Solved Paper 2014
 Mathematics (Standard)
 CLASS-X

Time : 3 Hours

Max. Marks : 90

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 31 questions divided into four section A, B, C and D.
(iii) Section A contains $\mathbf{4}$ questions of $\mathbf{1}$ mark each, Section B contains $\mathbf{6}$ questions of $\mathbf{2}$ marks each, Section C contains $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section D contains 11 questions of 4 marks each.
(iv) Use of calculators is not permitted.

SECTION - A

1. In the given figure if $D E \| B C, A E=8 \mathrm{~cm}$, $E C=2 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, then find $D E$.
Sol. Given that,

As $D E \| B C$,
We have, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
So, ratio of their respective sides is equal

$$
\begin{array}{ll}
\text { Then } & \frac{A E}{A C}=\frac{D E}{B C} \\
\Rightarrow & \frac{8}{10}=\frac{D E}{6} \\
\Rightarrow & D E=4.8 \mathrm{~cm}
\end{array}
$$

2. Evaluate: $\frac{1-\cot ^{2} 45^{\circ}}{1+\sin ^{2} 90^{\circ}}$.

Sol. We have,

$$
\begin{aligned}
& \Rightarrow \frac{1-\cot ^{2} 45^{\circ}}{1+\sin ^{2} 90^{\circ}} \\
& \Rightarrow \frac{1-1}{1+1} \\
& \Rightarrow \frac{0}{2}=0
\end{aligned} \quad\left(\because \cot 45^{\circ}=1 \text { and } \sin 90^{\circ}=1\right)
$$

3. If $\operatorname{cosec} \theta=\frac{5}{4}$, find the value of $\cot \theta$.

Sol. Given that,

$$
\Rightarrow \quad \operatorname{cosec} \theta=\frac{5}{4}
$$

From the figure we have,

$$
\Rightarrow \quad \cot \theta=\frac{3}{4}
$$

4. Following table shows sale of shoes in a store during one month:

Size of shoe	Number of pairs sold
3	4
4	18
5	25
6	12
7	5
8	1

Find the modal size of the shoes sold.
1
Sol. From the given table,
Number of pairs sold is maximum for the size of shoe $=5$
So, the modal size of the shoes sold is 5 .

SECTION - B

5. Find the prime factorisation of the denominator of rational number expressed as $6 . \overline{21}$ in simplest form.

Sol. Let $x=6$.

$$
\begin{equation*}
\Rightarrow \quad x=6.2121212121 \ldots \tag{i}
\end{equation*}
$$

Multiplying both sides by 100

$$
\begin{equation*}
\Rightarrow \quad 100 x=621.212121 \ldots \tag{ii}
\end{equation*}
$$

Subtracting (i) from (ii),

$$
\begin{aligned}
\Rightarrow & 99 x & =615 \\
\Rightarrow & x & =\frac{615}{99}=\frac{205}{33}
\end{aligned}
$$

So, prime factorization of denominator $=3 \times 11$
6. Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{3}$ and $\frac{1}{\sqrt{3}}$ respectively. 2

Sol. Given that,

$$
\begin{aligned}
\text { Sum of zeroes } & =\sqrt{3} \\
\text { Product of zeroes } & =\frac{1}{\sqrt{3}}
\end{aligned}
$$

Required Quadratic Polynomial is $\Rightarrow x^{2}-$ (Sum of zeroes). $x+$ Product of zeroes
$\Rightarrow x^{2}-\sqrt{3} x+\frac{1}{\sqrt{3}}=0$
$\Rightarrow \sqrt{3} x^{2}-3 x+1=0$
7. Complete the following factor tree and find the composite number x.

2

Sol. From the factor tree we have,

$$
\begin{array}{ll}
\Rightarrow & x=195 \times 3=585 \\
\Rightarrow & y=13 \times 5=65
\end{array}
$$

8. In a rectangle $A B C D, E$ is middle point of $A D$. If $A D=40 \mathrm{~m}$ and $A B=48 \mathrm{~m}$, then find $E B$.
Sol. Given that,
E is the midpoint of AD

$$
A D=40 \mathrm{~m} \text { and } A B=48 \mathrm{~m}
$$

In right angled triangle ABE

$$
\begin{array}{ll}
& (B E)^{2}=(A E)^{2}+(A B)^{2} \\
\Rightarrow & (B E)^{2}=(20)^{2}+(48)^{2} \\
\Rightarrow & (B E)^{2}=400+2304 \\
\Rightarrow & (B E)^{2}=2704 \\
\Rightarrow & B E=52 \mathrm{~m}
\end{array}
$$

