ISC EXAMINATION-2023 MATHEMATICS

Solved Paper Class-12th

	Class-12 th				
		Maximum Marks: 80	~		
(Candid	ates are allowed additional 15 min		g during this time.)		
	This Over	tion Drawn counists of three costinus A. P. and C.			
			12		
	•				
Section A		two questions of two marks each, two questions of four	marks each had two		
9	Section B: Internal choice has been v		four marks.		
	•				
4	All working, including rough work, s	hould be done on the same sheet as, and adjacent to the rest of	f the answer.		
	The intended marks f	or questions or parts of questions are given in brackets [].			
	Mathema	tical tables and graph papers are provided.			
		Maximum Marks: 80 Time allowed: Three hours I additional 15 minutes for only reading the paper. They must NOT start writing during this time.) This Question Paper consists of three sections A, B and C andidates are required to attempt all questions from Section A and all questions EITHER from Section B OR Section C. This absent provided in two questions of two marks each, two questions of four marks each had two questions of six marks each, two questions of four marks. The provided in two question of two marks and one question of four marks. The intended marks for questions or parts of questions are given in byackets []. Mathematical tables and graph papers are provided. SECTION A – 65 MARKS The intended marks for questions and in subparts (xi) to (xv), answer the questions as instructed. The intended marks for questions and in subparts (xi) to (xv), answer the questions as instructed. The intended marks for questions and in subparts (xi) to (xv), answer the questions as instructed. SECTION A – 65 MARKS The intended marks for questions and in subparts (xi) to (xv), answer the questions as instructed. The intended marks for questions and in subparts (xi) to (xv), answer the questions as instructed. The intended marks for questions and in subparts (xi) to (xv), answer the questions as instructed. The intended marks for questions and in subparts (xi) to (xv), answer the questions as instructed. The intended marks for questions of the answer. The intended marks for questions of the answer. The intended marks for questions of two marks and one question of four marks. The intended marks for questions of two marks and one questions of four marks. The intended marks for questions of four marks and one questions of four marks. The intended marks for questions of four marks and one question of four marks. The intended marks for questions of four marks and one question of four marks. The intended marks for questions of four marks and one question of four marks. The intended marks for questions			
	C	ECTION A 65 MARKS			
		ECTION A - 65 WARKS			
Question			1		
in s (i)	* '' '				
(1)	(a) Reflexive		m K is. [1		
	(c) Transitive				
(ii)			[1		
, ,	(a) 2 A				
	(c) 8 A				
(iii)	If the fo <mark>ll</mark> owing function is conti		[1]		
		3x-1, if $x>2$			
	(a) 2	(b) 3			
	(c) 5	· ,			
(iv)	An edge of a variable cube in incifit the edge is 5 cm long?	creasing at the rate of 10 cm/s. How fast will the volume			
	(a) $75 \text{ cm}^3/\text{s}$	• ,			
	(c) $7500 \text{ cm}^3/\text{s}$	` '			
(v)		· · · · · · · · · · · · · · · · · · ·	[1]		
	(a) {3, 2, 1, 0}	, ,			
(17)	(c) $\{0, 1, 8, 27\}$		[1]		
(V1)	•		[1]		
	(a) 4	(b) $\frac{1}{4}$			
	(c) = 4	(d) $\frac{-1}{}$			

(vii) Evaluate:
$$\int \frac{x}{x^2 + 1} dx$$
 [1]

(a) $2 \log (x^2 + 1) + c$

(b) $\frac{1}{2}\log(x^2+1)+c$

(c) $e^{x^2+1}+c$

22

- (d) $\log x + \frac{x^2}{2} + c$
- (viii) The derivative of $\log x$ with respect to $\frac{1}{x}$ is:

[1]

[1]

[1]

[1]

(a) $\frac{1}{x}$

(b) $\frac{-1}{r^3}$

(c) $\frac{-1}{x}$

- (d) -x
- (ix) The interval in which the function $f(x) = 5 + 36x 3x^2$ increases wilL be:
 - (a) $(-\infty, 6)$

(b) (6, ∞)

(c) (-6, 6)

(d) (0, -6)

(x) Evaluate: $\int_{-1}^{1} x^{17} \cos^4 x \, dx$

1) (0, -6)

(a) ∞

(b) 1

(c) -1

- (d) 0
- (xi) Solve the differential equation: $\frac{dy}{dx} = \csc y$
- (xii) For what value of k the matrix $\begin{bmatrix} 0 & k \\ -6 & 0 \end{bmatrix}$ is a skew symmetric matrix? [1]
- (xiii) Evaluate: $\int_0^1 |2x+1| dx$ [1]
- (xiv) Evaluate: $\int \frac{1 + \cos x}{\sin^2 x} dx$ [1]
- (xv) A bag contains 19 tickets, numbered from 1 to 19. Two tickets are drawn randomly in succession with replacement. Find the probability that both the tickets drawn are even numbers. [1]

Question 2 [2]

(i) If $f(x) = [4 - (x - 7)^3]^{\frac{1}{5}}$ is a real invertible function, then find $f^{-1}(x)$

OR

(ii) Let $A = R - \{2\}$ and $B = R - \{1\}$. If $f : A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$ then show that f is a one – one and an onto function.

Question 3 [2]

Evaluate the following determinant without expanding.

 $\begin{vmatrix}
5 & 5 & 5 \\
a & b & c \\
b+c & c+a & a+b
\end{vmatrix}$

Question 4 [2]

The probability of the event A occurring is $\frac{1}{3}$ and of the event B occurring is $\frac{1}{2}$. If A and B are independent events, then find the probability of neither A nor B occurring.

Question 5 [2]

Solve for *x*:

 $5 \tan^{-1} x + 3 \cot^{-1} x = 2\pi$

Question 6

[2]

(i) Evaluate: $\int \cos^{-1}(\sin x) dx$

OR

(ii) If $\int x^5 \cos(x^6) dx = k \sin(x^6) + C$, find the value of k.

If $\tan^{-1}\left(\frac{x-1}{x+1}\right) + \tan^{-1}\left(\frac{2x-1}{2x+1}\right) = \tan^{-1}\left(\frac{23}{36}\right)$ then prove that $24x^2 - 23x - 12 = 0$

Question 8 [4]

If $y = e^{ax} \cos bx$, then prove that $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$

Question 9 [4]

(i) In a company, 15% of the employees are graduates and 85% of the employees are non-graduates. As per the annual report of the company, 80% of the graduate employees and 10% of the non-graduate employees are in the Administrative position. Find the probability that an employee selected at random from those working in administrative position will be a graduate.

OR

- (ii) A problem in Mathematics is given to three students A, B and C. Their chances of solving the problem are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability that
 - (a) exactly two students will solve the problem.
 - (b) at least two of them will solve the problem.

Question 10 [4]

(i) Solve the differential equation: $(1 + y^2)dx = (\tan^{-1}y - x)dy$

(ii) Solve the differential equation: $(x^2 - y^2)dx + 2xydy = 0$

Question 11 [6]

Use matrix method to solve the following system of equations.

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$$

$$\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$$

 $\frac{6}{x} + \frac{9}{y} - \frac{20}{z} =$

Question 12 [6]

(i) Prove that the semi-vertical angle of the right circular cone of given volume and least curved area is $\cot^{-1} \sqrt{2}$.

OR

(ii) A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum, then find the length of its sides. Also calculate the area of the football field.

Question 13 [6]

(i) Evaluate: $\int \frac{3e^{2x} - 2e^x}{e^{2x} + 2e^x - 8} dx$

OR

(ii) Evaluate: $\int \frac{2}{(1-x)(1+x^2)} dx$

Question 14 [6]

A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.

