JEE (Main) PHYSICS SOLVED PAPER

Section A

Q.1. Different combination of 3 resistors of equal resistance R are shown in the figures. The increasing order for power dissipation is:

- (1) $P_C < P_B < P_A < P_D$ (2) $P_C < P_D < P_A < P_B$
- (3) $P_B < P_C < P_D < P_A$ (4) $P_A < P_B < P_C < P_D$
- **Q. 2.** For the following circuit and given inputs A and B, chose the correct option for output 'Y'

2023 13th April Shift 1

- **Q.3.** A bullet of 10 g leaves the barrel of gun with a velocity of 600 m s⁻¹. If the barrel of gun is 50 cm long and mass of gun is 3 kg, then value of impulse supplied to the gun will be:
 - (1) 12 N s (2) 6 N s (3) 3 N s (4) 36 N s
- **Q.4.** Which of the following Maxwell's equation is valid for time varying conditions but not valid for static conditions:

(1)
$$\oint \vec{D}.\vec{dA} = Q$$
 (2) $\oint \vec{E}.\vec{dl} = -\frac{\partial \phi_B}{\partial t}$

(3)
$$\oint \vec{E}.\vec{dl} = 0$$
 (4) $\oint \vec{B}.\vec{dl} = \mu_0 I$

Q. 5. Match List – I with List – II

List – I (Layer of atmosphere)	List – II (Approximate height over earth's surface)	
(A) F1 - Layer	(I) 10 km	
(B) D - Layer	(II) 170 - 190 km	
(C) Troposphere	(III) 100 km	
(D) E - layer	(IV 65 - 75 km	

Choose the correct answer from the options given below:

(1)	A – II,	B – I,	C – IV,	D – III
(2)	A – II,	Β – IV,	C – III,	D–I
(3)	A – II,	B–IV,	C – I,	D – III
(4)	A - III,	B - IV,	C – I,	D – II

Q. 6. The r.m.s. speed of oxygen molecule in a vessel at

particular temperature is $\left(1+\frac{5}{x}\right)^{1/2} v$, where v is the average speed of the molecule. The value of x will be: $\left(\text{Take } \pi = \frac{22}{7}\right)$ (1) 28 (2) 27 (3) 8 (4) 4 **Q.7.** The ratio of powers of two motors is $\frac{3\sqrt{x}}{\sqrt{x}+1}$, that

are capable of raising 300 kg water in 5 minutes and 50 kg water in 2 minutes respectively from a well of 100 m deep. The value of *x* will be (1) 16 (2) 2 (3) 4 (4) 2.4

- Q. 8. Two trains 'A' and 'B' of length 'l' and '4l' are travelling into a tunnel of length 'L' in parallel tracks from opposite directions with velocities 108 km/h and 72 km/h, respectively. If train 'A' takes 35s less time than train 'B' to cross the tunnel then, length 'L' of tunnel is: (Given L = 60l)
 (1) 2700 m (2) 1800 m (3) 1200 m (4) 900 m
- Q. 9. Two bodies are having kinetic energies in the ratio 16:9. If they have same linear momentum, the ratio of their masses respectively is:
 (1) 16:9 (2) 4:3 (3) 9:16 (4) 3:4
- **Q. 10.** The figure shows a liquid of given density flowing steadily in horizontal tube of varying cross-section. Cross sectional areas at A is 1.5 cm², and B is 25 mm², if the speed of liquid at B is 60 cm then $(P_A P_B)$ is: (Given P_A and P_B are liquid pressures at A and B points) Density $\rho = 1000$ kg m⁻³ A and B are on the axis of tube

(1) 175 Pa (2) 36 Pa (3) 27 Pa (4) 135 Pa

Q.11. $^{238}_{92}A \rightarrow ^{234}_{90}B + ^4_2D + Q$ In the given nuclear reaction, the approximate

amount of energy released will be: [Given, mass of ${}^{238}_{92}A = 238.05079 \times 931.5 \text{ MeV/C}^2$, mass of ${}^{234}_{90}B = 234.04363 \times 931.5 \text{ MeV/C}^2$, mass of ${}^{4}_{2}D = 4.00260 \times 931.5 \text{ MeV/C}^2$] (1) 4.25 Me V (2) 5.9 Me V (3) 3.82 Me V (4) 2.12 Me V

Q. 12. A disc is rolling without slipping on a surface. The radius of the disc is R. At t = 0, the top most point on the disc is A as shown in figure. When the disc completes half of its rotation, the displacement of point A from its initial position is:

Q.13. Which graph represents the difference between total energy and potential energy of a particle executing SHM *vs.* its distance from mean position?