9. If $x=p \sec \theta+q \tan \theta$ and $y=p \tan \theta+q \sec \theta$,
then prove that $x^{2}-y^{2}=p^{2}-q^{2}$.
Sol. Given that,
$\Rightarrow \quad x=p \sec \theta+q \tan \theta$
$\Rightarrow \quad y=p \tan \theta+q \sec \theta$
Taking LHS,
$\Rightarrow x^{2}-y^{2}=(p \sec \theta+q \tan \theta)^{2}-(p \tan \theta+q \sec \theta)^{2}$
$\Rightarrow x^{2}-y^{2}=p^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)+q^{2}\left(\tan ^{2} \theta-\sec ^{2} \theta\right)$
$2 \quad+2 p q \sec \theta \tan \theta-2 p q \sec \theta \tan \theta$
$\Rightarrow x^{2}-y^{2}=p^{2}(1)+q^{2}(-1) \quad\left[\sec ^{2} x-\tan ^{2} x=1\right]$
$\Rightarrow x^{2}-y^{2}=p^{2}-q^{2} \quad$ Hence proved.
10. Given below is the distribution of weekly pocket money received by students of a class. Calculate the pocket money that is received by most of the students.

2

Pocket Many (in ₹)	No. of Students
$0-20$	2
$20-40$	2
$40-60$	3
$60-80$	12
$80-100$	18
$100-120$	5
$120-140$	2

Sol. We have,

Pocket Many (in ₹)	No. of Students
0-20	2
20-40	2
40-60	3
60-80	12
80-100	18
100-120	5
120-140	2
Modal class $=80-100$	
$\begin{aligned} & \text { So, } \quad l=80 \\ & \Rightarrow f_{1}=18, f_{0}=12, f_{2}=5, h=20 \end{aligned}$	
$\text { Mode }=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times l$	

On putting values,

$$
\begin{aligned}
& \text { Mode }=80+6.3157 \\
& \text { Mode }=86.32
\end{aligned}
$$

So, the pocket money received by most of the students is ₹ 86.32

SECTION - C

11. Prove that $3+2 \sqrt{3}$ is an irrational number.

Sol. To prove: $3+2 \sqrt{3}$ is an irrational number
If possible, let $3+2 \sqrt{3}$ be rational.
Then, $3+2 \sqrt{3}$ is rational and 3 is rational.
$[(3+2 \sqrt{3})-3]$ is rational.
[Difference of two rational number is rational]
$2 \sqrt{3}$ is rational.
$\sqrt{3}$ is rational.
Let the simplest form of $\sqrt{3}$ be $\frac{a}{b}$
Then, a and b are integers having no common factor other than 1

Now,

$$
\begin{aligned}
& \sqrt{3}=\frac{a}{b} \\
& 3 b^{2}=a^{2}
\end{aligned}
$$

3 divides a^{2}.
[3 divides $3 b^{2}$]
3 divides a
Let $a=3 c$ for some integer c.
Therefore,

$$
\begin{aligned}
3 b^{2} & =9 c^{2} \\
b^{2} & =3 c^{2}
\end{aligned}
$$

3 divides b^{2}
[3 divides $3 c^{2}$]
3 divides b
Thus, 3 is a common factor of a and b.
This contradicts the fact that a and b have no common factor other than 1.
So, 3 is irrational.
Hence, $3+2 \sqrt{3}$ is irrational.
12. Solve by elimination:

$$
\begin{align*}
3 x & =y+5 \\
5 x-y & =11 \tag{3}
\end{align*}
$$

Sol. To solve given equations by elimination method

$$
\begin{aligned}
& \Rightarrow \quad 3 x-y=5 \\
& \Rightarrow \quad 5 x-y=11 \\
& \begin{array}{r}
-\quad+\quad- \\
-2 x=-6
\end{array} \\
& x=3 \\
& y=3(3)-5=9-5=4 \\
& \text { Hence, } x=3 \text { and } y=4
\end{aligned}
$$

