge particle
(E) An antenna fed with a digital signal

Choose the correct answer from the options given below:
(1) (B) and (D) only
(2) (C) and (E) only
(3) (D) only
(4) (A) only
Q.20. A vessel of depth ' d ' is half filled with oil of refractive index n_{1} and the other half is filled with water of refractive index n_{2}. The apparent depth of this vessel when viewed from above will be:
(1) $\frac{d\left(n_{1}+n_{2}\right)}{2 n_{1} n_{2}}$
(2) $\frac{d n_{1} n_{2}}{\left(n_{1}+n_{2}\right)}$
(3) $\frac{d n_{1} n_{2}}{2\left(n_{1}+n_{2}\right)}$
(4) $\frac{2 d\left(n_{1}+n_{2}\right)}{n_{1} n_{2}}$

Section B

Q. 21. When a resistance of 5Ω is shunted with a moving coil galvanometer, it shows a full scale deflection for a current of 250 mA . However when 1050Ω resistance is connected with it in series, it gives full scale deflection for 25 volt. The resistance of galvanometer is \qquad Ω.
Q. 22. The radius of $2^{\text {nd }}$ orbit of He^{+}of Bohr's model is r_{1} and that of fourth orbit of Be^{3+} is represented as r_{2}. Now the ratio $\frac{r_{2}}{r_{1}}$ is $x: 1$. The value of x is
\qquad -.
Q.23. A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about axis of rotation of the sphere to the total energy of moving sphere is $\pi: 22$, the value of its angular speed will be rad s ${ }^{-1}$.
Q.24. A fish rising vertically upward with a uniform velocity of $8 \mathrm{~m} \mathrm{~s}^{-1}$, observes that a bird is diving vertically downward towards the fish with the velocity of $12 \mathrm{~m} \mathrm{~s}^{-1}$. If the refractive index of water is $\frac{4}{3}$, then the actual velocity of the diving bird to pick the fish, will be \qquad $\mathrm{m} \mathrm{s}^{-1}$.
Q. 25. The elastic potential energy stored in a steel wire of length 20 m stretched through 2 cm is 80 J . The cross sectional area of the wire is mm^{2}.

$$
\text { (Given, } y=2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2} \text {) }
$$

Q.26. From the given transfer characteristic of a transistor in CE configuration, the value of power gain of this configuration is 10^{x}, for $\mathrm{RB}=10 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{C}}=1 \mathrm{k} \Omega$. The value of x is \qquad -.

Q.27. In the given figure, an inductor and $\mathrm{a} \quad L=4 \mathrm{H} \quad \mathrm{R}=25 \Omega$ resistor are connected in series with a batter of emf E volt. $\frac{\mathrm{E}^{a}}{2 b} \xrightarrow[\mathrm{E}]{ }$ Js^{-1} represents the maximum rate at which the energy is stored in the magnetic field (inductor). The numerical value of $\frac{b}{a}$ will be \qquad
Q. 28. A potential V_{0} is applied across a uniform wire of resistance R. The power dissipation is P_{1}. The wire is then cut into two equal halves and a potential of V_{0} is applied across the length of each half. The total power dissipation across two wires is P_{2}. The ratio $\mathrm{P}_{2}: \mathrm{P}_{1}$ is $\sqrt{x}: 1$. The value of x is \qquad —.
Q.29. At a given point of time the value of displacement of a simple harmonic oscillator is given as $y=A \cos \left(30^{\circ}\right)$. If amplitude is 40 cm and kinetic energy at that time is 200 J , the value of force constant is $1.0 \times 10^{x} \mathrm{~N} \mathrm{~m}^{-1}$. The value of x is
\qquad -.
Q.30. A thin infinite sheet charge and an infinite line charge of respective charge densities $+\sigma$ and $+\lambda$ are placed parallel at 5 m distance from each other. Points ' P ' and ' Q ' are at $\frac{3}{\pi} \mathrm{~m}$ and $\frac{4}{\pi} \mathrm{~m}$ perpendicular distances from line charge towards sheet charge, respectively. ' E_{P} ' and ' E_{Q} ' are the magnitudes of resultant electric field intensities at point ' P ' and ' Q ' respectively. If $\frac{\mathrm{E}_{\mathrm{P}}}{\mathrm{E}_{\mathrm{Q}}}=\frac{4}{a}$ for $2|\sigma|=|\lambda|$, then the value of a is \qquad .