Q. 14. Two charges each of magnitude 0.01 C and separated by a distance of 0.4 mm constitute an electric dipole. If the dipole is placed in an uniform electric field 'Ē' of 10 dyne C⁻¹ making 30° angle with Ē, the magnitude of torque acting on dipole is:
(1) 15 × 10⁻⁹ N m
(2) 2.0 × 10⁻¹⁰ N m

(1)
$$1.5 \times 10^{-10}$$
 N m (2) 2.0×10^{-10} N m
(3) 1.0×10^{-8} N m (4) 4.0×10^{-10} N m

Q.15. Under isothermal condition, the pressure of a gas is given by $P = aV^{-3}$, where *a* is a constant and V is the volume of the gas. The bulk modulus at constant temperature is equal to

(1)
$$\frac{P}{2}$$
 (2) 2P (3) P (4) 3P

- **Q. 16.** A planet having mass 9 Me and radius 4Re, where Me and Re are mass and radius of earth respectively, has escape velocity in km given by: (Given escape velocity on earth s⁻¹ $V_e = 11.2 \times 10^3$ m s⁻¹)
 - **(1)** 11.2 **(2)** 67.2 **(3)** 33.6 **(4)** 16.8
- Q. 17. A body of mass (5 ± 0.5) kg is moving with a velocity of (20 ± 0.4) m s⁻¹. Its kinetic energy will be: (1) (1000 ± 140) J (2) (500 ± 140) J
 - (1) (1000 ± 140) (2) (300 ± 0.14) J (4) (1000 ± 0.14) J
- **Q. 18.** The difference between threshold wavelengths for two metal surfaces A and B having work function, $\phi_A = 9 \text{ e V}$ and $\phi_B = 4.5 \text{ e V}$ in n m is: {Given, hc = 1242 e V n m} (1) 276 (2) 264 (3) 540 (4) 138
- Q. 19. The source of time varying magnetic field may be:
 (A) A permanent magnet
 (B) An electric field changing linearly with time
 (C) Direct current
 (D) A decelerating charge particle
 (E) An antenna fed with a digital signal Choose the correct answer from the options given below:
 - (1) (B) and (D) only (2) (C) and (E) only
 - (3) (D) only (4) (A) only

Q.20. A vessel of depth '*d*' is half filled with oil of refractive index n_1 and the other half is filled with water of refractive index n_2 . The apparent depth of this vessel when viewed from above will be:

(1)
$$\frac{d(n_1+n_2)}{2n_1n_2}$$
 (2) $\frac{dn_1n_2}{(n_1+n_2)}$

(3)
$$\frac{dn_1n_2}{2(n_1+n_2)}$$
 (4) $\frac{2d(n_1+n_2)}{n_1n_2}$

Section B

- **Q. 21.** When a resistance of 5 Ω is shunted with a moving coil galvanometer, it shows a full scale deflection for a current of 250 mA. However when 1050 Ω resistance is connected with it in series, it gives full scale deflection for 25 volt. The resistance of galvanometer is _____ Ω .
- **Q. 22.** The radius of 2^{nd} orbit of He⁺ of Bohr's model is r_1 and that of fourth orbit of Be³⁺ is represented

as r_2 . Now the ratio $\frac{r_2}{r_1}$ is x : 1. The value of x is ______.

- **Q.23.** A solid sphere is rolling on a horizontal plane without slipping. If the ratio of angular momentum about axis of rotation of the sphere to the total energy of moving sphere is $\pi : 22$, the value of its angular speed will be rad s⁻¹.
- **Q.24.** A fish rising vertically upward with a uniform velocity of 8 m s⁻¹, observes that a bird is diving vertically downward towards the fish with the velocity of 12 m s⁻¹. If the refractive index of

water is $\frac{4}{3}$, then the actual velocity of the diving

bird to pick the fish, will be $__m s^{-1}$.

- **Q. 25.** The elastic potential energy stored in a steel wire of length 20 m stretched through 2 cm is 80 J. The cross sectional area of the wire is ______ mm². (Given, $y = 2.0 \times 10^{11}$ N m⁻²)
- **Q. 26.** From the given transfer characteristic of a transistor in CE configuration, the value of power gain of this configuration is 10^x , for RB = $10 \text{ k}\Omega$, $R_C = 1 \text{ k} \Omega$. The value of *x* is _____.