13. A man earns ₹ 600 per month more than his wife. One-tenth of the man's salary and one-sixth of the wife's salary amount to $₹ 1,500$, which is saved every month. Find their incomes.
Sol. Given that,
Man earns ₹ 600 per month more than his wife
Let the income of man be x
Income of wife $=(x-600)$
According to given condition,
$\Rightarrow \quad \frac{1}{10} x+\frac{1}{6}(x-600)=1500$

$$
\begin{array}{rlrl}
\Rightarrow & & \frac{x}{10}+\frac{x}{6}-100 & =1500 \\
\Rightarrow & & \frac{8 x}{30} & =1600 \\
\Rightarrow & & x & =6000 \\
& & & \\
& & \\
& & \text { Income of man } & =₹ 6000 \\
& & \text { Income of wife } & =₹ 6000-₹ 600 \\
& & =₹ 5400
\end{array}
$$

* 14. Check whether polynomial $x-1$ is a factor of the polynomial $x^{3}-8 x^{2}+19 x-12$. Verify by division algorithm.

3
15. If the perimeters of two similar triangles $A B C$ and DEF are 50 cm and 70 cm respectively and one side of $\triangle \mathrm{ABC}=20 \mathrm{~cm}$, then find the corresponding side of $\triangle \mathrm{DEF}$.
Sol. Given that,
Perimeters of two similar triangles ABC and DEF are 50 cm and 70 cm
One side of triangle $A B C=20 \mathrm{~cm}$
As both triangles are similar so the ratio of their corresponding sides is equal to the ratio of their perimeters
$\Rightarrow \quad \frac{50}{70}=\frac{20}{\text { other side }}$
Corresponding other side of triangle $=28 \mathrm{~cm}$
16. In the figure if $D E \| O B$ and $E F|\mid B C$, then prove that DF || OC.

Sol. In $\triangle A O B$, we have

$$
D E \| O B
$$

[Given]
Therefore, by basic proportionality theorem, we have

$$
\begin{equation*}
\frac{A E}{E B}=\frac{A D}{D O} \tag{i}
\end{equation*}
$$

In $\triangle A B C$, we have

$$
E F \| B C
$$

[Given]
Therefore, by basic proportionality theorem, we have

$$
\begin{equation*}
\frac{A E}{E B}=\frac{A F}{F C} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\begin{aligned}
& \frac{A F}{F C}= \\
\Rightarrow \quad & \frac{A D}{D O} \\
& D F \| O C \\
& {[\text { By the converse of Basic }} \\
& \text { Proportionality Theorem }]
\end{aligned}
$$

[^0]17. Prove the identify:
$(\sec A-\cos A) \cdot(\cot A+\tan A)=\tan A \cdot \sec A . \quad 3$
Sol. To prove:
$(\sec A-\cos A) .(\cot A+\tan A)=\tan A . \sec A$
We have,
LHS.
$(\operatorname{Sec} A-\cos A) \cdot(\cot A+\tan A)$
$\Rightarrow\left(\frac{1}{\cos A}-\cos A\right) \cdot\left(\frac{\cos A}{\sin A}+\frac{\sin A}{\cos A}\right)$
$\Rightarrow\left(\frac{1-\cos ^{2} A}{\cos A}\right) \cdot\left(\frac{\cos ^{2} A+\sin ^{2} A}{\sin A \cos A}\right)$
$\Rightarrow\left(\frac{\sin ^{2} A}{\cos A}\right) \cdot\left(\frac{1}{\sin A \cos A}\right)$
$\Rightarrow\left(\frac{\sin A}{\cos A}\right) \cdot\left(\frac{1}{\cos A}\right)$
$\Rightarrow \tan A . \sec A$
LHS = RHS

Hence proved.
18. Given $2 \cos 3 \theta=\sqrt{3}$, find the value of θ.

