Solved Paper 2020 CHEMISTRY
 Class-XII

General Instructions :

(i) Question paper comprises four sections - A, B, C and D.
(ii) There are 37 questions in questions paper. All questions are compulsory.
(iii) Section A: Question number $\mathbf{1}$ to 20 are very short answer type questions carrying one mark each. Answer these questions in one word or one sentence.
(iv) Section B: Question number 21 to 27 are short answer type questions carrying two marks each.
(v) Section C : Question number 28 to 34 are long answer type-I questions carrying three marks each.
(vi) Section D : Question number 35 to 37 are long answer type-II questions carrying five marks each.
(vii) There is NO overall choice in the question paper. However, an internal choice has been provided in 2 questions of two marks, 2 questions of three marks and all the 3 questions of five marks. You have to attempt only one of the choices in such questions.
(viii) However, separate instructions are given with each section and question, wherever necessary.
(ix) Use of calculators and log tables is not permitted.

Delhi Set I

Code No. 56/5/1

SECTION -A

Read the given passage and answer the questions that follow:

The halogens have the smallest atomic radii in their respective periods. The atomic radius of fluorine is extremely small. All halogens exhibit -1 oxidation state. They are strong oxidising agents and have maximum negative electron gain enthalpy. Among halogens, fluorine shows anomalous behaviour in many properties. For example electronegativity and ionisation enthalpy are higher for fluorine than expected whereas bond dissociation enthalpy, m.p. and b.p. and electron gain enthalpy are quite lower than expected. Halogens react with hydrogen to give hydrogen halides (HX) and combine amongst themselves to form a number of compounds of the type $\mathrm{XX}^{\prime}, \mathrm{XX}^{\prime}{ }_{3}, \mathrm{XX}_{5}^{\prime}$ and $\mathrm{XX}_{7}{ }_{7}$ called inter-halogens.

1. Why halogens have maximum negative electron gain enthalpy?
Ans. Halogens have only seven electrons in their valence shell. So they require only one electron to attain a noble gas configuration. Hence, they have maximum electron gain enthalpy.
2. Why fluorine shows anomalous behaviour as compared to other halogens?
Ans. (i) It has smallest in size.
(ii) Very high electronegativity.
(iii) Absence of d-orbitals.
(iv) dissociation enthalpy in molecular form is least (Any one)
3. Arrange the hydrogen halides (HF to HI) in the decreasing order of their reducing character.
Ans. $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
4. Why fluorine is a stronger oxidizing agent than chlorine?
Ans. Because fluorine has greater E° value $(2.87 \mathrm{~V})$ than chlorine (1.36 V).
5. What are the sizes of X and X^{\prime} in the interhalogen compounds?
Ans. Size of X is greater than X^{\prime}.

Questions 6 to 10 are one word answers

6. Name the cell used in hearing aids and watches.

Ans. Primary cell.
7. How much charge in terms of Faraday is required to reduce one mol of MnO_{4}^{-}to Mn^{2+} ?
Ans. $4.825 \times 10^{5} \mathrm{C}$
$\mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}_{+7}^{2+}$
Charge $=5 \times \mathrm{F}=5 \times 96500 \mathrm{C}=4.825 \times 10^{5} \mathrm{C}$
8. Write the slope value obtained in the plot of \log [$\left.R_{0}\right] /[R]$ vs. time for a first order reaction.
Ans.

Slope value $=\frac{-K}{2.303}$

* 9. Name the sweetening agent used in the cooking of sweets for a diabetic patient.
*10. Name the polymer which is used for making electrical switches and combs.
Questions 11 to 15 are multiple choice questions.
*11. In the Mond's proeess the gas used for the refining of a metal is
(a) H_{2}
(b) CO_{2}
(c) CO
(d) N_{2}

12. The conversion of an alkyl halide into an alcohol by aqueous NaOH is classified as
(a) a dehydrohalogenation reaction
(b) a substitution reaction
(c) an addition reaction
(d) a dehydration reaction

Ans. (b) $\mathrm{R}-\mathrm{X}+\mathrm{NaOH} \rightarrow \mathrm{R}-\mathrm{OH}+\mathrm{NaX}$
13. $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ on reaction with NaOH and Br_{2} in alcoholic medium gives
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
(c) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(d) $\mathrm{CH}_{3} \mathrm{COONa}$

Ans. (c) $\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{Br}_{2}+4 \mathrm{NaOH} \xrightarrow{\Delta}$

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}+2 \mathrm{NaBr}+\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

14. The oxidation state of Ni in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is
(a) 0
(b) 2
(c) 3
(d) 4

Ans. (a) 0
15. Amino acids are
(a) acidic
(b) basic
(c) amphoteric
(d) neutral

Ans. (c) (Presence of basic NH_{2} and acidic COOH groups)

Questions 16 to 20

(a) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is correct, but Reason (R) is wrong statement.
(d) Assertion (A) is wrong, but Reason (R) is correct statement.
16. Assertion (A) : Conductivity of an electrolyte increases with decrease in concentration.
Reason (R) : Number of ions per unit volume decreases on dilution.
Ans. (d)
17. Assertion (A) : The $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bond angle in ethers is slightly less than tetrahedral angle.

Reason (R) : Due to the repulsive interaction between the two alkyl groups in ethers.
Ans. (a)
18. Assertion (A) : Low spin tetrahedral complexes are rarely observed.
Reason (R) : Crystal field splitting energy is less than pairing energy for tetrahedral complexes.
Ans. (a)
19. Assertion (A) : Elevation in boiling point is a colligative property.
Reason (R) : Elevation in boiling point is directly proportional to molarity.
Ans. (a) $\Delta \mathrm{T}_{b}=\mathrm{K}_{b} \times \mathrm{m}$
20. Assertion (A) : Oxidation of ketones is easier than aldehydes.
Reason (R): C-C bond of ketones is stronger than $\mathrm{C}-\mathrm{H}$ bond of aldehydes. $\quad 20 \times 1=20$
Ans. (d)

SECTION -B

21. State Raoult's law for a solution containing volatile components. What is the similarity between Raoult's law and Henry's law?
Ans. Raoult's law for a solution containing volatile components states that the partial pressure of a volatile component present in a solution is directly proportional to the mole fraction of that component at a given temperature.

$$
P_{A} \alpha \chi_{A} \text { or } P_{A}=K \chi_{A}
$$

Raoult's law and Henry's law are similar as both gives equation to find partial pressure of gases.

$$
\underset{\text { (Raoult's law) }}{\mathrm{P}_{\mathrm{A}}=\mathrm{K} \chi_{\mathrm{A}}} \quad \underset{\text { (Henry's law) }}{\mathrm{P}_{\mathrm{A}}=\mathrm{K}_{\mathrm{H}} \chi_{\mathrm{A}}}
$$

*22. Write the role of
(a) Dilute NaCN in the extraction of Gold.
(b) CO in the extraction of Iron. $1+1=2$

OR
How is leaching carried out in the case of low grade copper ores? Name the method used for refining of copper metal.