Answer Key

Q. No.	Answer	Topic Name	Chapter Name
$\mathbf{1}$	$\mathbf{(1)}$	Power of electric circuit	Electric current
$\mathbf{2}$	$\mathbf{(3)}$	Logic gates	Semiconductors
$\mathbf{3}$	$\mathbf{(2)}$	Momentum conservation principle	Newton's laws of motion
$\mathbf{4}$	$\mathbf{(2)}$	Mawell's equation	Magnetism and Matter
$\mathbf{5}$	$\mathbf{(3)}$	Layers of atmosphere	Communication system
$\mathbf{6}$	$\mathbf{(1)}$	Speed of gas molecules	Kinetic theory of gases
$\mathbf{7}$	$\mathbf{(1)}$	Power	Work, Energy and Power
$\mathbf{8}$	$\mathbf{(2)}$	Uniform velocity	Motion in a straight line

$\mathbf{9}$	$\mathbf{(3)}$	Kinetic energy	Work, Energy and Power
$\mathbf{1 0}$	$\mathbf{(1)}$	Bernoulli's equation	Properties of fluid
$\mathbf{1 1}$	$\mathbf{(1)}$	Mass energy equivalence	Nuclei
$\mathbf{1 2}$	$\mathbf{(2)}$	Displacement	Motion in one dimension
$\mathbf{1 3}$	$\mathbf{(2)}$	Kinetic and potential energies	Oscillation and waves
$\mathbf{1 4}$	$\mathbf{(2)}$	Electric dipole in electric field	Electrostatics
$\mathbf{1 5}$	$\mathbf{(4)}$	Thermodynamic processes	Thermodynamics
$\mathbf{1 6}$	$\mathbf{(4)}$	Escape velocity	Gravitation
$\mathbf{1 7}$	$\mathbf{(1)}$	Percentage error	Units \& Dimensions
$\mathbf{1 8}$	$\mathbf{(4)}$	Work function	Photoelectric effect
$\mathbf{1 9}$	$\mathbf{(3)}$	Transverse nature of EM wave	Electromagnetic waves
20	$\mathbf{(1)}$	Refraction	Ray optics
21	$[\mathbf{5 0]}$	Moving coil galvanometer	Magnetic effect of current and Magnetism
22	$[2]$	Bohr's Model	Atoms
23	$[4]$	Kinetic energy	Rotational Motion
$\mathbf{2 4}$	$[3]$	Refraction	Ray optics
25	$[40]$	Energy stored in stretched wire	Properties of solid
26	$[3]$	Transistor	Semiconductors
$\mathbf{2 7}$	$[25]$	RL circuit	AC current
28	$[16]$	Power of electric circuit	Electric current
29	$[4]$	Kinetic and Potential energies	Oscillation and Waves
30	$[6]$	Electric field	Electrostatics

SOLUTIONS

Section A

1. Option (1) is correct.
(A) $R_{1}=\frac{R}{2}+R=\frac{3 R}{2}, \quad \quad P_{1}=I^{2} R_{1}=I^{2}\left(\frac{3 R}{2}\right)$
(B) $R_{2}=\frac{2 R}{3}$,
$P_{2}=I^{2} R_{2}=I^{2}\left(\frac{2 R}{3}\right)$
(C) $R_{3}=\frac{R}{3}$,
$P_{3}=I^{2} R_{3}=I^{2}\left(\frac{R}{3}\right)$
(D) $R_{4}=3 R$,
$P_{4}=I^{2} R_{4}=I^{2}(3 R)$
from above, increasing order of power dissipation is $P_{C}<P_{B}<P_{A}<P_{D}$
2. Option (3) is correct.