- **Q. 27.** In the given figure, an inductor and a resistor are connected in series with a batter \mathbf{F}^{a}
 - of emf E volt. $\frac{E^a}{2b}$ $|_E$ Js⁻¹ represents the maximum rate at which the energy is stored in the magnetic field (inductor). The numerical

value of $\frac{b}{a}$ will be _____

- **Q. 28.** A potential V_0 is applied across a uniform wire of resistance R. The power dissipation is P_1 . The wire is then cut into two equal halves and a potential of V_0 is applied across the length of each half. The total power dissipation across two wires is P_2 . The ratio $P_2 : P_1$ is $\sqrt{x} : 1$. The value of x is _____.
- **Q.29.** At a given point of time the value of displacement of a simple harmonic oscillator is given as $y = A \cos (30^\circ)$. If amplitude is 40 cm and kinetic energy at that time is 200 J, the value of force constant is 1.0×10^x N m⁻¹. The value of *x* is
- **Q.30.** A thin infinite sheet charge and an infinite line charge of respective charge densities $+ \sigma$ and $+ \lambda$ are placed parallel at 5 m distance from each

other. Points 'P' and 'Q' are at $\frac{3}{\pi}$ m and $\frac{4}{\pi}$ m perpendicular distances from line charge towards sheet charge, respectively. 'E_p' and 'E_Q' are the magnitudes of resultant electric field intensities at point 'P' and 'Q' respectively. If $\frac{E_P}{E_Q} = \frac{4}{a}$ for

 $2|\sigma| = |\lambda|$, then the value of *a* is _____

Q. No.	Answer	Topic Name	Chapter Name
1	(1)	Power of electric circuit	Electric current
2	(3)	Logic gates	Semiconductors
3	(2)	Momentum conservation principle	Newton's laws of motion
4	(2)	Mawell's equation	Magnetism and Matter
5	(3)	Layers of atmosphere	Communication system
6	(1)	Speed of gas molecules	Kinetic theory of gases
7	(1)	Power	Work, Energy and Power
8	(2)	Uniform velocity	Motion in a straight line

Answer Key

9	(3)	Kinetic energy	Work, Energy and Power	
10	(1)	Bernoulli's equation	Properties of fluid	
11	(1)	Mass energy equivalence	Nuclei	
12	(2)	Displacement Motion in one dimension		
13	(2)	Kinetic and potential energies	Oscillation and waves	
14	(2)	Electric dipole in electric field	Electrostatics	
15	(4)	Thermodynamic processes	Thermodynamics	
16	(4)	Escape velocity	Gravitation	
17	(1)	Percentage error	Units & Dimensions	
18	(4)	Work function	Photoelectric effect	
19	(3)	Transverse nature of EM wave	Electromagnetic waves	
20	(1)	Refraction	Ray optics	
21	[50]	Moving coil galvanometer	Magnetic effect of current and Magnetism	
22	[2]	Bohr's Model	Atoms	
23	[4]	Kinetic energy	Rotational Motion	
24	[3]	Refraction	Ray optics	
25	[40]	Energy stored in stretched wire	Properties of solid	
26	[3]	Transistor	Semiconductors	
27	[25]	RL circuit	AC current	
28	[16]	Power of electric circuit	Electric current	
29	[4]	Kinetic and Potential energies	Oscillation and Waves	
30	[6]	Electric field	Electrostatics	

SOLUTIONS

Section A

1. Option (1) is correct.

(A)
$$R_1 = \frac{R}{2} + R = \frac{3R}{2}$$
, $P_1 = I^2 R_1 = I^2 \left(\frac{3R}{2}\right)$
(B) $R_2 = \frac{2R}{3}$, $P_2 = I^2 R_2 = I^2 \left(\frac{2R}{3}\right)$
(C) $R_3 = \frac{R}{3}$, $P_3 = I^2 R_3 = I^2 \left(\frac{R}{3}\right)$

 $P_4 = I^2 R_4 = I^2 (3R)$ (D) $R_4 = 3R$, from above, increasing order of power dissipation is

 $P_C < P_B < P_A < P_D$

2. Option (3) is correct.

$$Y = \overline{\overline{A}.B} = \overline{\overline{\overline{A}}} + \overline{B} = A + \overline{B}$$