SECTION B – 15 MARKS

Question 15 [5]

In subparts (i) and (ii) choose the correct options and in subparts (iii) to (v), answer the guestions as instructed.

- (i) If $|\vec{a}| = 3$, $|\vec{b}| = \frac{\sqrt{2}}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector then the angle between \vec{a} and \vec{b} will be:
 - (a) $\frac{\pi}{6}$

24

(b) $\frac{\pi}{4}$

(c) $\frac{\pi}{3}$

- (d) $\frac{\pi}{2}$
- (ii) The distance of the point $2\hat{i} + \hat{j} \hat{k}$ from the plane $r \cdot (\hat{i} 2\hat{j} + 4\hat{k}) = 9$ will be:
 - (a) 13

(b) $\frac{13}{\sqrt{21}}$

(c) 21

- (d) $\frac{21}{\sqrt{13}}$
- (iii) Find the area of the parallelogram whose diagonals are $\hat{i} 3\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$.
- (iv) Write the equation of the plane passing through the point (2, 4, 6) and marking equal intercepts on the coordinate axes.
- (v) If the two vectors $3\hat{i} + a\hat{j} + \hat{k}$ and $2\hat{i} \hat{j} + 8\hat{k}$ are perpendicular to each other, then find the value of a.

Question 16 [2]

- (i) A (1, 2, -3) and B (-1, -2, 1) are the end points of a vector \overrightarrow{AB} then find the unit vector in the direction of \overrightarrow{AB} .
- (ii) If \hat{a} is unit vector and $(2\vec{x}-3\hat{a}) \cdot (2\vec{x}+3\hat{a}) = 91$, find the value of $|\vec{x}|$.

Question 17 [4]

(i) Find the equation of the plane passing through the point (1, 1, -1) and perpendicular to the planes x + 2y + 3z = 7 and 2x - 3y + 4z = 0.

(ii) A line passes through the point (2, -1, 3) and is perpendicular to the lines $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - 2\hat{j} + \hat{k})$ and $\vec{r} = (2\hat{i} - \hat{j} - 3\hat{k}) + \mu(\hat{i} + 2\hat{j} + 2\hat{k})$. Obtain its equation.

Question 18 [4]

Find the area of the region bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

SECTION C – 15 MARKS

Question 19 [5]

In subparts (i) and (ii) choose the correct options and in subparts (iii) to (v), answer the questions as instructed.

- (i) If the demand function is given by $p = 1500 2x x^2$ then find the marginal revenue when x = 10
 - (a) 1160

(b) 1600

(c) 1100

- (d) 1200
- (ii) If the two regression coefficients are 0.8 and 0.2, then the value of coefficient of correlation *r* will be:
 - (a) ± 0.4

(b) ± 0.16

(c) 0.4

(d) 0.16

[4]

- (iii) Out of the two regression lines x + 2y 5 = 0 and 2x + 3y = 8, find the line of regression of y on x.
- (iv) The cost function $C(x) = 3x^2 6x + 5$. Find the average cost when x = 2.
- (v) The fixed cost of a product is $\stackrel{?}{\stackrel{?}{\stackrel{?}{?}}}$ 30,000 and its variable cost per unit is $\stackrel{?}{\stackrel{?}{\stackrel{?}{?}}}$ 800. If the demand function is p(x) = 14500 - 100x, find the break-even values.

Question 20 [2]

The total cost function for x units is given by $C(x) = \sqrt{6x+5} + 2500$. Show that the marginal cost decreases as the output x increases.

(ii) The average revenue function is given by $AR = 25 - \frac{x}{4}$.

Find total revenue function and marginal revenue function.

Question 21

Solve the following Linear Programming Problem graphically.

Maximise Z = 5x + 2y subject to:

$$x - 2y \le 2$$
,

$$3x + 2y \le 12,$$

$$-3x + 2y \le 3,$$

$$x \ge 0, y \ge 0$$

Question 22

[4] The following table shows the Mean, the Standard Deviation and the coefficient of correlation of two variables x and y.

Series	x	y
Mean	8	6
Standard deviation	12	4
Coefficient of correlation	0.6	

Calculate:

- (a) the regression coefficient b_{xy} and b_{yx}
- (b) the probable value of y when x = 20

(ii) An analyst analysed 102 trips of a travel company. He studied the relation between travel expenses (y) and the duration (x) of these trips. He found that the relation between x and y was linear. Given the following data, find the regression equation of y on x.

$$\Sigma x = 510, \Sigma y = 7140, \Sigma x^2 = 4150, \Sigma y^2 = 740200, \Sigma xy = 54900$$

SOLUTIONS

SECTION - A

1. (i) Option (a) is correct

Explanation: Given set is $A = \{1, 2, 3\}$ and given relation is $R = \{(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)\}$

R is reflexive as (1, 1), (2, 2), $(3, 3) \in R$

R is not transitive as (1, 2), $(2, 3) \in R \Rightarrow (1, 3) \notin R$

R is not symmetric as $(1, 2) \in R$ but $(2, 1) \notin R$

(ii) Option (c) is correct

Explanation: Given A is a square matrix of order 3 Then, $|2A| = 2^3 |A| = 8|A|$

(iii) Option (c) is correct

Explanation: As f(x) is continuous of x = 2

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (3x - 1)$$

$$= 3 \times 2 - 1 = 5$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2x + 1)$$

$$= 2 \times 2 + 1 = 5$$

$$\Rightarrow f(2^{-}) = f(2^{+}) = k$$
[Since f is continuous at $x = 2$]
$$\Rightarrow k = 5$$

(iv) Option (b) is correct

Explanation: Let the edge of cube be *x* cm

Then,

$$\frac{dx}{dt} = 10 \text{ cm/s} \qquad \dots \text{(i)}$$

Volume of cube,

$$V = x^3 \text{ cm}^3$$

$$V = x^2 \left(\frac{dx}{dx} \right)$$

:.

$$\frac{dx}{dt} = 3x^2 \left(\frac{dx}{dt}\right)$$

[On differentiating w.r.t t]

$$\left. \frac{dV}{dt} \right|_{x=5 \text{ cm}} = 3(5)^2 \times 10$$

[From eq (i), $\frac{dx}{dt} = 10 \text{ cm/s}$] = 750 cm³/s

(v) Option (c) is correct

Explanation:

Given,
$$f(x) = x^3$$

Domain of $f(x) = \{0, 1, 2, 3\}$
 \therefore Range of $f(x) = \{0^3, 1^3, 2^3, 3^3\}$
 $= \{0, 1, 8, 27\}$

f can be written as,

Now,
$$f = \{(0,0), (1,1), (2,8), (3,27)\}$$

$$f^{-1} = \{(0,0), (1,1), (8,2), (27,3)\}$$

Thus, domain of $f^{-1} = \{0, 1, 8, 27\}$

(vi) Option (d) is correct

Explanation: Given curve is $y^2 = 2x^3 - 7$

On differentiating w.r.t. x, we get

$$2y\frac{dy}{dx} = 6x^2$$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{3x^2}{y}$$

Slope of tangent at (2, 3) =
$$\frac{dy}{dx}\Big|_{at (2, 3)}$$

= $\frac{3(2)^2}{3}$ = 4

Hence slope of normal at (2, 3) is

$$= \frac{1}{\text{Slope of tangent at (2, 3)}}$$
$$= -\frac{1}{4}$$

(vii) Option (b) is correct

Explanation:

$$\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{2x}{x^2 + 1} dx$$
$$= \frac{1}{2} \log(x^2 + 1) + C$$

(viii) Option (d) is correct

Explanation: Let $u = \log x$ and $v = \frac{1}{x}$

$$\frac{dv}{dx} = \frac{1}{x}$$
and
$$\frac{dv}{dx} = -\frac{1}{x^2}$$
Thus,
$$\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}}$$

$$\frac{1}{2}$$

(ix) Option (a) is correct

Explanation:

Given, $f(x) = 5 + 36x - 3x^2$ \therefore f'(x) = 36 - 6xFor increasing function, 36 - 6x > 0 $\Rightarrow 6 - x > 0 \Rightarrow 6 > x$ Hence, $x \in (-\infty, 6)$

(x) Option (d) is correct

Explanation: Let $I = \int_{-1}^{1} x^{17} \cos^4 x \, dx$

Here, $f(x) = x^{17} \cos^4 x$ $f(-x) = -x^{17} \cos^4 x = -f(x)$ Thus, f(x) is an odd function.