2
*23. Define adsorption with an example. What is the role of adsorption in heterogeneous catalysis? 2

OR
Define Brownian movement. What is the cause of Brownian movement in colloidal particles? How is it responsible for the stability of Colloidal sol ? 2
24. (a) Write the IUPAC name and hybridisation of the complex $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$.
(Given: Atomic number of $\mathrm{Fe}=26$)
(b) What is the difference between an ambidentate ligand and a chelating ligand? $\quad 1+1=2$
Ans. (a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3}$ - hexacyanoferrate (III) ion hybridization $-d^{2} s p^{3}$

[^0]
six pairs of e^{-}from CN^{-}ions
(b) Ambidentate ligand can bond through different atoms to form different coordination compounds. e.g. NO_{2}^{-}can bind to the central atom or ion at either the nitrogen atom or one of the oxygen atom.
Chelating ligand : If the ligands with two or more electron donor groups positioned in such a way that they form five or six membered ring with central metal ion are called chelating ligands. e.g. ethane - 1, 2-diamine (en)
*25. How do antiseptics differ from disinfectants? Name a substance which can be used as a disinfectant as well as an antiseptic.
*26. Identify the monomers in the following polymers:
(i)

(ii)

$1+1=2$
*27. Draw the structures of the following:
(i) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(ii) XeF_{6}

SECTION -C

28. A 0.01 m aqueous solution of AlCl_{3} freezes at $0.068^{\circ} \mathrm{C}$. Calculate the percentage of dissociation. [Given : K_{f} for Water $=1.68 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
Ans. Given, $m=0.01 \mathrm{~m}$

$$
\begin{aligned}
& \Delta \mathrm{T}_{f}(\mathrm{~s})=-0.068^{\circ} \mathrm{C} \\
& \mathrm{~K}_{f}(\mathrm{aq})=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{~T}_{f}=i \mathrm{~K}_{f} m \\
& i=\frac{\Delta \mathrm{T}_{f}}{\mathrm{~K}_{f}} \times m \\
& i=\frac{0.068}{1.86} \times 0.01 \mathrm{~m}=3.65
\end{aligned}
$$

$$
\mathrm{AlCl}_{3} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}
$$

$$
\begin{array}{llll}
\text { initial } & 1 \mathrm{~mol} & 0 & 0
\end{array}
$$

At equilibrium $1-\alpha \quad \alpha \quad 3 \alpha$
Total number of moles at equilibrium

$$
=1-\alpha+\alpha+3 \alpha=1+3 \alpha
$$

$$
\begin{aligned}
l= & \frac{\text { Total no. of moles at equilibrium }}{\text { Initial no. of moles }} \\
& =\frac{1+3 \alpha}{1} \\
3.65 & =1+3 \alpha \\
\alpha & =\frac{3.65-1}{3}
\end{aligned}
$$

Percentage dissociation $=0.88 \%$.
29. When a steady current of 2 A was passed through two electrolytic cells A and B containing electrolytes ZnSO_{4} and CuSO_{4} connected in series, 2 g of Cu were deposited at the cathode of cell B . How long did the current flow? What mass of Zn was deposited at cathode of cell A ?
[Atomic mass: $\mathrm{Cu}=63.5 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{Zn}=65 \mathrm{~g} \mathrm{~mol}^{-1}$;
1F $=96500 \mathrm{C} \mathrm{mol}^{-1}$]
Ans. $\mathrm{Zn}^{2+}(\mathrm{aq})+\underset{2 \mathrm{~mol}}{2 \mathrm{e}^{-}} \longrightarrow \underset{1 \mathrm{~mol}}{\mathrm{Zn}(\mathrm{s})}$
$\mathrm{Cu}^{2+}+\underset{2 \text { mol }}{2 e^{-}} \longrightarrow \underset{1 \text { mol }}{\mathrm{Cu}(s)} \quad$ (2 gm given)
The charge Q on a mole of electrons, $\mathrm{Q}=n \mathrm{~F}$
Calculation of time for the flow of current:
$n=1 \mathrm{~mol}$
$Q=1 \times 96500 \mathrm{C} \mathrm{mol}^{-1}=96500 \mathrm{C}$
Molar mass of $\mathrm{Cu}=63.5 \mathrm{gm} \mathrm{mol}^{-1}$
$\because \quad 63.5 \mathrm{gm}$ of Cu is deposited by electric charge $=96500 \mathrm{C}$
$\therefore \quad 2 \mathrm{gm}$ of Cu is deposited by electric charge
$=\frac{96500}{63.5} \times 2=3039.37 \mathrm{C}$

Let 2 A of current be passed for time t, quantity of electricity used $=2 \mathrm{~A} \times t=3039.37 \mathrm{C}$
or, $t=\frac{3039.37 \mathrm{C}}{2}=1519.68 \mathrm{~s}$.
$=25 \mathrm{~min} .33 \mathrm{~s}$
Calculation of mass of Zn deposited:
$\frac{W_{1}}{W_{2}}=\frac{E_{1}}{E_{2}}=\frac{\text { Mass of } \mathrm{Zn}}{\text { Mass of } \mathrm{Cu}}$

$$
=\frac{\text { Molar mass of } \mathrm{Zn} / \text { Charge on } \mathrm{Cu}}{\text { Molar mass of } \mathrm{Cu} / \text { Charge on } \mathrm{Cu}}
$$

Amount of Zn deposited:

$=2 \times \frac{\frac{65}{2}}{\frac{635}{2}}=2.0472 \mathrm{gm}$

[^1]30. Differentiate between following:
(i) Amylose and Amylopectin
(ii) Globular protein and Fibrous protein
(iii) Nucleotide and Nucleoside $1+1+1=3$

Ans. (i) Amylose and Amylopectin:

S. No.	Amylose	Amylopectin
$\mathbf{1 .}$	Amylose is a straight chain polymer of D-glucose	Amylopectin is a branched chain polymer of D-glucose.
$\mathbf{2 .}$	They are linked by 1, 4- glycosidic linkage	They are linked by $\alpha-1,4$ glycosidic and $\alpha-1,6-$ glycosidic linkage.

(ii) Globular and Fibrous protein:

S. No.	Globular protein	Fibrous protein
$\mathbf{1 .}$	Polypeptide chains are arranged as coils.	Polypeptide chains are run parallel to each other.
$\mathbf{2 .}$	They have spherical shape.	They have thread like structure.
$\mathbf{3 .}$	These are water soluble.	These are insoluble in water.

(iii) Nucleotide and Nucleoside:

S. No.	Nucleotide	Nucleoside
$\mathbf{1 .}$	It consists of a nitrogenous base, sugar and one to three phosphate groups.	It consists of a nitrogenous base covalently bonded to a sugar without phosphate group.
$\mathbf{2 .}$	Example: 5'-uridine monophosphate	Example: Uridine

31. Identify $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and F in the following:

$6 \times 1 / 2=3$
Ans.

(C)

F is $\mathrm{CH}_{3} \underset{\text { I }}{\mathrm{C}} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OC}_{2} \mathrm{H}_{5}$
32. Give the structures of final products expected from the following reactions :
(i) Hydroboration of propene followed by oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ in alkaline medium.
(ii) Dehydration of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$ by heating it with $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at 358 K .
(iii) Heating of

OR
$3 \times 1=3$

How can you convert the following?
(i) Phenol to o-hydroxybenzaldehyde
(ii) Methanal to ethanol
(iii) Phenol to phenyl ethanoate 1+1+1 = 3

Ans. (i) $6 \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\left(\mathrm{BH}_{3}\right)_{2} \longrightarrow 2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~B}$

$$
\begin{gathered}
\begin{array}{c}
\text { Alkaline } \\
\text { medium } \\
\downarrow
\end{array}+\mathrm{H}_{2} \mathrm{O}_{2} \\
6 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \\
\text { Propanol-1 }
\end{gathered}
$$

(ii)

t-butyl alcohol
(2 methyl-2-propanol)
2 methylpropene (Isobutylene)
(iii)

OR
(i) By Reimer-Tiemann reaction:

(iii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\underset{\text { Acetic anhydride }}{\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}} \longrightarrow \underset{\text { Phenylethanoate }}{\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{5}}+\mathrm{CH}_{3} \mathrm{COOH}$

OR

(ii) Cr^{2+} is a strong reducing agent.
(b) Write two similarities between chemistry of lanthanoids and actinoids.
(c) Complete the following ionic equation:

$$
3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \longrightarrow \quad 2+2+1=5
$$

Ans. (a) (i) The catalytic activities of transition metals and their compounds is due to the ability of adopt variable oxidation states and to form complexes. It can also provide a large surface area for the reactants to be adsorbed. (Any one)
(ii) Separation of lanthanoid elements is difficult because all lanthanoid elements have almost similar physical as well as chemical properties. Due to the lanthanoid contraction the change in the atomic or ionic radii is very small.
(iii) Zn, Cd and Mg are soft and have low melting point because no d-orbitals are available for metallic bond formation and bonds formed are very weak.
(b) (i) $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+$

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

OR
(a) (i) Ti^{3+} has incomplete $\mathrm{d}\left(3 d^{1}\right)$ orbital whereas Sc^{3+} has empty ($3 \mathrm{~d}^{\circ}$) d-orbital.
(ii) Cr^{2+} ion can lose electron to form Cr^{3+}, so acts as a strong reducing agent.
(b) Similarities between chemistry of lanthanoids and actinoids:
(i) Both show +3 oxidation state.
(ii) Both are strong reducing agents.
(c) $3 \mathrm{MnO}_{4}^{2-}+\mathbf{4 H ^ { + }} \longrightarrow \mathbf{2} \mathrm{MnO}_{4}^{-}+\mathbf{M n O}_{2}+\mathbf{2} \mathbf{H}_{2} \mathrm{O}$
36. (a) Write the products formed when benzaldehyde reacts with the following reagents :
(i) $\mathrm{CH}_{3} \mathrm{CHO}$ in presence of dilute NaOH
(ii) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}$

(iii)Conc. NaOH
(b) Distinguish between following:
(i) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-\mathrm{CH}_{3}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}$ $-\mathrm{CO}-\mathrm{CH}=\mathrm{CH}_{2}$
(ii) Benzaldehyde and Benzoic acid

$$
3+(1+1)=5
$$

[^2]OR
(a) Write the final products in the following:
(i)

(ii)

(iii)

Ans. (a) (i)

(ii)

$+$

Phenyl hydrazine
(iii)

(b) (i) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-\mathrm{CH}_{3}$ gives iodoform test while $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}=\mathrm{CH}_{2}$ does not give.

$\mathrm{CH}_{3} \mathrm{CHCOCH}=\mathrm{CH}_{2}+3 \mathrm{NaOI} \rightarrow$ No ppt
(ii) - Benzaldehyde reacts with tollen's reagent to form silver mirror. Benzoic acid does not give this reaction.

- With NaHCO_{3} benzaldehyde does not react while benzoic acid produces brisk effervescences.

OR
(a) (i)

(iii)

(b)

(c)

37. (a) A first order reaction is 25% complete in 40 minutes. Calculate the value of rate constant. In what time will the reaction be 80% completed?
(b) Define order of reaction. Write the condition under which a bimolecular reaction follows first order kinetics.
$3+2=5$

OR
(a) A first order reaction is 50% completed in 30 minutes at 300 K and in 10 minutes at 320 K. Calculate activation energy (E_{a}) for the reaction.
($\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
(b) Write the two conditions for collisions to be effective collisions.
(c) How order of reaction and molecularity differ towards a complex reaction?
[Given : $\log 2=0.3010, \log 3=0.4771, \log 4=$ $0.6021, \log 5=0.6991] \quad 3+1+1=5$
Ans. (a) $t=\frac{2303}{k} \log \frac{[A]_{0}}{[A]}$.
(i) $40 \min =\frac{2.303}{k} \log \frac{100}{75}$.
(ii) $t=\frac{2.303}{k} \log \frac{100}{20}$

Dividing (i) by (ii)
$\frac{40}{t}=\frac{2.303}{k} \log \frac{100}{75} / \frac{2.303}{k} \log \frac{100}{20}$
$\frac{40}{t}=\frac{\frac{2.303}{k} \log \frac{4}{3}}{2.303 \log 5}$
$\frac{40}{t}=\frac{0.6021 / 4.771}{0.6991}$
$\frac{40}{t}=\frac{0.1250}{0.6991}$
$t=\frac{0.6691 \times 40}{0.1250}=223.712 \mathrm{~min}$.
$k=\frac{2.303}{t} \log \frac{100}{100-0.25}=\frac{2.303}{40} \log \frac{100}{75}$
$=\frac{2.303}{40}(\log 4-\log 3)$
$=\frac{2.303}{40}(0.6021-0.4771)$
$=\frac{2.303}{40} \times 0.125=0.007196$
$=7.196 \times 10^{-3} \mathrm{~min}^{-1}$
(b) Order of reaction: The sum of the coefficients of the reacting species that are involved in the rate equation for the reaction, is called order of reaction.
The condition under which a bimolecular reaction follows first order kinetics is when one of the reactants is taken in large excess that its concentration changes hardly.

OR

(a) At $300 \mathrm{~K}, t_{1 / 2}=30 \mathrm{~min}$.
$t_{1 / 2}=\frac{0.693}{k}$ or $k=\frac{0.693}{t_{1 / 2}}$
$k_{1}=\frac{0.693}{30}=0.0231 \mathrm{~min}^{-1}$
At $320 \mathrm{~K}, t_{1 / 2}=10 \mathrm{~min}$
$t_{1 / 2}=\frac{0.693}{k}$ or $k=\frac{0.693}{t_{1 / 2}}$
$k_{2}=\frac{0.693}{10}=0.0693 \mathrm{~min}^{-1}$
According to Arrhenius equation:
$\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
$=\log \frac{0.0693}{0.0231}=\frac{E_{a}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
$=\log \frac{0.0693}{0.0231}=\frac{E_{a}}{2.303 \times 8.314}\left[\frac{320-300}{300 \times 320}\right]$ $\left[\because R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
$=\log 3=\frac{E_{a} \times 20}{2.303 \times 8.314 \times 300 \times 320}$
$E_{a}=\frac{\log 3 \times 2.303 \times 8.314 \times 300 \times 320}{20}$
$[\because \log 3=0.4771]$
$=\frac{0.4771 \times 2.303 \times 8.314 \times 300 \times 320}{20}$
$=43848.5 \mathrm{~J} \mathrm{~mol}^{-1}=43.85 \mathrm{k} \mathrm{J} \mathrm{mol}^{-1}$
(b) Two conditions for collisions to be effective collision are :
(i) The reactant molecules must have attained sufficient energy to break chemical bonds
(ii) The reactant molecules must have the proper orientation.
(c) The number of the reacting species that collide simultaneously in a chemical reaction is called as molecularity of a reaction. The sum of the coefficients of the reacting species is the order of reaction.
For complex reactions, molecularity has no significance while the order of reaction is applicable.

Delhi Set-II

Code No. 56/5/2
Note: Except these questions, other questions are from Delhi Set-I

SECTION -A

Questions 6 to 10 are one word answers:
6. Out of
 and
 which will undergo

Ans.