	Α	В	\overline{B}	$A + \overline{B}$
$0 - t_1$	0	0	1	1
$t_1 - t_2$	0	1	0	0
$t_2 - t_3$	1	1	0	1
$t_3 - t_4$	0	0	1	1
$t_4 - t_5$	1	1	0	1
$t_{5} - t_{6}$	1	0	1	1
$t_6 - t$	0	0	1	1

3. Option (2) is correct.

Impulse = change in momentum $|\overline{J}| = |\Delta \vec{p}| = mv - 0$ $=\frac{10}{1000}\times 600-0 = 6 \text{ (N s)}$

4. Option (2) is correct.

For static conditions $\oint \vec{E}.d\vec{l} = 0$

For time varying conditions,
$$\oint \vec{E} \cdot d\vec{l} = -\frac{\partial \phi_B}{\partial t}$$

Which is Faraday's law of electromagnetism.

5. **Option (3) is correct.**

In the increasing order of heights, various layers of atmosphere can be arranged as: Troposphere < D-layer < E layer < F1 layer.

Option (1) is correct. 6.

:..

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$
 and $v_{av} = \sqrt{\frac{8RT}{\pi M}} = v$

$$\Rightarrow \qquad \sqrt{\frac{RT}{M}} = \sqrt{\frac{\pi}{8}} v$$

$$v_{rms} = \sqrt{3} \times \sqrt{\frac{\pi}{8}} v$$
$$v_{rms} = \sqrt{\frac{3\pi}{8}} v = \sqrt{1 + \frac{5}{x}} v$$

$$\Rightarrow \qquad \frac{3\pi}{8} - 1 = \frac{5}{x} \Rightarrow \frac{3}{8} \times \frac{22}{7} - 1 = \frac{5}{x}$$

$$\Rightarrow \qquad \frac{66}{56} - 1 = \frac{5}{x} \Rightarrow \frac{10}{56} = \frac{5}{x}$$

 $\Rightarrow \qquad x = 28$ 7. Option (1) is correct.

$$P = \frac{W}{t} = \frac{mgh}{t} \implies \frac{P_1}{P_2} = \frac{m_1}{m_2} \times \frac{t_2}{t_1}$$
$$\frac{3\sqrt{x}}{\sqrt{x+1}} = \frac{300}{50} \times \frac{2}{5} = \frac{12}{5}$$

Squaring, we get

$$\frac{9x}{x+1+2\sqrt{x}} = \frac{144}{25}$$

$$25x = 16x + 16 + 32\sqrt{x}$$

$$9x - 32\sqrt{x} - 16 = 0 \text{ Let } \sqrt{x} = p$$

$$9p^2 - 32p - 16 = 0$$

$$p = \frac{32 + \sqrt{1024 + 576}}{18} \implies p = \frac{32 + \sqrt{1600}}{18} = \frac{72}{18}$$

$$p = 4 = \sqrt{x}$$

$$x = 16$$

8. Option (2) is correct.

В

:..

$$L = 60l$$

$$l$$

$$l$$

$$v_1$$

$$t_1 = \frac{61l}{v_1} \implies v_1 = 108 \text{ km h}^{-1} = 108 \times \frac{5}{18} = 30 \text{ m s}^{-1}$$

 $t_1 = \frac{61l}{30} \text{ s}$
 $L = 60l$

$$t_2 = \frac{64l}{v_2} \implies v_2 = 72 \text{ km/h} = 72 \times \frac{5}{18} = 20 \text{ m/s}$$

 $t_2 = \frac{64l}{20}$

 $t_1 =$

 $\rightarrow v_2$

Given

$$t_2 - 35 \Longrightarrow \frac{61l}{30} = \frac{64l}{20} - 35$$

 $\Rightarrow v_2$

On solving, l = 30 mLength of the tunnel, L = 60l = 1800 m

9. Option (3) is correct.

$$KE = \frac{p^2}{2m} \Rightarrow KE \propto \frac{1}{m} \Rightarrow \frac{m_1}{m_2} = \frac{KE_2}{KE_1} = \left(\frac{16}{9}\right)^{-1}$$
$$\frac{m_1}{m_2} = \frac{9}{16}$$