We know that,

$$\int_{-a}^{u} f(x) dx = 0$$

$$I = \int_{-1}^{1} x^{17} \cos^4 x dx = 0$$

(xi) Given differential equation is

$$\frac{dy}{dx} = \csc y$$

$$\frac{dy}{\csc y} = dx$$

$$\Rightarrow \sin y \, dy = dx$$

$$\Rightarrow \int \sin y \, dy = \int dy$$

$$\Rightarrow -\cos y = x + C$$

$$\Rightarrow x + \cos y + C = 0$$
(xii) Let
$$A = \begin{bmatrix} 0 & k \\ -6 & 0 \end{bmatrix}$$

Given A is skew symmetric *i.e.*, A' = -A

Now,
$$A' = \begin{bmatrix} 0 & -6 \\ k & 0 \end{bmatrix}$$
Thus,
$$\begin{bmatrix} 0 & -6 \\ k & 0 \end{bmatrix} = -\begin{bmatrix} 0 & k \\ -6 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 & -6 \\ k & 0 \end{bmatrix} = \begin{bmatrix} 0 & -k \\ 6 & 0 \end{bmatrix}$$

On comparing corresponding elements, we get

(xiii)
$$\int_{0}^{1} |2x+1| dx = \int_{0}^{1} (2x+1) dx$$

$$= 2 \int_{0}^{1} x dx + \int_{0}^{1} 1 dx$$

$$= 2 \left[\frac{x^{2}}{2} \right]_{0}^{1} + [x]_{0}^{1}$$

$$= 1+1=2$$

$$= 1+1=2$$

$$= \int \frac{1+\cos x}{\sin^{2} x} dx = \int \frac{1+\cos x}{1-\cos^{2} x} dx$$

$$= \int \frac{1}{(1+\cos x)(1-\cos x)} dx$$

$$= \int \frac{1}{1-\cos x} dx$$

$$= \int \frac{1}{1-\cos x} dx$$

$$= \int \frac{1}{1-\cos x} dx$$

(xv) We have total number of tickets in bag from 1 to 19 = 1, 2, 3, ..., 19n(S) = 19

Total even number of tickets in the bag is 2, 4, ..., 18 n(E) = 9

Probability (Both the tickets drawn have even numbers)

$$= \frac{9}{19} \times \frac{9}{19}$$
$$= \left(\frac{9}{19}\right)^2$$

2. If f(x) is invertible then it is one-one and onto We have,

$f(x) = [4 - (x - 7)^3]^{1/5}$

One-One

$$f(x_1) = f(x_2)$$

$$\Rightarrow [4 - (x_1 - 7)^3]^{1/5} = [4 - (x_2 - 7)^3]^{1/5}$$

$$\Rightarrow 4 - (x_1 - 7)^3 = 4 - (x_2 - 7)^3$$
[Taking 5 power both sides]
$$\Rightarrow (x_1 - 7)^3 = (x_2 - 7)^3$$

$$\Rightarrow x_1 - 7 = x_2 - 7$$
[Taking cube root both sides]
$$\Rightarrow x_1 = x_2$$

$$\Rightarrow f \text{ is one-one}$$

<u>Onto</u>

Let
$$y = f(x) = [4 - (x - 7)^3]^{1/5}$$

 $\Rightarrow y^5 = 4 - (x - 7)^3$
 $\Rightarrow (x - 7)^3 = 4 - y^5$
 $\Rightarrow x - 7 = (4 - y^5)^{1/3}$
 $\Rightarrow x = (4 - y^5)^{1/3} + 7$
Thus, $\forall y \in R$, $\exists x = \sqrt[3]{4 - y^5} + 7 \in R$
 $\Rightarrow f$ is onto

 $f^{-1}(y) = x = \sqrt[3]{4 - y^5} + 7$ Hence,

We get $f^{-1}(x)$ if we replace y with x in above equation.

$$f^{-1}(x) = \sqrt[3]{4 - x^5} + 7$$

Given,
$$A = R - \{2\}$$
, $B = R - \{1\}$
and $f: A \rightarrow B$ is defined as $f(x) = \frac{x-1}{x-2}$

One-One

Let
$$x_1, x_2 \in A$$
 such that $f(x_1) = f(x_2)$

$$\frac{x_1 - 1}{x_1 - 2} = \frac{x_2 - 1}{x_2 - 2}$$

$$\Rightarrow (x_1 - 1)(x_2 - 2) = (x_2 - 1)(x_1 - 2)$$

$$\Rightarrow x_1x_2 - 2x_1 - x_2 + 2 = x_1x_2 - 2x_2 - x_1 + 2$$

$$\Rightarrow -2x_1 - x_2 = -2x_2 - x_1$$

$$\Rightarrow -2x_1 + x_1 = -2x_2 + x_2$$

$$\Rightarrow -x_1 = -x_2$$

$$\Rightarrow x_1 = x_2$$

$$\therefore f \text{ is one-one}$$

Let $y \in B = R - \{1\}$, then $y \neq 1$

The function f is onto if there exists $x \in A$ such that f(x) = y.

Now,
$$f(x) = y$$

$$\Rightarrow \frac{x-1}{x-2} = y$$

$$\Rightarrow x-1 = y(x-2)$$

$$\Rightarrow x-1 = xy-2y$$

$$\Rightarrow x(1-y) = 1-2y$$

$$\Rightarrow x = \frac{1-2y}{1-y} \in A \qquad (y \neq 1)$$

Thus, for any $y \in B$, $\exists x = \frac{1-2y}{1-y} \in A$ such that

$$f\left(\frac{1-2y}{1-y}\right) = \frac{\left(\frac{1-2y}{1-y}\right) - 1}{\left(\frac{1-2y}{1-y}\right) - 2}$$
$$= \frac{(1-2y) - (1-y)}{(1-2y) - 2(1-y)}$$
$$= \frac{-y}{-1} = y$$

Therefore f is onto.