Because conjunction between positive charge and double bond, resonance is possible.
7. Write the IUPAC name of

Ans. N,N-dimethylbenzenamine
8. What type of linkage is present in polysaccharides?
Ans. Glycosidic linkage

* 9. Name an artificial sweetener whose use is limited to cold drinks.
*10. Name the polymer which is used for making nonstick utensils.
Questions $\mathbf{1 1}$ to $\mathbf{1 5}$ are multiple choice questions:

11. Kohlrausch given the following relation for strong electrolytes:
$\wedge=\wedge_{0}-\mathbf{A} \sqrt{C}$
Which of the following equality holds?
(a) $\wedge=\wedge_{0}$ as $\mathrm{C} \longrightarrow \sqrt{\mathrm{A}}$.
(b) $\wedge=\wedge_{0}$ as $\mathrm{C} \longrightarrow \infty$
(c) $\wedge=\wedge_{0}$ as $\mathrm{C} \longrightarrow 0$
(d) $\wedge=\wedge_{0}$ as $\mathrm{C} \longrightarrow 1$

Ans. (b)
12. In an electrochemcial process, a salt bridge is used
(a) as a reducing agent
(b) as an oxidizing agent
(c) to complete the circuit so that current can flow
(d) None of these

Ans. (c)
13. In a chemical reaction $X \rightarrow Y$, it is found that the rate of reaction doubles when the concentration of X is increased four times. The order of the reaction with respect to X is
(a) 1
(b) 0
(c) 2
(d) $1 / 2$

Ans. (d)
14. Which of the following will give a white precipitate upon reacting with AgNO_{3} ?
(a) $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
(b) $\left[\mathrm{Co}\left[\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
(c) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(d) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$

Ans. (c)
*15. Copper matte contains
(a) $\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{Cu}_{2} \mathrm{O}$ and silica
(b) $\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{CuO}$ and silica
(c) $\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{FeO}$ and silica
(d) $\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{FeS}$ and silica

[^3]
Questions 16 to 20

(a) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is correct, but Reason (R) is wrong statement.
(d) Assertion (A) is wrong, but Reason (R) is correct statement.
16. Assertion (A): 0.1 M solution of KCl has greater osmotic pressure than 0.1 M solution of glucose at same temperature.
Reason (R): In solution, KCl dissociates to produce more number of particles.
Ans. (a) KCl is ionic compound, hence dissociates into ions but glucose is a covalent compound which does not dissociate into ions.
18. Assertion (A): Ortho and para-nitrophenols can be separated by steam distillation.
Reason (R): Ortho isomer associates through intermolecular hydrogen bonding while para isomer associates through intramolecular hydrogen bonding.
Ans. (c) Ortho isomer has intramolecular H-bonding while para isomer has intermolecular hydrogen bonding.

SECTION -B

*23. Draw the structures of the following:
(i) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(ii) BrF_{5}

2
*25. Identify the monomers in the following polymers:
(i)

(ii)

*26. Discuss the nature of bonding in metal carbonyls.

SECTION -C

30. Define the following terms with a suitable example in each:
(a) Polysaccharides
(b) Denatured protein
(c) Fibrous protein
$1+1+1=3$

Ans. (a) Polysaccharides: These are complex long chains of monosaccharides linked by glycosidic bonds e.g. starch, cellulose etc.
(b) Denatured protein: When native protein is subjected to physical change like change in
temperature or change in pH , the hydrogen bonds are disturbed. Due to this, helix get uncoiled and protein loses its biological activity. This is called denaturation and protein is called denatured protein. e.g. coagulation of egg.
(c) Fibrous protein: When polypeptide chains run parallel and are held together by hydrogen and disulphide bonds are called fibrous proteins. e.g. Keratin, myosin.

Delhi Set-III

Code No. 56/5/3
Note: Except these questions, other questions are from Delhi Set-I and II

SECTION -A

Questions 6 to 10 are one word answers:
6. A hydrocarbon $\mathrm{C}_{5} \mathrm{H}_{12}$ gives only one monochloride on photochemical chlorination. Identify the compound.

Ans.

(All the hydrogen atoms are equivalent and replacement of anyone hydrogen give monohalo derivative.)
7. Out of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$, which one is more basic in aqueous solution?
Ans. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(Due to steric factor secondary amines are stronger base.)
8. Out of Cis-[Pt(en) $\left.)_{2} \mathrm{Cl}_{2}\right]^{2+}$ and $\left.\left.\operatorname{Trans-[Pt(en)}\right)_{2} \mathrm{Cl}_{2}\right]^{2+}$, which one is optically active?
Ans. cis $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$.

* 9. Name the method of refining used to obtain semiconductor of very high purity.
*10. Is

homopolymer or copolymer?
Questions 11 to $\mathbf{1 5}$ are multiple choice questions:

11. The amount of electricity required to produce one mole of Zn from ZnSO_{4} solution will be
(a) 3 F
(b) 2 F
(c) 1 F
(d) 4 F

Ans. (b) $\underset{1 \mathrm{~mol}}{\mathrm{ZnSO}_{4}} \underset{1 \mathrm{~mol}}{\mathrm{Zn}^{2+}}+\mathrm{SO}_{4}^{2-} ; \mathrm{Zn}^{2+}+2 e^{-} \rightarrow \mathrm{Zn}(2 \mathrm{~F})$
12. Zinc is coated over iron to prevent rusting of iron because
(a) $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}=\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}$
(b) $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\mathrm{O}}<\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\mathrm{o}}$
(c) $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}>\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}$
(d) None of these

Ans. (b)
13. The unit of rate constant depends upon the
(a) molecularity of the reaction
(b) activation energy of the reaction
(c) order of the reaction
(d) temperature of the reaction

* Out of Syllabus

Ans. (c) Order of the reaction
14. The formula of the complex triamminetri(nitrito-O) Cobalt (III) is
(a) $\left[\mathrm{Co}(\mathrm{ONO})_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$
(b) $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$
(c) $\left[\mathrm{Co}\left(\mathrm{ONO}_{2}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$
(d) $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{3}\right]$

Ans. (a) $\left[\mathrm{Co}(\mathrm{ONO})_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$
15. Which of the following is a disaccharide?
(a) Glucose
(b) Starch
(c) Cellulose
(d) Lactose

Ans. (d) Lactose.

Questions 16 to 20

(a) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is correct, but Reason (R) is wrong statement.
(d) Assertion (A) is wrong, but Reason (R) is correct statement.
16. Assertion (A): An ideal solution obeys Henry's law.
Reason (R): In an ideal solution, solute-solute as well as solvent-solvent interactions are similar to solute-solvent interaction.
Ans. (d) An ideal solution obeys Raoult's law
18. Assertion (A): Benzaldehyde is less reactive than ethanal towards nucleophilic addition reactions. Reason (R): Ethanal is more sterically hindered.
Ans. (b)

SECTION -B

*22. Draw the structures of the following:
(i) HClO_{4}
(ii) XeOF_{4}
$1+1=2$
*24. Identify the monomers in the following polymers:
(i)

(ii)

$1+1=2$
*27. Define the following terms with a suitable example in each:
(i) Bacteriocidal antibiotics
(ii) Food preservatives

$$
1+1=2
$$

SECTION -C

31. (i) What are the hydrolysis products of DNA?
(ii) What happens when D-glucose is treated with Bromine water?
(iii) What is the effect of denaturation on the structure of proteins?
$1+1+1=3$
Ans. (i) On hydrolysis of DNA, the products are pentose sugar, phosphoric acid and bases.
(ii) When D-glucose is treated with bromine water D-gluconic acid is formed.

(iii) On denaturation secondary and tertiary proteins get converted into primary proteins. Denaturation disrupts the normal alpha-helix and beta sheets in a protein and uncoils it into a random shape.