10. Option (1) is correct. From Bernouilli's theorem

$$p_A + \frac{1}{2}\rho v_A^2 = p_B + \frac{1}{2}\rho v_B^2$$

$$p_A - p_B = \frac{1}{2} \rho \left(v_B^2 - v_A^2 \right)$$

From equation of continuity,

$$A_A v_A = A_B v_B$$

1.5 × v_A = 0.25 × 60
v_A = 10 cm s⁻¹
∴ $p_A - p_B = \frac{1}{2} \times 1000(3600 - 100) \times 10^{-4} = 175 \text{ Pa}$

11. Option (1) is correct.

Q value of the given nuclear reaction $\begin{bmatrix} -1 & -2 \end{bmatrix}$

$$= \left[\sum m_{reactants} - \sum m_{products}\right] \times C^{2} J$$
$$= \left[\sum m_{reactants} - \sum m_{products}\right] \times 931.5 \text{ Me V}$$
In a.m.u.

12. Option (2) is correct.

$$\begin{array}{c|c} A \\ R \\ R \\ \pi R \\ \pi R \\ A' \end{array}$$

Displacement of point A after half rotation

$$= \sqrt{4R^2 + \pi^2 R^2} = R\sqrt{4 + \pi^2}$$

13. Option (2) is correct. KE of a particle in SHM is given by

$$KE = \frac{1}{2}K(A^2 - x^2)$$

$$KE$$

$$KE$$

$$At x = \pm A, KE = 0 \text{ (Minimum)}$$

At
$$x = 0$$
, KE $= \frac{1}{2}KA^2$ (Maximum)

14. Option (2) is correct.

Torque on a dipole in a uniform electric field is given by $\tau = pE\sin\theta$

 $p = ql = 0.01 \times 0.4 \times 10^{-3} = 4 \times 10^{-6} \text{ cm}$ $\tau = 4 \times 10^{-6} \times 10 \times 10^{-5} \times \sin 30^{\circ} = 2 \times 10^{-10} \text{ N m}$

15. Option (4) is correct.

Given process, $PV^3 = a = \text{constant}$ Differentiating on both sides, we get $V^3 \Delta P + P [3V^2 \Delta V] = 0$

$$B = \frac{-\Delta P}{\frac{\Delta V}{V}} = 3P$$

16. Option (4) is correct.

Escape velocity,
$$V_e = \sqrt{\frac{2GM}{R}}$$

For the planet, M' = 9M and R' = 4R

$$V'_e = \sqrt{\frac{2G(9M)}{4R}} = \frac{3}{2}V_e = \frac{3}{2} \times 11.2$$

= 16.8 km s⁻¹

17. Option (1) is correct.

$$K = \frac{1}{2} mv^2 \Rightarrow \frac{\Delta K}{K} = \frac{\Delta m}{m} + \frac{2\Delta v}{v}$$

Given $m = (5 \pm 0.5) \text{ kg}$
 $v = (20 \pm 0.4) \text{ m s}^{-1}$
 $K = \frac{1}{2} mv^2 = \frac{1}{2} \times 5 \times 400 = 1000 \text{ J}$
 $\frac{\Delta K}{1000} = \frac{0.5}{5} + 2\left(\frac{0.4}{20}\right) = (0.1 + 0.04)$

 $\Delta K = 1000 (0.14) = 140 \text{ J} \Rightarrow K = (1000 \pm 140) \text{ J}$ **18. Option (4) is correct.**

From Einstein's photoelectric equation

$$\frac{hc}{\lambda} = \phi + KE_{max}$$

$$\phi = \text{work function} = \frac{hc}{\lambda_0} J = \frac{hc}{\lambda_0 e} (eV)$$

$$9 = \frac{1242}{\lambda_{01} (n m)}$$
1242

$$\Rightarrow \lambda_{01} = \frac{1242}{9} \Rightarrow 4.5 = \frac{1242}{\lambda_{02}(n \text{ m})} \Rightarrow \lambda_{02} = \frac{1242}{4.5}$$
$$\lambda_{02} - \lambda_{01} = 1242 \left(\frac{1}{4.5} - \frac{1}{9}\right) \text{ n m} = 1242 \times \frac{1}{9} = 138 \text{ n m}$$

19. Option (3) is correct.

From Maxwell's equation for EM waves,

$$\oint \vec{B}.\vec{dl} = \mu_0 i + \mu_0 \in_0 \frac{d\phi_E}{dt} \implies \frac{d\phi_E}{dt} = A\frac{dE}{dt}$$

If E is a linear function in time, $\frac{dE}{dt}$ = constant

As accelerated or decelerated charged particle creates an oscillating electric and magnetic field (EM wave).