3.
$$\begin{vmatrix} 5 & 5 & 5 \\ a & b & c \\ b+c & c+a & a+b \end{vmatrix}$$

$$= 5 \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{vmatrix}$$

$$[Taking 5 common from R_1]$$

$$= 5 \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a+b+c & a+b+c & a+b+c \end{vmatrix}$$

$$= 5(a+b+c)\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$$

[Taking a + b + c common from R_3] = $5(a + b + c) \times 0$

 $(R_1 \text{ and } R_3 \text{ are identical})$

= 0

4. Given,
$$P(A) = \frac{1}{3}$$
 and $P(B) = \frac{1}{2}$

Here, $P(A \cap B) = P(A).P(B)$

[Since, events are independent]

$$= \frac{1}{3}.$$

$$= \frac{1}{6}$$

Thus, P(neither A nor B occurring)

= 1 - P(both events occur)
= 1 - P(A \cap B)
= 1 -
$$\frac{1}{6}$$

= $\frac{5}{6}$

5. Given, $5 \tan^{-1} x + 3 \cot^{-1} x = 2\pi$...(i) We know that,

$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

$$\Rightarrow \qquad \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x$$

$$\therefore 5 \tan^{-1} x + 3 \left(\frac{\pi}{2} - \tan^{-1} x \right) = 2\pi \quad [From eq (i)]$$

$$\Rightarrow$$
 5 tan⁻¹ $x + \frac{3\pi}{2} - 3 \tan^{-1} x = 2\pi$

$$\Rightarrow \qquad 2 \tan^{-1} x = \frac{\pi}{2}$$

$$\Rightarrow \qquad \tan^{-1} x = \frac{\pi}{4}$$

$$\Rightarrow \qquad x = \tan\left(\frac{\pi}{4}\right)$$

$$\Rightarrow I = \int \cos^{-1}(\sin x) dx$$

Let
$$\cos^{-1}(\sin x) = \theta$$

 $\Rightarrow \sin x = \cos \theta$

$$\Rightarrow \qquad \sin x = \sin\left(\frac{\pi}{2} - \theta\right)$$

$$\Rightarrow \qquad \qquad x = \frac{\pi}{2} - \theta$$

$$\Rightarrow \qquad \qquad \theta = \frac{n}{2} - x$$

$$= \int \left(\frac{\pi}{2} - x\right) dx$$
$$= \frac{\pi}{2} x - \frac{x^2}{2} + C$$

(ii) Let
$$I = \int x^5 \cos(x^6) dx$$

Put
$$x^{6} = t$$

$$\Rightarrow 6x^{5}dx = dt$$

$$\Rightarrow x^{5}dx = \frac{dt}{6}$$

$$\therefore I = \frac{1}{6}\int \cos t \, dt$$

$$= \frac{1}{6}\sin t + C$$

$$= \frac{1}{6}\sin(x^{6}) + C$$

According to question,

$$\int x^5 \cos(x^6) dx = k \sin(x^6) + C$$

$$\therefore \frac{1}{6}\sin(x^6) + C = k\sin(x^6) + C$$

On comparing, we get

$$k = \frac{1}{6}$$

7.
$$\tan^{-1} \left(\frac{x-1}{x+1} \right) + \tan^{-1} \left(\frac{2x-1}{2x+1} \right) = \tan^{-1} \left(\frac{23}{36} \right)$$

$$\Rightarrow \tan^{-1} \left(\frac{\frac{x-1}{x+1} + \frac{2x-1}{2x+1}}{1 - \left(\frac{x-1}{x+1}\right) \left(\frac{2x-1}{2x+1}\right)} \right) = \tan^{-1} \left(\frac{23}{36}\right)$$

$$[\because \tan^{-1} A + \tan^{-1} B = \tan^{-1} \left(\frac{A+B}{1-AB} \right)]$$

$$\Rightarrow \tan^{-1}\left[\frac{(x-1)(2x+1)+(2x-1)(x+1)}{(x+1)(2x+1)-(x-1)(2x-1)}\right]$$

$$= \tan^{-1}\left[\frac{23}{36}\right]$$

$$\Rightarrow \tan^{-1}\left[\frac{(2x^2-x-1)+(2x^2+x-1)}{(2x^2+3x+1)-(2x^2-3x+1)}\right]$$

$$= \tan^{-1}\left[\frac{23}{36}\right]$$

$$\Rightarrow \tan^{-1}\left[\frac{4x^2-2}{6x}\right] = \tan^{-1}\left(\frac{23}{36}\right)$$

$$\Rightarrow \frac{4x^2-2}{6x} = \frac{23}{36}$$

$$\Rightarrow \frac{2x^2-1}{3x} = \frac{23}{36}$$

$$\Rightarrow \frac{36(2x^2-1)=23(3x)}{12(2x^2-1)=23x}$$

$$\Rightarrow 24x^2-23x-12=0 \quad \text{Hence Proved}$$
8. Given,
$$y=e^{ax}\cos bx \qquad ...(i)$$

$$\frac{dy}{dx}=ae^{ax}\cos bx-be^{ax}\sin bx \qquad ...(ii)$$

$$\therefore \frac{dy}{dx}=ay-be^{ax}\sin bx \qquad [from eq. (i)]$$

$$\frac{d^2y}{dx^2}=a\frac{dy}{dx}-b(ae^{ax}.\sin bx+be^{ax}\cos bx)$$

$$\frac{d^2y}{dx^2}=a\frac{dy}{dx}-a\left(ay-\frac{dy}{dx}\right)-b^2y$$

$$\frac{d^2y}{dx^2}=a\frac{dy}{dx}-a\left(ay-\frac{dy}{dx}\right)-b^2y$$

$$\frac{d^2y}{dx^2}=a\frac{dy}{dx}-a^2y+a\frac{dy}{dx}-b^2y$$

$$\therefore \frac{d^2y}{dx^2}-2a\frac{dy}{dx}+(a^2+b^2)y=0$$

9. Probability of graduate employees

15

$$P(E_1) = \frac{15}{100}$$

Probability of non-graduate employees

$$= P(E_2) = \frac{85}{100}$$

Probability of graduate employees in Administrative position

$$= P\left(\frac{A}{E_1}\right) = \frac{80}{100}$$

Probability of non-graduate employees Administrative position

$$= P\left(\frac{A}{E_2}\right) = \frac{10}{100}$$

By Bayes' Theorem

$$P\left(\frac{E_1}{A}\right) = \frac{P(E_1).P\left(\frac{A}{E_1}\right)}{P(E_1).P\left(\frac{A}{E_1}\right) + P(E_2).P\left(\frac{A}{E_2}\right)}$$

$$= \frac{\frac{80}{100} \times \frac{15}{100}}{\frac{80}{100} \times \frac{15}{100}} \times \frac{15}{100} \times \frac{10}{100}$$

$$= \frac{1200}{1200 + 850}$$

$$= \frac{1200}{2050}$$

$$= 0.5853$$

$$= 0.59$$
OR

Given,
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{4}$
 $P(\overline{A}) = \frac{1}{2}$, $P(\overline{B}) = \frac{2}{3}$, $P(\overline{C}) = \frac{3}{4}$

(a) Probability that exactly two students will solve the problem

problem
=
$$P(A \cap B \cap \bar{C}) + P(A \cap \bar{B} \cap C) + P(\bar{A} \cap B \cap C)$$

= $P(A) \cdot P(B) \cdot P(\bar{C}) + P(A) \cdot P(\bar{B}) \cdot P(C)$
+ $P(\bar{A}) \cdot P(B) \cdot P(C)$
= $\frac{1}{2} \times \frac{1}{3} \times \frac{3}{4} + \frac{1}{2} \times \frac{2}{3} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}$
= $\frac{3+2+1}{2 \times 3 \times 4}$
6 1