Outside Delhi Set-I

Code No. 56/4/1

SECTION -A

* Read the given passage and answer the questions 1 to 5 that follow:
Colloidal particles always carry an electric charge which may be either positive or negative. For example, when AgNO_{3} solution is added to KI solution, a negatively charged colloidal sol is obtained. The presence of equal and similar charges on colloidal particles provide stability to the colloidal sol and if, somehow, charge is removed, coagulation of sol occurs. Lyophobic sols are readily coagulated as compared to lyophilic sols.
* 1. What is the reason for the charge on sol particles ?
* 2. Why the presence of equal and similar charges on colloidal particles provide stability?
* 3. Why a negatively charged sol is obtained on adding AgNO_{3} solution to KI solution?
* 4. Name one method by which coagulation of lyophobic sol can be carried out.
* 5. Out of KI or $\mathrm{K}_{2} \mathrm{SO}_{4}$, which electrolyte is better in the coagulation of positive sol?

Questions 6 to 10 are one word answers:

* 6. Name the method applied for the concentration of Bauxite ore in the extraction of Aluminium.
Ans. Bayer process (In this process the impurities like iron oxide and silica are removed.)

7.

 which one is more reactive towards $S_{N} 1$ reaction?
Ans.
 reactive towards $\mathrm{S}_{\mathrm{N}} 1$, reaction than primary halide ($\square-\mathrm{CH}_{2} \mathrm{Cl}$).

[^4]8. Write an isomer of $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ which gives foul smell of isocyanide when treated with chloroform and ethanolic NaOH .
Ans. Isomer of $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, givepan-1-amine foul smell of isocyanides. (because primary amine gives carbylamine reaction.)

* 9. Which one of the following is an antidepressant drug? Chloramphenicol, Luminal, Bithional

10. Write the name of component of starch which is water soluble.
Ans. Amylose is water soluble component.
Questions 11 to 15 are multiple choice questions:
11. How many ions are produced from the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ in solution?
(a) 4
(b) 2
(c) 3
(d) 5

Ans. (c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \rightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}(\mathrm{aq})$
12. In a lead storage battery:
(a) PbO_{2} is reduced to PbSO_{4} at the cathode.
(b) Pb is oxidised to PbSO_{4} at the anode.
(c) Both electrodes are immersed in the same aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(d) All the above are true.

Ans. (d)
13. The slope in the plot of $\ln [R]$ vs. time gives
(a) $+k$
(b) $\frac{+k}{2.303}$
(c) $-k$
(d) $\frac{-k}{2.303}$
(where $[R]$ is the final concentration of reactant.)
Ans. (c)

14. The pair $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$ will show
(a) Linkage isomerism
(b) Hydrate isomerism
(c) Ionization isomerism
(d) Coordinate isomerism

Ans. (c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+2 \mathrm{Br}^{-}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right]^{+}+2 \mathrm{Cl}^{-}$
15. An α-helix is a structural feature of
(a) Sucrose
(b) Polypeptides
(c) Nucleotides
(d) Starch

Ans. (b) α-helix is a common structure of proteins (polypeptide chains).
Questions 16 to 20
$20 \times 1=20$
(a) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is correct, but Reason (R) is wrong statement.
(d) Assertion (A) is wrong, but Reason (R) is correct statement.
*16. Assertion (A): F_{2} is a strong oxidising agent.
Reason (R): Electron gain enthalpy of fluorine is less negative.
17. Assertion (A): $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ gives $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$ and $\mathrm{CH}_{3} \mathrm{OH}$ on treatment with HI .
Reason (R): The reaction occurs by $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
Ans. (a)
18. Assertion (A): Transition metals have low melting points.
Reason (R): The involvement of greater number of $(n-1) d$ and $n s$ electrons in the interatomic metallic bonding.
Ans. (d)
19. Assertion (A): Hydrolysis of an ester follows first order kinetics.
Reason (R): Concentration of water remains nearly constant during the course of the reaction.
Ans. (a)
20. Assertion (A): Benzoic acid does not undergo Friedal-Crafts reaction.
Reason (R): The carboxyl group is activating and undergo electrophilic substitution reaction.
Ans. (c)

SECTION -B

21. What happens when
(i) a pressure greater than osmotic pressure is applied on the solution side separated from solvent by a semipermeable membrane?
(ii) acetone is added to pure ethanol?

$$
1+1=2
$$

Ans. (i) Reverse osmosis will take place and the level of solution will decrease.
(ii) Acetone reacts with alcohol to form a hemiacetal.
*22. Write the principal of the following refining methods:
(a) vapour phase refining
(b) chromatography. $1+1=2$ OR

Write chemical equations involved to obtain:
(a) Cu from $\mathrm{Cu}_{2} \mathrm{~S}$
(b) Ag from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$complex $\quad 1+1=2$
23. Write the balanced chemical equations involved in the preparation of KMnO_{4} from pyrolusite ore $\left(\mathrm{MnO}_{2}\right)$.

OR
Write the balanced ionic equations showing the oxidising action of acidified dichromate $\quad\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$ solution with
(i) Iron (II) ion and (ii) Tin (II) ion. $\quad 1+1=2$

Ans. $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

OR
(i) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{Sn}^{2+}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Sn}^{4+}+7 \mathrm{H}_{2} \mathrm{O}$
24. Write the IUPAC name and hybridization of the following complexes:
(i) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$.
(ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$.
(Given: Atomic number of $\mathrm{Ni}=28, \mathrm{Fe}=26$)

$$
1+1=2
$$

Ans. (i) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ - tetracyanonickelate (II)
hybridization $-d s p^{2}$
(ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ - hexaquairon (II)
hybridization $-s p^{3} d^{2}$
*25. Define the following terms with a suitable example in each:
(i) Antibiotics
(ii) Antiseptics
$1+1=2$
26. Write the reactions showing the presence of following in the open structure of glucose:
(i) a carbonyl group
(ii) Straight chain with six carbon atoms $1+1=2$

Ans. (i) Reaction of glucose (a carbonyl group)

[^5]
(ii) Straight chain with six carbon atoms CHO
|

27. State Henry's law. Calculate the solubility of CO_{2} in water at 298 K under 760 mm Hg .
(K_{H} for CO_{2} in water at 298 K is $1.25 \times \mathbf{1 0}^{6} \mathbf{~ m m ~ H g}$)
2
Ans. Henry's law: The mass of a gas dissolved in a given volume of the liquid at a constant temperature depends upon the pressure which is applied.
\[

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{H}} \text { for } \mathrm{CO}_{2}=1.25 \times 10^{6} \mathrm{~mm} \mathrm{Hg} \\
& x_{\mathrm{CO}_{2}}=\frac{\text { Partial pressure of } \mathrm{CO}_{2}}{\mathrm{~K}_{\mathrm{H}} \text { for } \mathrm{CO}_{2}}=\frac{760 \mathrm{~mm} \mathrm{Hg}}{1.25 \times 10^{6} \mathrm{~mm} \mathrm{Hg}} \\
&=608 \times 10^{-6}
\end{aligned}
$$
\]

Mole fraction represents the solubility of CO_{2} in water.