	\mathbf{A}	\mathbf{B}	$\overline{\mathrm{B}}$	$\mathrm{A}+\overline{\mathrm{B}}$
$0-t_{1}$	0	0	1	1
$t_{1}-t_{2}$	0	1	0	0
$t_{2}-t_{3}$	1	1	0	1
$t_{3}-t_{4}$	0	0	1	1
$t_{4}-t_{5}$	1	1	0	1
$t_{5}-t_{6}$	1	0	1	1
$t_{6}-t$	0	0	1	1

3. Option (2) is correct.

Impulse $=$ change in momentum
$|\bar{J}|=|\Delta \vec{p}|=m v-0$

$$
=\frac{10}{1000} \times 600-0=6(\mathrm{~N} \mathrm{~s})
$$

4. Option (2) is correct.

For static conditions $\oint \vec{E} . d \vec{l}=0$
For time varying conditions, $\oint \vec{E} \cdot d \vec{l}=-\frac{\partial \phi_{B}}{\partial t}$
Which is Faraday's law of electromagnetism.
5. Option (3) is correct.

In the increasing order of heights, various layers of atmosphere can be arranged as:
Troposphere < D-layer < E layer < F1 layer.
6. Option (1) is correct.

$$
\begin{array}{rlrl}
& v_{r m s} & =\sqrt{\frac{3 R T}{M}} \text { and } v_{a v}=\sqrt{\frac{8 R T}{\pi M}}=v \\
\Rightarrow & \sqrt{\frac{R T}{M}} & =\sqrt{\frac{\pi}{8}} v \\
& \therefore & v_{r m s} & =\sqrt{3} \times \sqrt{\frac{\pi}{8}} v \\
\Rightarrow \quad & v_{r m s} & =\sqrt{\frac{3 \pi}{8}} v=\sqrt{1+\frac{5}{x}} v \\
& \frac{3 \pi}{8}-1 & =\frac{5}{x} \Rightarrow \frac{3}{8} \times \frac{22}{7}-1=\frac{5}{x}
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{66}{56}-1 \\
\Rightarrow & =\frac{5}{x} \Rightarrow \frac{10}{56}=\frac{5}{x} \\
\Rightarrow & x
\end{array}
$$

7. Option (1) is correct.

$$
\begin{aligned}
P & =\frac{W}{t}=\frac{m g h}{t} \Rightarrow \frac{P_{1}}{P_{2}}=\frac{m_{1}}{m_{2}} \times \frac{t_{2}}{t_{1}} \\
\frac{3 \sqrt{x}}{\sqrt{x}+1} & =\frac{300}{50} \times \frac{2}{5}=\frac{12}{5}
\end{aligned}
$$

Squaring, we get

$$
\begin{aligned}
& \frac{9 x}{x+1+2 \sqrt{x}}=\frac{144}{25} \\
& 25 x=16 x+16+32 \sqrt{x} \\
& 9 x-32 \sqrt{x}-16=0 \text { Let } \sqrt{x}=p \\
& 9 p^{2}-32 p-16=0 \\
& p=\frac{32+\sqrt{1024+576}}{18} \Rightarrow p=\frac{32+\sqrt{1600}}{18}=\frac{72}{18} \\
& \therefore \quad p=4=\sqrt{x} \\
& x=16
\end{aligned}
$$

8. Option (2) is correct.

$$
\begin{aligned}
& t_{1}=\frac{61 l}{v_{1}} \Rightarrow v_{1}=108 \mathrm{~km} \mathrm{~h}^{-1}=108 \times \frac{5}{18}=30 \mathrm{~m} \mathrm{~s}^{-1} \\
& t_{1}=\frac{61 l}{30} \mathrm{~s} \\
&
\end{aligned}
$$