- (b) Probability that atleast two of them will solve the
 - = Probability that exactly two students will solve the problem + Probability that all solve the problem

$$= \frac{1}{4} + P(A) \cdot P(B) \cdot P(C)$$
 [from (a)]
$$= \frac{1}{4} + \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} = \frac{1}{4} + \frac{1}{24}$$

$$= \frac{7}{24}$$

10. (i) We have, $(1 + y^2)dx = (\tan^{-1} y - x)dy$

$$\Rightarrow \frac{dx}{dy} = \frac{\tan^{-1} y}{1 + y^2} - \frac{x}{1 + y^2}$$

$$\Rightarrow \frac{dx}{dy} + \frac{x}{1+y^2} = \frac{\tan^{-1}y}{1+y^2}$$

which is of the form $\frac{dx}{dy} + Px = Q$

$$: IF = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$$

$$I.F = e^{\int \frac{1}{1+y^2} dx} = e^{\tan^{-1} y}$$

$$I.F \times x = \int I.F. \times Q dy$$

$$\Rightarrow e^{\tan^{-1} y.x} = \int e^{\tan^{-1} y} \cdot \frac{\tan^{-1} y}{1+y^2} dy$$

$$\Rightarrow e^{\tan^{-1}}y.x = \int_{\Pi}^{e^{t}} t.dt$$

$$\Rightarrow e^{\tan^{-1}}y.x = t.e^{t} - \int 1.e^{t}dy$$

$$= t.e^{t} - e^{t} + c$$

$$= e^{t}(t-1) + c$$

$$\Rightarrow e^{\tan^{-1}}y.x = e^{\tan^{-1}}y(\tan^{-1}y-1) + c$$

$$OR$$
Given, $(x^{2} - y^{2})dx + 2xy dy = 0$

$$\frac{dy}{dx} = \frac{x^{2} - y^{2}}{2xy}$$

$$\frac{dy}{dx} = \frac{y^{2} - x^{2}}{2xy}$$
Put $y = vx$, $\frac{dy}{dx} = v + \frac{xdv}{dx}$

$$\Rightarrow v + x\frac{dv}{dx} = \frac{v^{2}x^{2} - x^{2}}{2xvx}$$

$$\Rightarrow v + x\frac{dv}{dx} = \frac{x^{2}(v^{2} - 1)}{x^{2}2v}$$

$$\Rightarrow x\frac{dv}{dx} = \frac{v^{2} - 1 - 2v^{2}}{2v}$$

$$\Rightarrow x\frac{dv}{dx} = \frac{v^{2} - 1 - 2v^{2}}{2v}$$

$$\Rightarrow x\frac{dv}{dx} = -\frac{(1 + v^{2})}{2v}$$

$$\Rightarrow \frac{2v}{1 + v^{2}}dv = -\frac{1}{x}dx$$

by Superable Method on integrating both side

$$\int \frac{2v}{1+v^2} dx = \int \frac{1}{x} dx$$

$$\Rightarrow \log(1+v^2) = -\log x + \log c$$

$$\Rightarrow \log(1+v^2) = \log \frac{c}{x}$$

$$\Rightarrow (1+v^2) = \frac{c}{x}$$

$$\Rightarrow x(1+v^2) = c$$

$$\Rightarrow \frac{x(x^2+y^2)}{x^2} = c$$

$$\Rightarrow x^2 + y^2 = cx$$

11. Given system of equations is

 \Rightarrow

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$$

$$\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$$

$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$
1 1 1

Let $\frac{1}{x} = u$, $\frac{1}{y} = v$, $\frac{1}{z} = w$

The system of equations become
$$2u + 3v + 10w = 4$$
$$4u - 6v + 5w = 1$$
$$6u + 9v - 20w = 2$$

EMATICS, Class-XII

Writing equation as
$$AX = B$$

$$\begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix} \begin{bmatrix} u \\ v \\ \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$
Hence, $A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix} X = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$ and $B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$

$$|A| = 2 \begin{vmatrix} -6 & 5 \\ 9 & -20 \end{vmatrix} - 3 \begin{vmatrix} 4 & 5 \\ 6 & 20 \end{vmatrix} + 10 \begin{vmatrix} 4 & -6 \\ 6 & 9 \end{vmatrix}$$

$$= 2(120 - 45) - 3(-80 - 30) + 10(36 + 36)$$

$$= 2(75) - 3(-110) + 10(72)$$

$$= 150 + 330 + 720$$

$$= 1200$$

$$\therefore |A| \neq 0$$
So, the system of equation is consistent and has unique solution

Now,
$$A^{-1} = \frac{1}{|A|} \text{ adj}(A)$$

$$= \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{12} & A_{22} & A_{23} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{12} & A_{22} & A_{23} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$
Now,
$$A^{-1} = \frac{1}{|A|} \text{ adj}(A)$$

$$= \frac{1}{|$$

Hence, $u = \frac{1}{2}$, $v = \frac{1}{3}$, and $w = \frac{1}{5}$

Thus, x = 2, y = 3 and z = 5

Let h, r and α be the height, radius and semi-vertical angle of the right angled triangle.

We know, volume of cone is given by

$$V = \frac{1}{3}\pi r^2 h$$
$$h = \frac{3V}{\pi r^2}$$

Also, slant height, $l = \sqrt{h^2 + r^2}$

Curved surface area is given by

$$A = \pi r l = \pi r \sqrt{r^2 + h^2}$$

$$A = \pi r \sqrt{r^2 + \frac{9V^2}{\pi^2 r^4}}$$

$$\therefore A = \sqrt{\pi^2 r^4 + \frac{9V^2}{r^2}}$$

Differentiating the above w.r.t. r, we get

$$\frac{dA}{dr} = \frac{1}{2\sqrt{\pi^2 r^4 + \frac{9V^2}{r^2}}} \left(4\pi^2 r^3 - \frac{18V^2}{r^3} \right)$$

A is maximum or minimum, when $\frac{dA}{dr} = 0$

$$\therefore \frac{1}{2\sqrt{\pi^2 r^4 + \frac{9V^2}{r^2}}} \left(4\pi^2 r^3 - \frac{18V^2}{r^3} \right) = 0$$

$$\Rightarrow \qquad 4\pi^2 r^3 - 18V^2 r^{-3} = 0$$

$$\Rightarrow \qquad 4\pi^2 r^3 = 18V^2 r^{-3}$$

$$\Rightarrow \qquad 4\pi^2 r^3 = 18\left(\frac{1}{3}\pi r^2 h\right)^2 r^{-3}$$

$$\Rightarrow \qquad \frac{h}{r} = \sqrt{2}$$

 $\cot \theta = \sqrt{2}$

Hence, semi-vertical angle, $\theta = \cot^{-1} \sqrt{2}$

Also, for
$$r < \left(\frac{3V}{\pi\sqrt{2}}\right)^{\frac{1}{3}}$$
, $\frac{dA}{dr} < 0$
and for $r > \left(\frac{3V}{\pi\sqrt{2}}\right)^{\frac{1}{3}}$, $\frac{dA}{dr} > 0$

So, curved surface area for $r^3 = \frac{3V}{\pi\sqrt{2}}$ or $V = \frac{\pi r^3\sqrt{2}}{3}$

is the least.

Thus,

OR

Here, area of rectangular portion = 2rx

and perimeter of track = $2x + 2\pi r$

Given perimeter of track = 440 m

$$\therefore 2x + 2\pi r = 440 \dots (i)$$

So, area of rectangular portion, $A = r(440 - 2\pi r)$

[from (i)]
$$A = 440r - 2\pi r^2$$

Differentiating A w.r.t. r, we get

$$\frac{dA}{dr} = 440 - 4\pi r$$

Area to be maximum,

$$\frac{dA}{dr} = 0$$

$$\therefore \qquad 440 - 4\pi r = 0$$

$$\Rightarrow \qquad r = \frac{110}{\pi}$$

Now,
$$\frac{d^2A}{dr^2} = -4\pi < 0$$

From (i), we get

$$2x = 440 - 2\pi r$$

$$= 440 - 2\pi \left(\frac{110}{\pi}\right)$$

$$\left[\because r = \frac{110}{\pi}\right]$$

$$= 440 - 220$$

$$= 220$$

Hence sides of rectangle are $2r = \frac{220}{\pi}$ m and

x = 110 m

Area of football field = Area of rectangle + 2(area of semicircle) = $x \times 2r + 2\left(\frac{\pi r^2}{2}\right)$ [r = radius of semi-circle]