20. Option (1) is correct.

Apparent depth =
$$\frac{\text{Actual depth}}{n}$$

= $\frac{d}{2} \left(\frac{1}{n_1} + \frac{1}{n_2} \right) = \frac{d(n_1 + n_2)}{2n_1 n_2}$

Section B

Let R_g be the resistance of the galvanometer from the figure above

$$R_{g}i_{g} = 5(250 - i_{g}) \Rightarrow i_{g} = \frac{1250}{5 + R_{g}} \text{ m A}$$

$$R_{g} = 1050 \Omega$$

$$M_{g} = \frac{1050 \Omega}{1050 \Omega}$$

$$25 = i_{g}(R_{g} + 1050)$$

$$25 = \left(\frac{1250}{5 + R_{g}}\right) (R_{g} + 1050) \times 10^{-3}$$

$$125 + 25R_{g} = [1250R_{g} + 1250 \times 1050] \times 10^{-3}$$

$$= 1.25R_{g} + 1250 \times 1.05$$

$$= 1.25R_{g} + 1312.50$$

$$23.75R_{g} = 1187.50$$

$$R_{g} = \frac{1187.50}{23.75} = 50 \Omega$$

22. The correct answer is (2). According to Bohr's theory,

$$r_n \propto \frac{n^2}{Z} \Rightarrow \frac{r_2}{r_1} = \frac{n_2^2}{n_1^2} \times \frac{Z_1}{Z_2} = \frac{(4)^2}{(2)^2} \times \frac{2}{4}$$

Since
$$Z_1 = Z_{\text{He}} = 2 \Rightarrow Z_2 = Z_{\text{Be}} = 4 \Rightarrow \frac{r_2}{r_1} = 2$$

23. The correct answer is (4). Angular momentum,

$$|\vec{L}| = I\omega = \frac{2}{5}MR^2 \left(\frac{v}{R}\right) = \frac{2}{5}MvR$$

Total energy $= \frac{1}{2}Mv^2 \left(1 + \frac{k^2}{R^2}\right)$
 $\frac{k^2}{R^2} = \frac{2}{5}$ (for the solid sphere)
 $E = \frac{1}{2}Mv^2 \left(1 + \frac{2}{5}\right) = \frac{7}{10}Mv^2$
 $\frac{|\vec{L}|}{E} = \frac{\frac{2}{5}MvR}{\frac{7}{10}Mv^2} = \frac{4}{7}\left(\frac{R}{v}\right) = \frac{\pi}{22}$
 $w = \frac{v}{R} = \frac{4}{7} \times \frac{22}{\pi} = 4$

24. The correct answer is (3).

25. The correct answer is (40).

Elastic potential energy =
$$\frac{1}{2} \times Y (\text{Strain})^2 Al$$

Strain = $\frac{\Delta l}{l} = \frac{0.02}{20} = 10^{-3}$
 $80 = \frac{1}{2} \times 2 \times 10^{11} \times 10^{-6} \times A \times 20$

 $A = 4 \times 10^{-5} \text{ m}^2 = 4 \times 10^{-5} \times 10^6 \text{ mm}^2 = 40 \text{ mm}^2$ 26. The correct answer is (3).

Power gain
$$A_p = \beta^2 \frac{R_C}{R_B}$$

 $\beta = \text{Current gain} = \frac{I_C}{I_B} = \frac{50 \text{ mA}}{500 \text{ }\mu\text{A}} = \frac{50000}{500} = 100$
 $A_p = 10^4 \times \frac{1}{10} = 10^3 = 10^x$

On comparing, x = 3

27. The correct answer is (25).

$$U = \frac{1}{2}Li^{2}$$

$$i = i_{0}(1 - e^{-t/\tau}) \text{ for an } R - L \text{ circuit}$$
where, $i_{0} = \frac{E}{R}$ = steady state current
$$J = \frac{L}{R} = \text{time constant}$$

$$\therefore \qquad U = \frac{1}{2}Li_{0}^{2}(1 - e^{-t/\tau})^{2}$$

$$= U_{0}(1 - e^{-t/\tau})^{2}$$
where, $U_{0} = \frac{1}{2}Li_{0}^{2} = \text{steady state energy}$
Rate,
$$r = \frac{dU}{dt} = \frac{2U_{0}}{\tau}(1 - e^{-t/\tau})$$

$$r = \frac{2U_{0}}{\tau}(e^{-t/\tau} - e^{-2t/\tau}) \qquad ...(i)$$

For maximum rate (r_{max}) ,

$$\frac{dr}{dt} = 0$$
$$\frac{dr}{dt} = \frac{2U_0}{\tau} \left[-\frac{1}{\tau} e^{-t/\tau} + \frac{2}{\tau} e^{-2t/\tau} = 0 \right]$$
$$e^{-t/\tau}$$