Sol. Given that,

$$
\begin{aligned}
2 \cos 3 \theta & =\sqrt{3} \\
\cos 3 \theta & =\frac{\sqrt{3}}{2} \\
\cos 3 \theta & =\cos 30^{\circ}
\end{aligned}
$$

On comparing,

$$
\begin{aligned}
3 \theta & =30^{\circ} \\
\theta & =10^{\circ}
\end{aligned}
$$

19. For helping poor girls of their class, students saved pocket money as shown in the following table:

Money saved (in ₹)	Number of Students
$5-7$	6
$7-9$	3
$9-11$	9
$11-13$	5
$13-15$	7

Find mean and median for this data.
Sol. We have,

Class Interval	x_{i}	f_{i}	$f_{i} x_{i}$	c.f.
$5-7$	6	6	36	6
$7-9$	8	3	24	9
$9-11$	10	9	90	18
$11-13$	12	5	60	23
$13-15$	14	7	98	30
Total		$\Sigma f_{i}=\mathbf{3 0}$	$\sum f_{i} x_{i}=\mathbf{3 0 8}$	

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
& =\frac{308}{30}=10.26
\end{aligned}
$$

$$
\text { Median }=l+\left[\frac{N}{\frac{2-C F}{2-C F}}\right] \times h
$$

where $l=9, \frac{N}{2}=15, C F=9, h=2, f=9$
On putting values in the formula,

$$
\begin{aligned}
\Rightarrow \quad \text { Median } & =9+\left[\frac{15-9}{9}\right] \times 2 \\
& =9+1.33=10.33
\end{aligned}
$$

* 20. Monthly pocket money of students of a class is given in the following frequency distribution: 3

Pocket money (in ₹)	Number of Students
$100-125$	14
$125-150$	8
$150-175$	12
$175-200$	5
$200-225$	11

Find mean pocket money using step deviation method.

SECTION - D

21. If two positive integers x and y are expressible in terms of primes as $x=p^{2} q^{3}$ and $y=p^{3} q$, what can you say about their LCM and HCF. Is LCM a multiple of HCF? Explain.
Sol. Given that,

$$
\Rightarrow \quad \begin{aligned}
x & =p^{2} q^{3} \text { and } y=p^{3} q \\
\mathrm{LCM} & =p^{3} q^{3} \\
\mathrm{HCF} & =p^{2} q
\end{aligned}
$$

As there are common factors between HCF and LCM
Hence, HCF is a multiple of the LCM.
22. Sita Devi wants to make a rectangular pond on the road side for the purpose of providing drinking water for street animals. The area of the pond will be decreased by 3 square feet if its length is decreased by 2 ft . and breadth is increased by 1 ft . Its area will be increased by 4 square feet if the length is increased by 1 ft . and breadth remains same. Find the dimensions of the pond. What motivated Sita Devi to provide water point for street animals?
Sol. Let length of the rectangular pond $=x \mathrm{ft}$.
Breadth of rectangular pond $=y \mathrm{ft}$.
Area of rectangular pond $=x y$
According to the question,

$$
(x-2)(y+1)=(x y-3)
$$

[^1]\[

$$
\begin{align*}
x y+x-2 y-2 & =x y-3 \\
x-2 y & =-1 \tag{i}\\
(x+1) \cdot y & =(x y+4) \\
x y+y & =x y+4 \\
y & =4 \tag{ii}
\end{align*}
$$
\]

Putting the value of y in eq. (i), we get

$$
\begin{array}{rlrl}
& & x-2(4) & =-1 \\
\Rightarrow & & x-8 & =-1 \\
\Rightarrow & x & =-1+8=7
\end{array}
$$

So, we get
Length of rectangular pond $=7 \mathrm{ft}$.
Breadth of rectangular pond $=4 \mathrm{ft}$.
Values:

1. Water is essential for living beings.
2. Animals are also living beings and they also need basic amenities.
*23. If a polynomial $x^{4}+5 x^{3}+4 x^{2}-10 x-12$ has two zeroes as -2 and -3 , then find the other zeroes.

* 24 . Find all the zeroes of the polynomial $8 x^{4}+8 x^{3}-$ $18 x^{2}-20 x-5$, if it is given that two of its zeroes are $\sqrt{\frac{5}{2}}$ and $-\sqrt{\frac{5}{2}}$.

25. In the figure, there are two points D and E on side AB of $\triangle \mathrm{ABC}$ such that $A D=B E$. If DP || BC and $E Q|\mid A C$, then prove that $P Q \| A B$.