$t_{2}=\frac{64 l}{v_{2}} \Rightarrow v_{2}=72 \mathrm{~km} / \mathrm{h}=72 \times \frac{5}{18}=20 \mathrm{~m} / \mathrm{s}$

$$
t_{2}=\frac{64 l}{20}
$$

Given

$$
t_{1}=t_{2}-35 \Rightarrow \frac{61 l}{30}=\frac{64 l}{20}-35
$$

On solving, $\quad l=30 \mathrm{~m}$
Length of the tunnel, $L=60 l=1800 \mathrm{~m}$
9. Option (3) is correct.

$$
\begin{aligned}
\mathrm{KE}= & \frac{p^{2}}{2 m} \Rightarrow \mathrm{KE} \propto \frac{1}{m} \Rightarrow \frac{m_{1}}{m_{2}}=\frac{\mathrm{KE}_{2}}{\mathrm{KE}_{1}}=\left(\frac{16}{9}\right)^{-1} \\
& \frac{m_{1}}{m_{2}}=\frac{9}{16}
\end{aligned}
$$

10. Option (1) is correct.

From Bernouilli's theorem

$$
p_{A}+\frac{1}{2} \rho v_{A}^{2}=p_{B}+\frac{1}{2} \rho v_{B}^{2}
$$

$$
p_{A}-p_{B}=\frac{1}{2} \rho\left(v_{B}^{2}-v_{A}^{2}\right)
$$

From equation of continuity,

$$
\begin{aligned}
A_{A} v_{A} & =A_{B} v_{B} \\
1.5 \times v_{A} & =0.25 \times 60 \\
v_{A} & =10 \mathrm{~cm} \mathrm{~s}^{-1} \\
\therefore \quad p_{A}-p_{B} & =\frac{1}{2} \times 1000(3600-100) \times 10^{-4}=175 \mathrm{~Pa}
\end{aligned}
$$

11. Option (1) is correct.
Q value of the given nuclear reaction

$$
\begin{aligned}
& =\left[\sum m_{\text {reactants }}-\sum m_{\text {products }}\right] \times \mathrm{C}^{2} \mathrm{~J} \\
& =[\underbrace{\sum m_{\text {reactants }}-\sum m_{\text {products }}}_{\text {In a.m.u. }}] \times 931.5 \mathrm{Me} \mathrm{~V} \\
& =[238.05079-234.04363-4.00260] \times 931.5 \\
& =4.25 \mathrm{Me} \mathrm{~V}
\end{aligned}
$$

12. Option (2) is correct.

Displacement of point A after half rotation

$$
=\sqrt{4 R^{2}+\pi^{2} R^{2}}=R \sqrt{4+\pi^{2}}
$$

13. Option (2) is correct.

KE of a particle in SHM is given by

$$
\mathrm{KE}=\frac{1}{2} K\left(A^{2}-x^{2}\right)
$$

At $x= \pm A, \mathrm{KE}=0$ (Minimum)
At $x=0, \mathrm{KE}=\frac{1}{2} K A^{2}$ (Maximum)
14. Option (2) is correct.

Torque on a dipole in a uniform electric field is given by $\tau=p E \sin \theta$
$p=q l=0.01 \times 0.4 \times 10^{-3}=4 \times 10^{-6} \mathrm{~cm}$
$\tau=4 \times 10^{-6} \times 10 \times 10^{-5} \times \sin 30^{\circ}=2 \times 10^{-10} \mathrm{~N} \mathrm{~m}$
15. Option (4) is correct.

Given process, $P V^{3}=a=$ constant
Differentiating on both sides, we get
$V^{3} \Delta \mathrm{P}+\mathrm{P}\left[3 V^{2} \Delta V\right]=0$

$$
B=\frac{-\Delta P}{\frac{\Delta V}{V}}=3 P
$$

16. Option (4) is correct.

Escape velocity, $V_{e}=\sqrt{\frac{2 G M}{R}}$

For the planet, $M^{\prime}=9 M$ and $R^{\prime}=4 R$

$$
\begin{aligned}
V_{e}^{\prime} & =\sqrt{\frac{2 G(9 M)}{4 R}}=\frac{3}{2} V_{e}=\frac{3}{2} \times 11.2 \\
& =16.8 \mathrm{~km} \mathrm{~s}^{-1}
\end{aligned}
$$