SECTION -C

28. The freezing point of a solution containing 5 g of benzoic acid ($M=122 \mathrm{~g} \mathrm{~mol}^{-1}$) in 35 g of benzene is depressed by 2.94 K . What is the percentage association of benzoic acid if it forms a dimer in solution?
$\left(\mathrm{K}_{f}\right.$ for benzene $\left.=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
Ans. Observed molar mass of benzoic acid :

$$
\begin{array}{rll}
M_{B} & =\frac{K_{f} \times W_{B}}{W_{A} \times \Delta T_{f}} & W_{B}=5 \mathrm{gm} \\
W_{B}=0.035 \mathrm{~kg} \\
M_{B} & =\frac{4.9 \times 5}{0.035 \times 2.94}=\frac{24.5}{0.1029} & \begin{array}{l}
K_{f}=4.9 \mathrm{~K} \mathrm{kgmol}^{-1} \\
\\
\end{array} \mathrm{~kg}^{238 \mathrm{~g} \mathrm{~mol}^{-1}}
\end{array} \begin{array}{ll}
\Delta T_{f}=2.94
\end{array}
$$

Normal molar mass of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$

$$
=122 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$i=\frac{\text { normal molar mass }}{\text { observed molar mass }}=\frac{122}{238}=0.513$
$\%$ of association of acid (α)

$$
\begin{gathered}
2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \rightleftharpoons\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)_{2} \\
n=2 \alpha=\frac{i-1}{1 / n-1}=\frac{0.513-1}{\frac{1}{2}-1}=\frac{(-0.487)}{(-0.5)}=0.974
\end{gathered}
$$

Percentage association of acid $=0.974 \times 100=$ 97.4\%
29. The rate constant for the first order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given by the following equation :
$k=\left(2.5 \times 10^{14} \mathrm{~s}^{-1}\right) e^{(-25000 \mathrm{~K}) / \mathrm{T}}$
Calculate E_{a} for this reaction and rate constant if its half-life period be 300 minutes.

3
Ans. $k=\left(2.5 \times 10^{14} l^{-1}\right) \mathrm{e}^{(-25000 К) / T}$
$t_{1 / 2}=300$ minutes
$\frac{E_{a}}{R}=25000 \mathrm{~K}$
$E_{a}=25000 \times \mathrm{R} \times \mathrm{K}$
$=25000 \times 8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times \mathrm{K}$
$=207850 \mathrm{~J} \mathrm{~mol}^{-1}=207.850 \mathrm{KJ} \mathrm{mol}^{-1}$
$t_{1 / 2}=\frac{0.693}{K} \Rightarrow K=\frac{0.693}{300} \mathrm{~min}^{-1}$
$=0.231 \times 10^{-2}$

$$
=2.31 \times 10^{-3} \mathrm{~min}^{-1}
$$

*30. Write the name and structures of monomer(s) in the following polymers:
(i) Nylon-6
(ii) PVC
(iii) Neoprene
$1+1+1=3$
31. Following ions are given:
$\mathrm{Cr}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cu}^{+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}$
Identify the ion which is
(i) a strong reducing agent.
(ii) unstable in aqueous solution.
(iii) a strong oxidising agent.

Give suitable reason in each. $\quad 1+1+1=3$
Ans. (i) Cr^{2+}, because its configuration changes from d^{4} to d^{3} and having a half-filled $t_{2 g}$ level.
(ii) Cu^{+}in an aqueous medium energy is required to remove one electron from Cu^{+}to Cu^{2+}, high hydration energy of Cu^{2+} compensates for it. Therefore Cu^{+}ion in an aqueous solution is unstable.

$$
2 \mathrm{Cu}^{+} \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

(iii) Mn^{3+}, because its configuration changes from Mn^{3+} to Mn^{2+} results in the half filled d^{5} configuration, which has extra stability.
32. (i) Write the structure of major alkene formed by β-elimination of 2,2 , 3 -trimethyl-3bromopentane with sodium ethoxide in ethanol.
(ii) Which one of the compounds in the following pairs is chiral?

[^6](iii) Identify (A) and (B) in the following:

OR
How can you convert the following?
(i) But-1-ene to 1-iodobutane
(ii) Benzene to acetophenone
(iii) Ethanol to propanenitrile

Ans. (i)

(ii)

(iii)

$+$

(A)

OR
(i)

(ii)

(iii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{RedP} / \mathrm{Br}_{2}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br} \xrightarrow[\text { Aq. ethanol }]{\mathrm{KCN}} \underset{\text { Propanenitrile }}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}}$
33. Arrange the following compounds as directed:
(i) In increasing order of solubility in water: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(ii) In decreasing order of basic strength in aqueous solution :
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
(iii) In increasing order of boiling point:
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad 1+1+1=3$

Ans. (i) Increasing order of solubility:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}<\mathrm{CH}_{3} \mathrm{NH}_{2}
$$

(ii) Decreasing order of basic strength in aqueous solution:

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{CH}_{3} \mathrm{NH}
$$

(iii) Increasing order of boiling point:
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
34. Write the product(s) of the following reactions:
(i)

(iii)

(ii)

$$
1+1+1=3
$$

OR

(a) Write the mechanism of the following $\mathrm{S}_{\mathrm{N}} 1$ reaction:
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br} \xrightarrow{\text { Aq. } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}+\mathrm{NaBr}$
(b) Write the equation for the preparation of 2-methyl-2-methoxypropane by Williamson synthesis.

Ans. (i)

(ii)

Salicyclic acid
2-Acetoxybenzoic acid

OR
(a) $\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}-\mathrm{Br} \xrightarrow{\text { Aq. } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}-\mathrm{OH}+\mathrm{NaBr}$ Step-I:

Step-II:

(b) Williamson synthesis:

OR

SECTION -D

35. (a) The electrical resistance of a column of 0.05 M KOH solution of length 50 cm and area of cross-section $0.625 \mathrm{~cm}^{2}$ is $5 \times 10^{3} \mathrm{ohm}$. Calculate its resistivity, conductivity and molar conductivity.
(b) Predict the products of electrolysis of an aqueous solution of CuCl_{2} with platinum electrodes.
(Given : $\left.\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+0.34 \mathrm{~V}, \mathrm{E}_{(1 / 2}^{0} \mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right)=+1.36 \mathrm{~V}$;

$$
\begin{array}{r}
\left.\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Pt}}^{0}=0.00 \mathrm{~V}, \mathrm{E}_{(1 / 2}^{0} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)= \\
\\
3+2=5.23 \mathrm{~V}) \\
\end{array}
$$

OR
(a) Calculate e.m.f. of the following cell :
$\mathbf{Z n}(\mathrm{s}) / \mathbf{Z n}^{2+}(0.1 \mathrm{M})| |(0.01 \mathrm{M}) \mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{s})$
Given: $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}=-0.76 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathbf{o}}=+0.80 \mathrm{~V}$
[Given : $\log 10=1$]
(b) X and Y are two electrolytes. On dilution molar conductivity of ' X ' increases 2.5 times while that Y increases 25 times. Which of the two is a weak electrolyte and why? $3+2=5$
Ans. (a) Given : $\mathrm{A}=0.625 \mathrm{~cm}^{2}, l=50 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{R}=5 \times 10^{3} \mathrm{ohm}, \rho=? \\
& m=0.05 \mathrm{~m}, \mathrm{~K}=? \\
& \wedge_{m}=?
\end{aligned}
$$

Cell constant $=\frac{\ell}{\mathrm{A}}=\frac{50 \mathrm{~cm}}{0.625 \mathrm{~cm}^{2}}=80 \mathrm{~cm}^{-1}$.
Resistivity $=\frac{\mathrm{R}}{\text { cell constant }}$ or $\frac{\mathrm{R} \times \mathrm{A}}{l}$

$$
\begin{aligned}
& \Rightarrow \frac{5 \times 10^{3} \times 0.625}{50} \\
& \Rightarrow \frac{5 \times 10^{3} \mathrm{ohm}}{80 \mathrm{~cm}^{-1}} \Rightarrow 62.5 \mathrm{ohm} \mathrm{~cm} . \\
& \Rightarrow 62.5 \mathrm{ohm} \mathrm{~cm} .
\end{aligned}
$$