Sol. We have,

In $\triangle A B C$, we have
DP || BC and EQ || AC

$$
\begin{array}{ll}
\therefore & \frac{A D}{D B}=\frac{A P}{P C} \\
\Rightarrow & \frac{B E}{E A}=\frac{B Q}{Q C} \tag{i}
\end{array}
$$

Also, we have

$$
\begin{array}{ll}
\Rightarrow & \frac{A D}{D B}=\frac{A P}{P C} \\
\Rightarrow & \frac{A D}{D B}=\frac{B Q}{Q C} \tag{ii}
\end{array}
$$

From equations (i) and (ii), we get

$$
\Rightarrow \quad \frac{A P}{P C}=\frac{B Q}{Q C}
$$

So, in $\triangle A B C, P$ and Q divide sides $C A$ and $C B$ respectively in the same ratio. Hence,
$P Q \| A B$
[By the converse of Basic Proportionality Theorem]
26. In $\triangle A B C$, altitudes $A D$ and $C E$ intersect each other at the point P. Prove that
(i) $\triangle \mathrm{APE} \sim \triangle \mathrm{CPD}$
(ii) $A P \times P D=C P \times P E$
(iii) $\triangle \mathrm{ADB} \sim \triangle \mathrm{CEB}$
(iv) $A B \times C E=B C \times \mathrm{AD}$

Sol. We have,

In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{CDP}$,

$$
\begin{aligned}
\angle \mathrm{APE}= & \angle \mathrm{CPD} \\
& \text { (Vertically opposite angle) } \\
\angle \mathrm{AEP}= & \angle \mathrm{CDP}=90^{\circ}
\end{aligned}
$$

\therefore By AA criterion of similarity, $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
As \triangle AEP $\sim \triangle C D P$
So, the ratio of their corresponding sides is equal
Hence, $\quad \frac{A P}{C P}=\frac{P E}{P D}$
Also, $\quad A P \times P D=C P \times P E$
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$

$$
\angle \mathrm{ADB}=\angle \mathrm{CEB}=90^{\circ}
$$

$\angle \mathrm{B}$ is common
\therefore By AA criterion of similarity, $\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$
So, the ratio of their corresponding sides are equal

$$
\begin{array}{lrl}
& & \frac{A B}{B C} \\
\text { Hence, } & =\frac{A D}{C E} \\
\text { Also, } & A B \times C E & =B C \times A D
\end{array}
$$

27. Prove that:
$(\cot A+\sec B)^{2}-(\tan B-\operatorname{cosec} A)^{2}$

$$
=2(\cot A \cdot \sec B+\tan B \cdot \operatorname{cosec} A) .4
$$

Sol. $(\cot A+\sec B)^{2}-(\tan B-\operatorname{cosec} A)^{2}$

$$
=2(\cot A \cdot \sec B+\tan B \cdot \operatorname{cosec} A)
$$

Proof:

Taking LHS,
$\left(\cot ^{2} A+\sec ^{2} B+2 \cot A \sec B\right)$

$$
-\left(\tan ^{2} B+\operatorname{cosec}^{2} A-2 \tan B \operatorname{cosec} A\right)
$$

$=\cot ^{2} A-\operatorname{cosec}^{2} A+\sec ^{2} B-\tan ^{2} B+2 \cot A \sec B$

$$
+2 \tan B \operatorname{cosec} A
$$

$=(-1)+1+2 \cot A \sec B+2 \tan B \operatorname{cosec} A$
$=2 \cot A \sec B+2 \tan B \operatorname{cosec} A$
$=2(\cot A \sec B+\tan B \operatorname{cosec} A)$
LHS $=$ RHS
Hence, proved.

[^2]28. Prove that: $(\sin \theta+\cos \theta+1) .(\sin \theta-1+\cos \theta)$. $\boldsymbol{\operatorname { s e c }} \theta \cdot \operatorname{cosec} \theta=2$.
Sol. To prove:
$(\sin \theta+\cos \theta+1) \cdot(\sin \theta-1+\cos \theta) \cdot(\sec \theta \operatorname{cosec} \theta)=2$ Proof: Taking LHS,
$(\sin \theta+\cos \theta+1) .(\sin \theta-1+\cos \theta) .(\sec \theta \operatorname{cosec} \theta)$
$=\left(\sin ^{2} \theta-\sin \theta+\sin \theta \cos \theta+\cos \theta \sin \theta-\cos \theta\right.$
$\left.+\cos ^{2} \theta+\sin \theta-1+\cos \theta\right)(\sec \theta \operatorname{cosec} \theta)$
$=(1-1+2 \sin \theta \cos \theta)\left(\frac{1}{\cos \theta}\right)\left(\frac{1}{\sin \theta}\right)$
$=(2 \sin \theta \cos \theta)\left(\frac{1}{\cos \theta}\right)\left(\frac{1}{\sin \theta}\right)$
$=2$
LHS = RHS
Hence proved.
29. If $\tan \left(20^{\circ}-3 \alpha\right)=\cot \left(5 \alpha-20^{\circ}\right)$, then find the value of a and hence evaluate:
$\sin \alpha \cdot \sec \alpha \cdot \tan \alpha-\operatorname{cosec} \alpha \cdot \cos \alpha \cdot \cot \alpha$.
4
Sol. Given that,
\[