 $\frac{c}{\tau} \left[-1 + 2e^{-t/\tau} \right] = 0$

 $\rightarrow e^{-t/\tau}$ which is possible only at $t \rightarrow \infty$ Hence $-1 + 2e^{-t/\tau} = 0$

$$\rightarrow \qquad e^{-t/\tau} = \frac{1}{2} \text{ from (i), } r_{max} = \frac{2U_0}{\tau} \left(\frac{1}{2} - \frac{1}{4}\right) = \frac{U_0}{2\tau} \\ r_{max} = \frac{\frac{1}{2}Li_0^2}{2\tau} = \frac{1}{4}Ri_0^2 = \frac{1}{4} \times 25 \times \left(\frac{E}{25}\right)^2 \\ = \frac{E^2}{100} = \frac{E^a}{2b}$$

Comparing we get

$$a = 2 \Longrightarrow b = 50$$
$$\frac{b}{a} = \frac{50}{2} = 25$$

28. The correct answer is (16).

$$P_1 = \frac{V_0^2}{R}$$

When the wire is cut into two equal halves, each has

a resistance =
$$\frac{R}{2}$$
 \Rightarrow $P_2 = \frac{V_0^2}{\frac{R}{2}} + \frac{V_0^2}{\frac{R}{2}} = \frac{4V_0^2}{R} = 4P_1$
 $\frac{P_2}{P_1} = \frac{4}{1} = \frac{\sqrt{x}}{1}$
On comparing, $x = 16$

On comparing,
$$x = 16$$

29. The correct answer is (4).
 $y = A\cos 30^{\circ}$ at any instant
Given $A = 40 \text{ cm} = 0.4 \text{ m}$
 $KE = 200 = \frac{1}{2}m \left[\omega\sqrt{A^2 - y^2}\right]^2 = \frac{1}{2}K(A^2 - y^2)$
 $y = 0.4 \times \frac{\sqrt{3}}{2} = 0.2\sqrt{3} \text{ where, } k = m\omega^2$
 $k = \frac{400}{2} = \frac{400}{2} = \frac{400}{2} = \frac{400}{2}$

$$A^{2} - y^{2} = 0.16 - 0.12 = 0.04$$

= 10⁴ N m = 1 × 10^x

On comparing,
$$x = 4$$

30. The correct answer is (6).

$$E_{P} = \frac{\sigma}{2\varepsilon_{0}} - \frac{\lambda}{2\pi\varepsilon_{0}} \left(\frac{3}{\pi}\right) = \frac{\sigma}{2\varepsilon_{0}} - \frac{\lambda}{4\pi}$$

$$E_{P} = \frac{\sigma}{2\varepsilon_{0}} - \frac{\lambda}{2\pi\varepsilon_{0}} \left(\frac{3}{\pi}\right) = \frac{\sigma}{2\varepsilon_{0}} - \frac{\lambda}{6\varepsilon_{0}}$$
Given $|\lambda| = 2 |\sigma|$

$$E_{P} = \frac{\sigma}{2\varepsilon_{0}} - \frac{2\sigma}{6\varepsilon_{0}} = \frac{\sigma}{6\varepsilon_{0}}$$

$$E_{Q} = \frac{\sigma}{2\varepsilon_{0}} - \frac{\lambda}{2\pi\varepsilon_{0}} \left(\frac{4}{\pi}\right) = \frac{\sigma}{2\varepsilon_{0}} - \frac{\lambda}{8\varepsilon_{0}}$$
Putting $|\lambda| = 2 |\sigma|$

$$E_{Q} = \frac{\sigma}{2\varepsilon_{0}} - \frac{2\sigma}{8\varepsilon_{0}} = \frac{\sigma}{4\varepsilon_{0}}$$

$$\frac{E_{P}}{E_{Q}} = \frac{\sigma}{6\varepsilon_{0}} \times \frac{4\varepsilon_{0}}{\sigma} = \frac{2}{3} = \frac{4}{a}$$

On comparing, a = 6