Conductivity $=\frac{1}{\text { Resistivity }} \times \frac{l}{A}$
$\frac{1}{5 \times 10^{3}} \times \frac{50}{0.625}=\frac{50}{5 \times 10^{3} \times 625 \times 10^{-3}}$
$=\frac{10}{625}=0.016 \mathrm{scm}^{-1}$

Molar conductivity $\left(\Lambda_{m}\right)=\frac{10^{3} K}{M}$
$\Lambda_{m}=\frac{\mathrm{K}}{\mathrm{M}} \times 1000=\frac{10 \times 1000}{625 \times 0.05}=320 \mathrm{sm}^{2} \mathrm{~mol}$
(b) Given: $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}+0.34 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{E}_{\left(1 / 2 \mathrm{Cl}_{2} / \mathrm{Cl}^{-}\right)}^{\circ}=+1.36 \mathrm{~V} \\
& \mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}(\mathrm{~g})}^{\circ}, \mathrm{Pt}=0.00 \mathrm{~V}, \mathrm{E}_{\left(1 / 2 \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)}^{\circ}=+1.23 \mathrm{~V}
\end{aligned}
$$

At cathode:

$$
\mathrm{Cu}_{(\mathrm{aq})}^{2+}+2 e^{-} \longrightarrow \mathrm{Cu}(\mathrm{~s}) ; \mathrm{E}^{\circ}=0.34
$$

$$
\mathrm{H}_{(\mathrm{aq})}^{+}+e^{-} \longrightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{E}^{\circ}=0.000 \mathrm{~V}
$$

The reaction with a higher value of E° takes place at the cathode, so deposition of copper will take place at the cathode.

At anode: The oxidation reactions are possible at the anode.

$$
\begin{gathered}
\mathrm{Cl}_{(\mathrm{aq})}^{-} \longrightarrow \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+e^{-} ; \mathrm{E}^{\circ}=1.36 \mathrm{~V} \\
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 e^{-} ; \mathrm{E}^{\circ}=+1.23 \mathrm{~V}
\end{gathered}
$$

At the anode the reaction with a lower value of E° is preferred. But due to the over potential of oxygen, Cl^{-}gets oxidised at anode to produce Cl_{2} gas.

OR

(a) $\mathrm{Zn}(\mathrm{s}) / \mathrm{Zn}^{2+}(0.1 \mathrm{M}) \|(0.01 \mathrm{M}) \mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{s})$
$\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\circ}=-0.76 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=+0.80 \mathrm{~V} \quad$ emf $=$?
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.0591}{n} \log \frac{\text { [Anode }]}{[\text { Cathode }]}$
$\mathrm{E}_{\text {cell }}^{\circ}=\mathrm{E}_{\text {cathode }}^{\circ}-\mathrm{E}_{\text {anode }}^{\circ}$
$=\mathrm{E}_{\mathrm{Ag} / \mathrm{Ag}}^{\circ}-\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\circ}$
$=0.80-(-0.76)=1.56 \mathrm{~V}$
$\mathrm{E}_{\text {cell }}=1.56-\frac{0.0591}{2} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$
$=1.56-\frac{0.0591}{2} \log \frac{[0.1]}{[0.01]^{2}}$
$=1.56-0.0295 \log 1000$
$=1.56-3$ (0.0295)
$=1.56-0.09=1.4715$
(b) Y is a weak electrolyte as n dilution complete dissociation of weak electrolyte takes place and thus a sharp increase in molar conductivity while in strong electrolyte it has already dissociated completely. So on dilution molar conductivity does not rises much.

36. (a) An organic compound (A) having molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ gives orange red precipitate with 2, 4-DNP reagent. It does not reduce Tollens' reagent but gives yellow precipitate of iodoform on heating with NaOH and I_{2}. Compound (A) on reduction with NaBH_{4} gives compound (B) which undergoes dehydration reaction on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form compound (C). Compound (C) on ozonolysis gives two molecules of ethanal.

Identify (A), (B) and (C) and write their structures. Write the reactions of compound (A) with (i) $\mathrm{NaOH} / \mathrm{I}_{2}$ and (ii) NaBH_{4}.
(b) Give reasons:
(i) Oxidation of propanal is 1ensie\# lthan propanone.
(ii) α-hydrogen of aldehydes and ketones is acidic in nature. $\quad 3+2=5$

OR
(a) Draw structures of the following derivatives:
(i) Cyanohydrin of cyclobutanone
(ii) Hemiacetal of ethanal
(b) Write the major product(s) in the following :
(i) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CN} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) DIBAL-H }}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{CrO}_{3}}$
(c) How can you distinguish between propanal and propanone?
$2+2+1=5$

Ans. (a) Compound $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ gives positive, 2, 4-DNP test, it must be carbonyl compound. It gives iodoform test.

(B)

(i)

(ii)

(b) (i) Oxidation of propanal is easier than propanone because aldehydes have one hydrogen atom attached to the carbonyl group while ketones have two alkyl or aryl groups attached to the carbonyl group. Propanal easily oxidised to form acid with same number of carbon atoms whereas propanone is difficult to be oxidise and form acids with less number of carbon atoms.

(ii) α-hydrogen of aldehydes and ketones is acidic in nature. They can be easily abstracted by suitable bases. Two molecules condense to form a β-hydroxyaldehyde or β-hydroxyketone which gets dehydrated in presence of acid upon heating to form α, β-unsaturated compound.

OR
(a) (i) Cyanohydrin of cyclobutanone

(ii) Hemiacetal of ethanol

(b) (i)

(ii)

(c) By iodoform test : Propanone on treatment with $\mathrm{I}_{2} / \mathrm{NaOH}$ undergoes iodoform test to give a yellow ppt. of iodoform.

Propanal does not give this test.
*37. (a) Account for the following:
(i) Tendency to show $\mathbf{- 2}$ oxidation state decreases from oxygen to tellurium.
(ii) Acidic character increases from HF to HI .
(iii) Moist SO_{2} gas acts as a reducing agent.
(b) Draw the structure of an oxoacid of sulphur containing S-O-S linkage.
(c) Complex the following equation:

$$
\mathrm{XeF}_{2}+\underset{\mathrm{OR}}{\mathrm{H}_{2} \mathrm{O}} \quad 3+1+1=5
$$

(a) Among the hydrides of group 16, write the hydride
(i) Which is a strong reducing agent.
(ii) Which has maximum bond angle.
(iii) Which most thermally stable.

Give suitable reason in each.
(b) Complete the following equations:
$\underset{\text { (Conc.) }}{\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{4}} \longrightarrow$
$\mathrm{Cl}_{2}+\underset{\text { (Cold and dilute) }}{\mathrm{NaOH}} \longrightarrow \quad 3+1+1=5$

[^7]
Outside Delhi Set-II

Code No. 56/4/2
Note: Except these questions, other questions are from Outside Delhi Set-I

SECTION -A

Question 6 to 10 are one word answers:

* 6. Name the depressant which is used to separate PbS and ZnS containing ore in froth floatation process.

7.

 which will react faster in $\mathrm{S}_{\mathrm{N}} 1$ reaction with OH^{-}?

Ans.