17. Option (1) is correct.

$$
K=\frac{1}{2} m v^{2} \Rightarrow \frac{\Delta K}{K}=\frac{\Delta m}{m}+\frac{2 \Delta v}{v}
$$

Given $m=(5 \pm 0.5) \mathrm{kg}$

$$
v=(20 \pm 0.4) \mathrm{m} \mathrm{~s}^{-1}
$$

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2} \times 5 \times 400=1000 \mathrm{~J}
$$

$$
\frac{\Delta K}{1000}=\frac{0.5}{5}+2\left(\frac{0.4}{20}\right)=(0.1+0.04)
$$

$$
\Delta K=1000(0.14)=140 \mathrm{~J} \Rightarrow K=(1000 \pm 140) \mathrm{J}
$$

18. Option (4) is correct.

From Einstein's photoelectric equation

$$
\begin{gathered}
\frac{h c}{\lambda}=\phi+\mathrm{KE}_{\max } \\
\phi=\text { work function }=\frac{h c}{\lambda_{0}} \mathrm{~J}=\frac{h c}{\lambda_{0} e}(\mathrm{eV}) \\
9=\frac{1242}{\lambda_{01}(\mathrm{n} \mathrm{~m})} \\
\Rightarrow \lambda_{01}=\frac{1242}{9} \Rightarrow 4.5=\frac{1242}{\lambda_{02}(\mathrm{n} \mathrm{~m})} \Rightarrow \lambda_{02}=\frac{1242}{4.5} \\
\lambda_{02}-\lambda_{01}=1242\left(\frac{1}{4.5}-\frac{1}{9}\right) \mathrm{n} \mathrm{~m}=1242 \times \frac{1}{9}=138 \mathrm{n} \mathrm{~m}
\end{gathered}
$$

19. Option (3) is correct.

From Maxwell's equation for EM waves,

$$
\oint \vec{B} . \overline{d l}=\mu_{0} i+\mu_{0} \in_{0} \frac{d \phi_{E}}{d t} \Rightarrow \frac{d \phi_{E}}{d t}=A \frac{d E}{d t}
$$

If E is a linear function in time, $\frac{d E}{d t}=$ constant
As accelerated or decelerated charged particle creates an oscillating electric and magnetic field (EM wave).

20. Option (1) is correct.

Apparent depth $=\frac{\text { Actual depth }}{n}$

$$
=\frac{d}{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)=\frac{d\left(n_{1}+n_{2}\right)}{2 n_{1} n_{2}}
$$

Section B

21. The correct answer is (50).

Let R_{q} be the resistance of the galvanometer from the figure above

$$
\left.R_{g} i_{g}=5\left(250-i_{g}\right) \Rightarrow i_{g}=\frac{1250}{5+R_{g}} \right\rvert\, \mathrm{m} \mathrm{~A}
$$

$$
\begin{aligned}
\longleftrightarrow & \\
25 & =i_{i_{g}\left(R_{g}+1050\right)}^{2} \\
25 & =\left(\frac{1250}{5+\mathrm{R}_{g}}\right)\left(R_{g}+1050\right) \times 10^{-3} \\
125+25 R_{g} & =\left[1250 R_{g}+1250 \times 1050\right] \times 10^{-3} \\
& =1.25 R_{g}+1250 \times 1.05 \\
& =1.25 R_{g}+1312.50 \\
23.75 R_{g} & =1187.50 \\
R_{g} & =\frac{1187.50}{23.75}=50 \Omega
\end{aligned}
$$

22. The correct answer is (2).

According to Bohr's theory,

$$
r_{n} \propto \frac{n^{2}}{Z} \Rightarrow \frac{r_{2}}{r_{1}}=\frac{n_{2}^{2}}{n_{1}^{2}} \times \frac{Z_{1}}{Z_{2}}=\frac{(4)^{2}}{(2)^{2}} \times \frac{2}{4}
$$