$$[r = \text{radius of sem}]$$

$$= 110 \times \frac{220}{\pi} + \pi \left(\frac{110}{\pi}\right)^{2}$$

$$= \frac{24200}{\pi} + \frac{12100}{\pi}$$

$$= \frac{36300}{\pi}$$

$$= \frac{36300}{22} \times 7$$

$$= 1650 \times 7$$

$$= 11,550 \text{ m}^{2}$$

$$= \frac{3e^{2x} - 2e^{x}}{\pi}$$

13. (i) Let
$$I = \int \frac{3e^{2x} - 2e^x}{e^{2x} + 2e^x - 8} dx$$

let
$$e^x = t$$

 $\Rightarrow \qquad e^x dx = dt$
 $\Rightarrow \qquad dx = \frac{dt}{t}$

$$I = \int \frac{3t^2 - 2t}{t^2 + 2t - 8} \frac{dt}{t}$$

$$= \int \frac{3t - 2}{t^2 + 2t - 8} dt$$
Now,
$$\frac{3t - 2}{t^2 + 2t - 8} = \frac{3t - 2}{(t + 4)(t - 2)}$$
So,
$$\frac{3t - 2}{(t + 4)(t - 2)} = \frac{A}{(t + 4)} + \frac{B}{(t - 2)}$$

$$3t - 2 = A(t - 2) + B(t + 4)$$

$$3t - 2 = (A + B)t + (4B - 2A)$$
On comparing, we get
$$A + B = 3 \qquad ...(i)$$
and
$$4B - 2A = -2$$
or
$$2B - A = -1 \qquad ...(ii)$$
On solving eqs. (i) & (ii), we get
$$A = \frac{7}{3} \text{ and } B = \frac{2}{3}$$

$$\therefore \frac{3t - 2}{t^2 + 2t - 8} = \frac{7}{3} \frac{1}{(t + 4)} + \frac{2}{3} \frac{1}{t - 2} dt$$

$$= \frac{7}{3} \log |t + 4| + \frac{2}{3} \log |t - 2| + C$$

$$= \frac{7}{3} \log |t + 4| + \frac{2}{3} \log |t - 2| + C$$
[substituting $t = e^x$]

OR

(ii) Let
$$I = \int \frac{2}{(1 - x)(1 + x^2)}$$

$$= \frac{A}{(x - 1)(1 + x^2)}$$
Applying partial fraction,
$$\frac{2}{(x - 1)(1 + x^2)} = \frac{A}{(x - 1)(1 + x^2)}$$

$$-2 = \frac{A}{(x - 1)(1 + x^2)}$$
Applying partial fraction,
$$\frac{2}{(x - 1)(1 + x^2)} = \frac{A}{(x - 1)(1 + x^2)}$$

$$-2 = A(1 + x^2) + (Bx + C)(x - 1)$$

$$\therefore (i)$$
Putting $x = 1$, we get
$$-2 = 2A + 0$$

$$\Rightarrow A = -1$$
Putting $x = 0$, we get
$$-2 = A + (-C)$$

$$-2 = -1 - C$$

$$= 1$$
Putting $A = -1$, $C = 1$ in eq (i), we get

So, $\frac{-2}{(x-1)(1+x^2)} = \frac{-1}{(x-1)} + \frac{x+1}{(x^2+1)}$

 $I = \int -\frac{1}{(x-1)} dx + \int \frac{x+1}{x^2+1} dx$

$$= -\int \frac{1}{(x-1)} dx + \int \frac{x}{x^2+1} dx + \int \frac{1}{x^2+1} dx$$

$$= -\int \frac{1}{(x-1)} dx + I_1 + \int \frac{1}{x^2+1} dx$$
where $I_1 = \int \frac{x}{x^2+1} dx$
let $x^2 + 1 = t$

$$\Rightarrow 2x dx = dt$$

$$\Rightarrow xdx = \frac{dt}{2}$$

$$\therefore I_1 = \frac{1}{2} \int \frac{dt}{t}$$

$$= \frac{1}{2} \log |t| + C$$

$$= \frac{1}{2} \log |x^2+1| + C_1 \qquad ...(ii)$$
Thus, $I = -\int \frac{1}{(x-1)} dx + \int \frac{x}{x^2+1} dx + \int \frac{1}{x^2+1} dx$

$$= -\log |x-1| + \frac{1}{2} \log |x^2+1|$$

$$+ \tan^{-1} x + C_1 + C_2$$
[from eq. (ii)]
$$= -\log |x-1| + \frac{1}{2} \log |x^2+1|$$

$$+ \tan^{-1} x + C$$
[$C = C_1 + C_2$]
Number of truits = 30
Number of truits = 30
Number of truits = 10
Number of unspoiled fruits = 10
Number of unspoiled fruits P(totten) = $\frac{10}{30}$
Probability of the truits P(totten) = $\frac{10}{30}$
Let X be the random variable of number of unspoiled fruit.
So, $X = 0, 1, 2$
Two fruit can be drawn in 30 fruits
$$P(X = 0) = \text{Two fruits are spoiled fruits}$$

$$= \frac{^{10}C_2}{^{30}C_2} = \frac{10 \times 9 \times 2}{2 \times 30 \times 29}$$

$$= \frac{9}{87}$$

$$P(X = 1) = 1 \text{ fruit is unspoiled and 1 fruit is spoiled}$$

$$= \frac{^{20}C_1, ^{10}C_1}{^{30}C_2} = \frac{20 \times 10 \times 2}{30 \times 29}$$

P(X = 2) = Two fruits are unspoiled

 $=\frac{{}^{20}C_2}{{}^{30}C_2}=\frac{20\times19\times2}{30\times29\times2}$

Mean of probability distribution

$$= \sum X_i P(X_i)$$

$$= X_0 P(X_0) + X_1 P(X_1) + X_2 P(X_2)$$

$$= 0 \times \frac{9}{87} + 1 \times \frac{40}{87} + 2 \times \frac{38}{87}$$

$$= \frac{116}{87} = 1.33$$

SECTION - B

15. (i) Option (b) is correct

Explanation: Given,
$$|\overrightarrow{a}| = 3$$
, $|\overrightarrow{b}| = \frac{\sqrt{2}}{3}$

and
$$|\overrightarrow{a} \times \overrightarrow{b}| = 1$$

We know that,

$$|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}| = |\stackrel{\rightarrow}{a}| |\stackrel{\rightarrow}{b}| \sin \theta \hat{n}|$$

where θ is the angle between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$

$$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta.1$$

$$\Rightarrow 1 = 3 \times \frac{\sqrt{2}}{3} \sin \theta$$

$$\Rightarrow \qquad \sin \theta = \frac{1}{\sqrt{2}} = \sin \frac{\pi}{4}$$

$$\theta = \frac{\pi}{4}$$

(ii) Option (b) is correct

Explanation: We know that

distance =
$$\frac{\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{n} - d \\ \overrightarrow{a} \cdot \overrightarrow{n} - d \end{vmatrix}}{\begin{vmatrix} \overrightarrow{n} \\ \end{vmatrix}}$$

Given,
$$\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$$
, $\vec{n} = \hat{i} - 2\hat{j} + 4\hat{k}$, $\vec{d} = 9$

$$\therefore \text{ distance} = \frac{|(2\hat{i} + \hat{j} - \hat{k}).(\hat{i} - 2\hat{j} + 4\hat{k}) - 9|}{|\hat{i} - 2\hat{j} + 4\hat{k}|}$$

$$= \frac{|2 - 2 - 4 - 9|}{\sqrt{1 + 4 + 16}}$$

$$= \frac{13}{\sqrt{21}}$$

(iii) Let
$$\overrightarrow{d_1} = \widehat{i} - 3\widehat{j} + \widehat{k}$$
 and $\overrightarrow{d_2} = \widehat{i} + \widehat{j} + \widehat{k}$