8. Out of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$, which has higher boiling point?
Ans. $\mathrm{CH}_{3} \mathrm{NH}_{2}$

* 9. Which one of the following is a narcotic analgesic? Penicillin, Codeine, Ranitidine

10. Write the name of linkage joining two monosaccharides.
Ans. Glycosidic linkage.
Questions 11 to 15 are multiple choice questions:
11. The coordination number of ' Co^{\prime} in the complex $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is
(a) 3
(b) 6
(c) 4
(d) 5

Ans. (b)
12. An electrochemical cell behaves like an electrolytic cell when
(a) $\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {external }}$
(b) $\quad \mathrm{E}_{\text {cell }}=0$
(c) $\mathrm{E}_{\text {external }}>\mathrm{E}_{\text {cell }}$
(d) $\mathrm{E}_{\text {external }}<\mathrm{E}_{\text {cell }}$

Ans. (c) $\mathrm{E}_{\text {ext. }}>\mathrm{E}_{\text {cell }}$
13. The half-life period for a zero order reaction is equal to
(a) $\frac{0.693}{k}$
(b) $\frac{2 k}{[R]_{0}}$
(c) $\frac{2.303}{k}$
(d) $\frac{[R]_{0}}{2 k}$
(where $[R]_{0}$ is initial concentration of reactant and k is rate constant.)

Ans. (d) $\frac{[R]_{0}}{2 K}$
14. The crystal field splitting energy for octahedral $\left(\Delta_{0}\right)$ and tetrahedral $\left(\Delta_{t}\right)$ complexes is related as
(a) $\Delta_{t}=\frac{2}{9} \Delta_{o}$
(b) $\Delta_{t}=\frac{5}{9} \Delta_{\mathrm{o}}$
(c) $\Delta t=\frac{4}{9} \Delta_{\text {o }}$
(d) $\Delta_{t}=2 \Delta_{\text {o }}$

Ans. (c) $\Delta_{t}=\frac{4}{9} \Delta_{o}$
15. $\alpha-D(+)$ glucose and $\beta-D(+)$ glucose are
(a) Geometrical isomers
(b) Enantiomers
(c) Anomers
(d) Optical isomers

Ans. (b) Enantiomers

Questions 16 to 20

(a) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is correct, but Reason (R) is wrong statement.
(d) Assertion (A) is wrong, but Reason (R) is correct statement.
*16. Assertion (A): F_{2} has lower bond dissociation enthalpy than Cl_{2}.
Reason (R): Fluorine is more electronegative than chlorine.
18. Assertion (A): Transition metals have high melting point.
Reason (R): Transition metals have completely filled d-orbitals.

Ans. (c)

SECTION -B

23. Write IUPAC name and hybridization of the following complexes:
(i) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$,
(ii) $\left[\mathrm{CoF}_{6}\right]^{3-}$ (Atomic number $\mathrm{Ni}=28, \mathrm{Co}=27$)
$1+1=2$

Ans. (i) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - Tetracarbonylnickel
Hybridization - $s p^{3}$

[^8](ii) $\left[\mathrm{CoF}_{6}\right]^{3-}-$ Hexafluorocobaltate (III)

Hybridization $-s p^{3} d^{2}$

six pairs of e^{-}from six fluoride ions
*25. Define the following terms with a suitable example in each:
(i) Tranquilizers
(ii) Anionic detergent
$1+1=2$
26. Write the reactions showing the presence of following in the open structure of glucose:
(i) an aldehyde group
$1+1=2$
Ans. (i) An aldehyde group: On reduction with sodium amalgam and water, the aldehydic group is reduced to primary alcohol.

(ii) A primary alcohol: (with nitric acid)

SECTION -C

*31. Write the name and structures of monomers in the following polymers:
(i) Nylon-6, 6
(ii) Terylene
(iii) PHBV $1+1+1=3$

Outside Delhi Set-III

Code No. 56/4/3

Note: Except these questions, other questions are from Outside Delhi Set-I and II

SECTION -A

Questions 6 to 10 are one word answers:

* 6. Name the method used for the refining of Zinc.

7. Out of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$, which one is more reactive towards $\mathrm{S}_{\mathrm{N}} 1$ reaction?
Ans. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$

* 8. Write an isomer of $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ which does not react with Hinsberg reagent.

9. What type of protein is present in keratin?

Ans. Fibrous protein.
*10. Name the compound which is added to soap to provide antiseptic properties.
Questions 11 to $\mathbf{1 5}$ are multiple choice questions:
11. Which of the following is the most stable complex?
(a) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(c) $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Ans. (c) $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ acts as the chelating ligands.
12. Which of the following is correct for spontaneity of a cell?
(a) $\Delta \mathrm{G}=-\mathrm{ve} \mathrm{E}^{\circ}=+\mathrm{ve}$
(b) $\Delta \mathrm{G}=+\mathrm{ve}, \mathrm{E}^{\mathrm{o}}=0$

* Out of Syllabus
(c) $\Delta \mathrm{G}=-\mathrm{ve}, \mathrm{E}^{0}=0$
(d) $\Delta \mathrm{G}=+\mathrm{ve}, \mathrm{E}^{o}=-\mathrm{ve}$

Ans. (a) $\Delta \mathrm{G}=-\mathrm{ve}, \mathrm{E}^{\circ}=+\mathrm{ve}$
13. For a zero order reaction, the slope in the plot of $[R]$ vs. time is
(a) $\frac{-k}{2.303}$
(b) $-k$
(c) $\frac{+k}{2.303}$
(d) $+k$
(where $[R]$ is the final concentration of reactant)

Ans. (b)

14. What type of isomerism is shown by the pair $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$?
(a) Ionisation isomerism
(b) Coordination isomerism
(c) Solvate isomerism
(d) Linkage isomerism

Ans. (c) Solvate / Hydrate isomerism
15. Which one is the complementary base of cytosine in one strand to that in other strand of DNA?
(a) Adenine
(b) Guanine
(c) Thymine
(d) Uracil

Ans. (b) Guanine.

Questions 16 to 20

(a) Both Assertion (A) and Reason (R) are correct statements, and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is correct, but Reason (R) is wrong statement.
(d) Assertion (A) is wrong, but Reason (R) is correct statement.

* 16. Assertion (A): F_{2} has lower reactivity.

Reason (R): F-F bond has low $\Delta_{\text {bond }} \mathbf{H}^{\mathbf{0}}$.
20. Assertion (A): For complex reactions molecularity and order are not same.
Reason (R): Order of reaction may be zero.
Ans. (b)

SECTION -B

23. Write IUPAC name and hybridization of the following complexes:
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(ii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(Atomic number $\mathrm{Ni}=28, \mathrm{Co}=27$)
Ans. (i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$: Hexaminecobalt (III)
Hybridization - $d^{2} s p^{3}$

(ii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$: Tetrachloronickelate (II)

Hybridization - $s p^{3}$

25. Write the reactions showing the presence of following in the open structure of glucose:
(i) five- OH groups
(ii) a carbonyl group
$1+1=2$
Ans. (i) Presence of five-OH groups (with acetic anhydride)

(ii) Presence of a carbonyl group (with HCN)

*27. Define the following terms with a suitable example in each:
(i) Antacids
(ii) Artificial Sweetener

[^0]: * Out of Syllabus

[^1]: * Out of Syllabus

[^2]: * Out of Syllabus

[^3]: * Out of Syllabus

[^4]: * Out of Syllabus

[^5]: * Out of Syllabus

[^6]: * Out of Syllabus

[^7]: * Out of Syllabus

[^8]: * Out of Syllabus