$$
\begin{array}{ll}
\Rightarrow & \tan \left(20^{\circ}-3 \alpha\right)=\cot \left(5 \alpha-20^{\circ}\right) \\
\Rightarrow & \tan \left(20^{\circ}-3 \alpha\right)=\tan \left(90^{\circ}-5 \alpha+20^{\circ}\right) \\
\Rightarrow & \tan \left(20^{\circ}-3 \alpha\right)=\tan \left(110^{\circ}-5 \alpha\right)
\end{array}
$$
\]

On comparing,
$\Rightarrow \quad 20^{\circ}-3 \alpha=110^{\circ}-5 \alpha$
$\Rightarrow \quad 2 \alpha=90^{\circ}$
$\Rightarrow \quad \alpha=45^{\circ}$
Now,
$\sin \alpha \cdot \sec \alpha \tan \alpha-\operatorname{cosec} \alpha \cos \alpha \cot \alpha$
On putting $\alpha=45^{\circ}$
We have,
$\sin 45^{\circ} \sec 45^{\circ} \tan 45^{\circ}-\operatorname{cosec} 45^{\circ} \cos 45^{\circ} \cot 45^{\circ}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{1} \times 1-\frac{\sqrt{2}}{1} \times \frac{1}{\sqrt{2}} \times 1 \\
& =1-1 \\
& =0
\end{aligned}
$$

* 30 . The frequency distribution of weekly pocket money received by a group of students is given below:

Pocket money (in ₹)	Number of Students
More than or equal to 20	90
More than or equal to 40	76
More than or equal to 60	60
More than or equal to 80	55
More than or equal to 100	51
More than or equal to 120	49
More than or equal to 140	33
More than or equal to 160	12
More than or equal to 180	8
More than or equal to 200	4

Draw a 'more than type' ogive and from it, find median. Verify median by actual calculations. 4
31. Cost of living Index for some period is given in the following frequency distribution:

Index	Number of weeks
$1500-1600$	3
$1600-1700$	11
$1700-1800$	12
$1800-1900$	7
$1900-2000$	9
$2000-2100$	8
$2100-2200$	2

Find the mode and median for above data. 4
Sol. We have,

Index	Number of weeks (f)	Cumulative frequency ($C f$)
$1500-1600$	3	3
$1600-1700$	11	14
$1700-1800$	12	26
$1800-1900$	7	33
$1900-2000$	9	42
$2000-2100$	8	50
$2100-2200$	2	52
Total	$N=52$	

We have,
Modal class is 1700-1800

$$
\text { Mode }=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h
$$

So, $\quad l=1700$
$\Rightarrow f_{1}=12, f_{0}=11, f_{2}=7, h=100$
On putting values,

$$
\begin{aligned}
\text { Mode } & =1700+\frac{1}{6} \times 100 \\
& =1700+16.66 \\
& =1716.66
\end{aligned}
$$

Now,

$$
\frac{N}{2}=26
$$

Median class is $1700-1800$

$$
\text { Median }=l+\left[\frac{\left(\frac{N}{2}-C F\right)}{f}\right] \times h
$$

where $l=1700, \frac{N}{2}=26, C F=14, h=100, f=12$
On putting values,

$$
\begin{aligned}
\text { Median } & =1700+\left[\frac{26-14}{12}\right] \times 100 \\
& =1700+(1) 100 \\
& =1700+100=1800
\end{aligned}
$$

Hence,
median $=1800$

[^3]
[^0]: * Out of Syllabus

[^1]: * Out of Syllabus

[^2]: * Out of Syllabus

[^3]: * Out of Syllabus