Area of parallelogram =
$$\frac{1}{2} \begin{vmatrix} \overrightarrow{d_1} \times \overrightarrow{d_2} \end{vmatrix}$$

$$\overrightarrow{d_1} \times \overrightarrow{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \hat{i}(-3-1) - \hat{j}(1-1) + \hat{k}(1+3)$$

$$= -4\hat{i} + 4\hat{k}$$

$$|\vec{d_1} \times \vec{d_2}| = \sqrt{(-4)^2 + (4)^2}$$

$$= \sqrt{16 + 16} = \sqrt{32}$$

Thus, area of parallelogram

$$= \frac{1}{2}\sqrt{32} \text{ unit}^2$$
$$= \sqrt{8} \text{ unit}^2$$

(iv) The equation of the plane intercepts on the coordinate axes area a, b and c is

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Given,

$$a = b = c$$

$$\therefore \frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$$

$$\Rightarrow x + y + z = a$$

This plane passes through point (2, 4, 6).

$$\therefore \qquad 2+4+6=a$$

$$a = 12$$

Thus, required equation of plane is x + y + z = 12.

(v) For perpendicular vectors $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

$$\therefore (3\hat{i} + \alpha\hat{j} + \hat{k}).(2\hat{i} - \hat{j} + 8\hat{k}) = 0$$

$$6 - \alpha + 8 = 0$$

$$\alpha = 14$$

16. (i) We have, A(1, 2, -3) and B(-1, -2, 1)

$$\stackrel{\rightarrow}{AB} = (-1-1)\hat{i} + (-2-2)\hat{j} + (1+3)\hat{k}$$

$$\therefore \qquad \stackrel{\rightarrow}{AB} = -2\hat{i} - 4\hat{j} + 4\hat{k}$$

Unit vector in direction of AB

$$= \frac{-2\hat{i} - 4\hat{j} + 4\hat{k}}{\sqrt{(-2)^2 + (-4)^2 + (4)^2}}$$

$$= \frac{-2(\hat{i} + 2\hat{j} - 2\hat{k})}{\sqrt{4 + 16 + 16}}$$

$$= \frac{-2(\hat{i} + 2\hat{j} - 2\hat{k})}{6}$$

$$= -\frac{1}{3}(\hat{i} + 2\hat{j} - 2\hat{k})$$

(ii) Given,
$$(2\vec{x} - 3\hat{a}).(2\vec{x} + 3\hat{a}) = 91$$

 $\Rightarrow 4|\vec{x}|^2 + 6\vec{x}.\hat{a} - 6\hat{a}.\vec{x} - 9|\hat{a}|^2 = 91$
 $\Rightarrow 4|\vec{x}|^2 + 6.\vec{x}.1 - 6.1.\vec{x} - 9.1 = 91 \quad [\because \hat{a} = 1]$
 $\Rightarrow 4|\vec{x}|^2 = 100$

$$\Rightarrow \qquad |\overrightarrow{x}|^2 = 25$$

$$\Rightarrow |\overrightarrow{x}| = 5$$

17. Let the equation of plane passing through point (1, 1, -1) be

$$a(x-1) + b(x-1) + c(x+1) = 0$$

Eq (i) is perpendicular to the plane x + 2y + 3z - 7= 0

∴
$$1.a + 2.b + 3.c = 0$$

⇒ $a + 2b + 3c = 0$...(ii)

Again eq (i) is perpendicular to plane 2x - 3y + 4z = 0

∴
$$2.a - 3.b + 4.c = 0$$

⇒ $2a - 3b + 4c = 0$...(iii)

On solving eqs (ii) and (iii), we get

$$\frac{a}{8+9} = \frac{b}{6-4} = \frac{c}{-3-4}$$

$$\frac{a}{17} = \frac{b}{2} = \frac{c}{-7} = k$$

 $\Rightarrow a = 17k, b = 2k \text{ and } c = -7k$

 \Rightarrow

Putting the values of a, b and c in eq (i), we get

$$17k(x-1) + 2k(y-1) - 7k(z+1) = 0
\Rightarrow 17(x-1) + 2(y-1) - 7(z+1) = 0
\Rightarrow 17x + 2y - 7z - 17 - 2 - 7 = 0
\Rightarrow 17x + 2y - 7z - 26 = 0$$

Let eq. of required line passing Through (2, -1, 3) is

$$\overrightarrow{r} = (2\overrightarrow{i} - \overrightarrow{j} - 3\overrightarrow{k}) + \mu(\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k})$$

eq. (1) is perpendicular to

$$\vec{r} = (\vec{i} - \vec{j} - \vec{k}) + \lambda(2\vec{i} + \vec{j} + \vec{k})$$

$$\therefore 2x - 2y + 2 = 0$$

Again eq (i) is perpendicular to

$$\vec{r} = (2\vec{i} - \vec{j} - 3\vec{k}) + \pi(\vec{i} + 2\vec{j} + 2\vec{k})$$

$$\therefore k + 2y + 22 = 0$$

On solving eq. (2) and (3) we get

$$\frac{x}{-4-2} = \frac{y}{1-4} = \frac{z}{4-2}$$

$$\frac{x}{-6} = \frac{y}{-3} = \frac{z}{2} = k$$

 $\Rightarrow x = -6 k, y = 3k \text{ and } z = 2k$

Putting the values of x, y and z k eq

we get
$$\overrightarrow{r} = (2\overrightarrow{i} - 3\overrightarrow{j} + 3\overrightarrow{k}) + \lambda_1(-6\overrightarrow{i} - 3\overrightarrow{j} + 3\overrightarrow{k})$$

18. Given curve $x^2 = 4y$... (i) represents an upward parabola with vertex (0, 0) and axis along *y*-axis

Given equation of line is x = 4y - 2 ...

On solving eqs (i) & (ii), we get

$$x^{2} = x + 2$$

$$\Rightarrow x^{2} - x - 2 = 0$$

$$\Rightarrow (x - 2)(x + 1) = 0$$

$$\Rightarrow x = 2, -1$$
when
$$x = 2, y = 1$$

and

$$x = -1, y = \frac{1}{4}$$

Thus, line meets the parabola at the points

A(2, 1) and B
$$\left(-1, \frac{1}{4}\right)$$
.

Y

 $x^2 = \frac{1}{4}$

Required area = (Area under the line x = 4y - 2) - (Area under the parabola $x^2 = 4y$) = $\int_{-1}^{2} \left(\frac{x+2}{4} \right) dx - \int_{-1}^{2} \frac{x^2}{4} dx$

[From eq. (ii), $y = \frac{x+2}{4}$ and from eq. (i), $y = \frac{x^2}{4}$]

$$= \frac{1}{4} \left[\frac{x^2}{2} + 2x \right]_{-1}^{2} - \frac{1}{4} \left[\frac{x^3}{3} \right]_{-1}^{2}$$

$$= \frac{1}{4} \left[\left\{ \frac{2^2}{2} + 2(2) \right\} - \left\{ \frac{(-1)^2}{2} + 2(-1) \right\} \right]$$

$$- \frac{1}{12} (2^3 - (-1)^3)$$

$$= \frac{1}{4} \left(6 + \frac{3}{2} \right) - \frac{1}{12} \times 9$$

$$= \frac{15}{8} - \frac{9}{12}$$

$$= \frac{9}{8} \text{ sq. unit}$$

SECTION - C

19. (i) Option (a) is correct.

(a) Option (a) is correct.