Since

$$
\mathrm{Z}_{1}=\mathrm{Z}_{\mathrm{He}}=2 \Rightarrow \mathrm{Z}_{2}=\mathrm{Z}_{\mathrm{Be}}=4 \Rightarrow \frac{r_{2}}{r_{1}}=2
$$

23. The correct answer is (4).

Angular momentum,

$$
|\vec{L}|=I \omega=\frac{2}{5} M R^{2}\left(\frac{v}{R}\right)=\frac{2}{5} M v R
$$

Total energy $=\frac{1}{2} M v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)$

$$
\begin{aligned}
\frac{k^{2}}{R^{2}} & =\frac{2}{5}(\text { for the solid sphere }) \\
E & =\frac{1}{2} M v^{2}\left(1+\frac{2}{5}\right)=\frac{7}{10} M v^{2}
\end{aligned}
$$

$$
\frac{|\vec{L}|}{E}=\frac{\frac{2}{5} M v R}{\frac{7}{10} M v^{2}}=\frac{4}{7}\left(\frac{R}{v}\right)=\frac{\pi}{22}
$$

$$
w=\frac{v}{R}=\frac{4}{7} \times \frac{22}{\pi}=4
$$

24. The correct answer is (3).

Let $x=$ actual height of the bird

Let x	$=$ actual height of the bird
y	$=$ actual depth of the fish
h_{1}	$=$ height of bird wrt fish
h_{2}	$=$ depth of fish wrt bird
h_{1}	$=y+\mu x$
$\frac{d h_{1}}{d t}$	$=\frac{d y}{d t}+u \frac{d x}{d t}$
v_{BF}	$=v_{\mathrm{F}}+u v_{\mathrm{B}}$
12	$=8+\frac{4}{3} v_{\mathrm{B}} \Rightarrow v_{\mathrm{B}}=3 \mathrm{~m} \mathrm{~s}^{-1}$

25. The correct answer is (40).

Elastic potential energy $=\frac{1}{2} \times Y(\text { Strain })^{2} A l$

$$
\begin{aligned}
\text { Strain } & =\frac{\Delta l}{l}=\frac{0.02}{20}=10^{-3} \\
80 & =\frac{1}{2} \times 2 \times 10^{11} \times 10^{-6} \times A \times 20
\end{aligned}
$$

$A=4 \times 10^{-5} \mathrm{~m}^{2}=4 \times 10^{-5} \times 10^{6} \mathrm{~mm}^{2}=40 \mathrm{~mm}^{2}$
26. The correct answer is (3).

Power gain $A_{P}=\beta^{2} \frac{R_{C}}{R_{B}}$
$\beta=$ Current gain $=\frac{I_{C}}{I_{B}}=\frac{50 \mathrm{~mA}}{500 \mu A}=\frac{50000}{500}=100$
$A_{P}=10^{4} \times \frac{1}{10}=10^{3}=10^{x}$
On comparing, $x=3$
27. The correct answer is (25).
$U=\frac{1}{2} L i^{2}$
$i=i_{0}\left(1-e^{-t / \tau}\right)$ for an $\mathrm{R}-\mathrm{L}$ circuit
where, $i_{0}=\frac{E}{R}=$ steady state current
where, $U_{0}=\frac{1}{2} L i_{0}^{2}=$ steady state energy
Rate, $\quad r=\frac{d U}{d t}=\frac{2 U_{0}}{\tau}\left(1-e^{-t / \tau}\right)$

$$
\begin{equation*}
r=\frac{2 U_{0}}{\tau}\left(e^{-t / \tau}-e^{-2 t / \tau}\right) \tag{i}
\end{equation*}
$$