Explanation: Given, $p = 1500 - 2x - x^2$ Revenue function, R = px $R = 1500x - 2x^2 - x^3$ Marginal revenue $= \frac{dR}{dx}$ $= \frac{d}{dx} (1500x - 2x^2 - x^3)$

$$= 1500 - 4x - 3x^{2}$$
Marginal revenue at $x = 10$ is
$$= 1500 - 4(10) - 3(10)^{2}$$

= 1500 - 40 - 300= 1160

(ii) Option (c) is correct.

Explanation: $r = \sqrt{0.8 \times 0.2}$ = $\sqrt{0.16}$

$$= \sqrt{(0.4)^2}$$
$$= 0.4$$

Here, correlation coefficient will be positive because both the coefficients are positive.

(iii)
$$x + 2y - 5 = 0$$
 ...(i) $2x + 3y = 8$...(ii)

Let eq (i), be on x and eq. (ii) be x on

Slope of eq (i) =
$$-\frac{1}{2}$$

Slope of eq (ii) =
$$-\frac{2}{3}$$

$$\Rightarrow b_{yx} = -\frac{1}{2}, & +\frac{1}{b_{xy}} = -\frac{1}{3}$$

$$\Rightarrow \qquad b_{yx} = -\frac{1}{2}, \& b_{xy} = \frac{-3}{2}$$

Since both b_{yx} and b_{xy} are of since sign and

$$b_{yx} \times b_{xy} = -\frac{1}{2} \times \frac{-3}{2} = \frac{3}{4} < 1$$

.. Our assumption is true

Hence eq. (i) i.e., x + 2y - 5 = 0 is a line of regression of y on x.

From eq (ii), the regression line of y on x is

$$C(x) = 3x^2 - 6x + 5$$

Average cost =
$$\frac{C(x)}{x}$$

$$= 3x - 6 + \frac{5}{x}$$

(Average cost)<sub>at
$$x = 2$$</sub> = 3(2) - 6 + $\frac{5}{2}$

$$=\frac{5}{2}=2.5$$

(v) Total
$$cost = fixed cost + variable cost$$

C(x) = 70,000 + 800x

where x = total unit

Also, revenue function, R(x) = p.x

$$= (4500 - 100x)x$$

[: Given
$$p = 4500 - 100x$$
]

$$=4500x-100x^2$$

Profit function P(x) = R(x) - C(x)

$$= 4500x - 100x^2 - 30000 - 800x$$
$$= -100x^2 + 3700x - 30000$$

At break even point, P(x) = 0

$$\therefore -100x^2 + 3700x - 30000 = 0$$

or,
$$x^2 - 37x + 300 = 0$$

$$x = \frac{+37 \pm \sqrt{(-37)^2 - 4(1)(300)}}{2 \times 1}$$

$$= \frac{37 \pm \sqrt{1369 - 1200}}{2}$$

$$= \frac{37 \pm 13}{2}$$

$$= \frac{37 + 13}{2} \text{ and } \frac{37 - 13}{2}$$

$$=\frac{50}{2} \text{ and } \frac{24}{2}$$

= 25 and 12

So, break even values are 25 and 12.

20. (i) Given, $C(x) = \sqrt{6x+5} + 2500$

$$MC = \frac{dC}{dx}$$

$$=\frac{d}{dx}[\sqrt{6x+5}+2500]$$

or,
$$MC = \frac{1}{2}(6x+5)^{-1/2}(6)$$

or,
$$MC = \frac{3}{\sqrt{6x + 5}}$$

Now, put
$$x = 2$$
,

$$MC = \frac{3}{\sqrt{12+5}} = \frac{3}{\sqrt{17}}$$

$$=\frac{3}{4.12}=0.72$$

Put x = 3,

$$MC = \frac{3}{\sqrt{18+5}} = \frac{3}{\sqrt{23}}$$
$$= \frac{3}{479} = 0.62$$

So, it is clear, as we increase output x, MC decreases.

OR

(ii) Given, average revenue = $AR = 25 - \frac{x}{4}$

Since, $AR = \frac{R}{x}$

$$=\frac{p.x}{x}=p$$

$$\therefore \qquad p = 25 - \frac{x}{4}$$

Total revenue
$$R(x) = p.x = 25x - \frac{x^2}{4}$$

Marginal revenue, MR =
$$\frac{d}{dx}R(x)$$

= $\frac{d}{dx}\left(25x - \frac{x^2}{4}\right)$
= $25 - \frac{x}{2}$

21. Given LPP is

Subject to:
$$\begin{aligned} \text{Max } z &= 5x + 2y \\ x - 2y &\leq 2 \\ 3x + 2y &\leq 12 \\ -3x + 2y &\leq 3 \end{aligned}$$

$$x \ge 0, y \ge 0$$

Converting the inequations into equations, we get

$$x - 2y = 2 \qquad \dots$$

$$3x + 2y = 12$$
 ...(ii)

$$-3x + 2y = 3$$
 ...(iii)
 $x = 0, y = 0$...(iv)

On plotting the above set of equation, we get the corner points as A(0, 1.5), B(3.5, 0.75), C(2, 0), D(1.5, 3.75), O(0, 0).

The value of the objective function are:

Point (x, y)	z = 5x + 2y
A(0, 1.5)	$5 \times 0 + 2 \times 1.5 = 3$
B(3.5, 0.75)	$5 \times 3.5 + 2 \times 0.75 = 19 \text{ (max)}$
C(2, 0)	$5 \times 2 + 2 \times 0 = 10$
D(1.5, 3.75)	$5 \times 1.5 + 2 \times 3.75 = 15$
O(0, 0)	$5 \times 0 + 2 \times 0 = 0$

So, maximum value of z is 19.

$$r = 0.6$$

Mean of $x = \overline{x} = 8$

Mean of
$$y = \overline{y} = 6$$

S.D. of
$$x = \sigma_x = 12$$

$$SD of u = \sigma^2 = 1$$

S.D. of
$$y = \sigma_y = 4$$

$$= \frac{0.6 \times 12}{4} = 1.8$$

$$b_{yx} = \frac{r\sigma_y}{\sigma_{yy}} = \frac{0.6 \times 4}{(12)}$$

$$\theta_x$$
 (12)
$$= \frac{0.6 \times 4}{12} = 0.2$$

(ii) Regression line *y* on *x* is given by

$$y - \overline{y} = b_{yx}(x - \overline{x})$$

y - 6 = 0.2 (x - 8)
$$y = 0.2x - 1.6 + 6$$

= 0.2x + 4.4

at
$$x = 20$$

$$= 0.2 \times 20 + 4.4$$

$$= 4 + 4.4$$

$$y = 8.4$$

(ii) Given,
$$n = 102$$
, $\Sigma x = 510$, $\Sigma y = 7140$, $\Sigma x^2 = 4150$, $\Sigma y^2 = 740200$, $\Sigma xy = 54900$

We know that, regression equation of *y* on *x* is

$$y - \overline{y} = b_{yx}(x - \overline{x})$$

$$\overline{x} = \frac{\sum x}{n} = \frac{510}{102} = 5$$

$$\bar{y} = \frac{\sum y}{n} = \frac{7140}{102} = 70$$

$$b_{yx} = \frac{\sum xy - n\overline{x}\,\overline{y}}{\sum x^2 - n(\overline{x})^2}$$

$$= \frac{54900 - (102)(5)(70)}{4150 - 102(5)^2}$$

$$= \frac{54900 - 35700}{4150 - 2550}$$

$$= \frac{19200}{1600} = 12$$

Regression line y on x is

$$y - 70 = 12(x - 5)$$

$$\Rightarrow \qquad y = 12x - 60 + 70$$

$$\Rightarrow \qquad \qquad y = 12x + 10$$

$$\Rightarrow \qquad \qquad y = 2(6x + 5)$$