For maximum rate $\left(r_{\max }\right)$,

$$
\begin{aligned}
& \frac{d r}{d t}=0 \\
& \frac{d r}{d t}=\frac{2 U_{0}}{\tau}\left[-\frac{1}{\tau} e^{-t / \tau}+\frac{2}{\tau} e^{-2 t / \tau}=0\right]
\end{aligned}
$$

$$
\frac{e^{-t / \tau}}{\tau}\left[-1+2 e^{-t / \tau}\right]=0
$$

$\rightarrow e^{-t / \tau}$ which is possible only at $t \rightarrow \infty$
Hence $-1+2 e^{-t / \tau}=0$

$$
\begin{aligned}
\rightarrow \quad e^{-t / \tau} & =\frac{1}{2} \text { from (i), } r_{\max }=\frac{2 U_{0}}{\tau}\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{U_{0}}{2 \tau} \\
r_{\max } & =\frac{\frac{1}{2} L i_{0}^{2}}{2 \tau}=\frac{1}{4} R i_{0}^{2}=\frac{1}{4} \times 25 \times\left(\frac{E}{25}\right)^{2} \\
& =\frac{E^{2}}{100}=\frac{E^{a}}{2 b}
\end{aligned}
$$

$$
\begin{aligned}
& J=\frac{L}{R}=\text { time constant } \\
& \therefore \quad U=\frac{1}{2} L i_{0}^{2}\left(1-e^{-t / \tau}\right)^{2} \\
& =U_{0}\left(1-e^{-t / \tau}\right)^{2}
\end{aligned}
$$

Comparing we get

$$
\begin{aligned}
& a=2 \Rightarrow b=50 \\
& \frac{b}{a}=\frac{50}{2}=25
\end{aligned}
$$

28. The correct answer is (16).

$$
P_{1}=\frac{V_{0}^{2}}{R}
$$

When the wire is cut into two equal halves, each has

$$
\begin{aligned}
\text { a resistance }=\frac{R}{2} \Rightarrow & P_{2}=\frac{V_{0}^{2}}{\frac{R}{2}}+\frac{V_{0}^{2}}{\frac{R}{2}}=\frac{4 V_{0}^{2}}{R}=4 P_{1} \\
& \frac{P_{2}}{P_{1}}=\frac{4}{1}=\frac{\sqrt{x}}{1}
\end{aligned}
$$

On comparing, $x=16$
29. The correct answer is (4).
$y=A \cos 30^{\circ}$ at any instant
Given $A=40 \mathrm{~cm}=0.4 \mathrm{~m}$

$$
\begin{aligned}
\mathrm{KE} & =200=\frac{1}{2} m\left[\omega \sqrt{A^{2}-y^{2}}\right]^{2}=\frac{1}{2} K\left(A^{2}-y^{2}\right) \\
y & =0.4 \times \frac{\sqrt{3}}{2}=0.2 \sqrt{3} \text { where, } k=m \omega^{2} \\
k & =\frac{400}{A^{2}-y^{2}}=\frac{400}{0.16-0.12}=\frac{400}{0.04} \\
& =10^{4} \mathrm{Nm}=1 \times 10^{x}
\end{aligned}
$$

On comparing, $x=4$
30. The correct answer is (6).

$E_{P}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{\lambda}{2 \pi \varepsilon_{0}\left(\frac{3}{\pi}\right)}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{\lambda}{6 \varepsilon_{0}}$
Given $|\lambda|=2|\sigma|$
$E_{P}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{2 \sigma}{6 \varepsilon_{0}}=\frac{\sigma}{6 \varepsilon_{0}}$
$E_{Q}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{\lambda}{2 \pi \varepsilon_{0}\left(\frac{4}{\pi}\right)}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{\lambda}{8 \varepsilon_{0}}$
Putting $|\lambda|=2|\sigma|$
$E_{Q}=\frac{\sigma}{2 \varepsilon_{0}}-\frac{2 \sigma}{8 \varepsilon_{0}}=\frac{\sigma}{4 \varepsilon_{0}}$
$\frac{E_{P}}{E_{Q}}=\frac{\sigma}{6 \varepsilon_{0}} \times \frac{4 \varepsilon_{0}}{\sigma}=\frac{2}{3}=\frac{4}{a}$
On comparing, $a=6$

