Solved Paper 2022 Mathematics (TERM-II) Class-XII

General Instructions:

(i) This question paper contains three Sections - A, B and C.
(ii) Each section is compulsory.
(iii) Section-A has 6 short answer type-I questions of 2 marks each.
(iv) Section-B has 4 short answer type-II questions of $\mathbf{3}$ marks each.
(v) Section-C has 4 long answer type questions of 4 marks each.
(vi) There is an internal choice in some questions.
(vii) Question 14 is a case study based question with two sub parts of 2 marks each.

Series: ABCD/5/5, Delhi Set-I

 65/5/1
SECTION - A

Question numbers 1 to 6 carry 2 marks each.

1. Find $\int \frac{d x}{\sqrt{4 x-x^{2}}}$

Ans. Let

$$
\begin{aligned}
& \mathrm{I}=\int \frac{d x}{\sqrt{4 x-x^{2}}}=\int \frac{d x}{\sqrt{-\left(x^{2}-4 x\right)}} \\
&=\int \frac{d x}{\sqrt{-\left(x^{2}-4 x+2^{2}-2^{2}\right)}} \\
&=\int \frac{d x}{\sqrt{-(x-2)^{2}+2^{2}}}=\int \frac{d x}{\sqrt{2^{2}-(x-2)^{2}}} \\
&=\sin ^{-1}\left(\frac{x-2}{2}\right)+C \\
& {\left[\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+C\right] }
\end{aligned}
$$

2. Find the general solution of the following differential equation:

$$
\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}
$$

Ans. Given differential equation is

$$
\begin{array}{rlrl}
& & \frac{d y}{d x} & =e^{x-y}+x^{2} e^{-y} \\
\Rightarrow \quad & \frac{d y}{d x} & =e^{-y}\left(e^{x}+x^{2}\right) \\
\Rightarrow \quad & \frac{d y}{e^{-y}} & =\left(e^{x}+x^{2}\right) d x \\
\Rightarrow \quad & e^{y} d y & =e^{x} d x+x^{2} d x
\end{array}
$$

On integrating both sides, we get

$$
e^{y}=e^{x}+\frac{x^{3}}{3}+c
$$

3. Let X be a random variable which assumes values $x_{1}, x_{2}, x_{3}, x_{4}$ such that $2 P\left(X=x_{1}\right)=3 \mathrm{P}\left(\mathrm{X}=x_{2}\right)$ $=P\left(X=x_{3}\right)=5 P\left(X=x_{4}\right)$.
Find the probability distribution of X.
Ans. Given, $2 \mathrm{P}\left(\mathrm{X}=x_{1}\right)=3 \mathrm{P}\left(\mathrm{X}=x_{2}\right)$

$$
\left.\begin{array}{rl}
& =\mathrm{P}\left(\mathrm{X}=x_{3}\right)=5 \mathrm{P}\left(\mathrm{X}=x_{4}\right) \\
\text { Let } 2 \mathrm{P}\left(\mathrm{X}=x_{1}\right) & \\
& =5 \mathrm{P}\left(\mathrm{X}=x_{4}\right)=k
\end{array}\right)
$$

On adding eqs. (i) - (iv), and equating sum of all probabilities is equal to 1 , we get

$$
\begin{aligned}
\frac{k}{2}+\frac{k}{3}+k+\frac{k}{5} & =1 \\
\Rightarrow \frac{15 k+10 k+30 k+6 k}{30} & =1 \Rightarrow 61 k=30 \Rightarrow k=\frac{30}{61}
\end{aligned}
$$

The required probability distribution is:

$\mathrm{P}\left(\mathrm{X}=x_{1}\right)$	$\mathrm{P}\left(\mathrm{X}=x_{2}\right)$	$\mathrm{P}\left(\mathrm{X}=x_{3}\right)$	$\mathrm{P}\left(\mathrm{X}=x_{4}\right)$
$\frac{30}{61 \times 2}=\frac{15}{61}$	$\frac{30}{61 \times 3}=\frac{10}{61}$	$\frac{30}{61}$	$\frac{30}{61 \times 5}=\frac{6}{61}$

4. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then find $|\vec{b}|$. 2
Ans. Given,

$$
\begin{aligned}
\vec{a} & =\hat{i}+\hat{j}+\hat{k} \\
\vec{a} \cdot \vec{b} & =1
\end{aligned}
$$

and

$$
\vec{a} \times \vec{b}=\hat{j}-\hat{k}
$$

$$
\begin{array}{ll}
\text { Let } & \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \\
\text { Now, } & \vec{a} \cdot \vec{b}=1 \\
\Rightarrow & (\hat{i}+\hat{j}+\hat{k})\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right)=1 \\
\Rightarrow & b_{1}+b_{2}+b_{3}=1 \\
\text { and } & \vec{a} \times \vec{b}=\hat{j}-\hat{k}
\end{array}
$$

$$
\Rightarrow \quad\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\hat{j}-\hat{k}
$$

$$
\Rightarrow \hat{i}\left(b_{3}-b_{2}\right)-\hat{j}\left(b_{3}-b_{1}\right)+\hat{k}\left(b_{2}-b_{1}\right)=\hat{j}-\hat{k}
$$

On comparing both sides, we get

$$
\begin{array}{rlrl}
& & -\left(b_{3}-b_{1}\right) & =1 \text { and } b_{2}-b_{1}=-1 \\
\Rightarrow & b_{3}-b_{1} & =-1 \text { and } b_{2}-b_{1}=-1 \\
\Rightarrow & b_{3} & =-1+b_{1} \text { and } b_{2}=-1+b_{1} \ldots \text { (ii) }
\end{array}
$$

Now from eq. (i), we get
$b_{1}+\left(-1+b_{1}\right)+\left(-1+b_{1}\right)=1$
$\Rightarrow \quad 3 b_{1}=3$
$\Rightarrow \quad b_{1}=1$
From eq. (ii), we get

$$
b_{2}=0 \text { and } b_{3}=0
$$

$\therefore \quad \vec{b}=\hat{i}$
Therefore,
$|\vec{b}|=1$
5. If a line makes an angle α, β, γ with the coordinate axes, then find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma .2$
Ans. We have, $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$
$=2 \cos ^{2} \alpha-1+2 \cos ^{2} \beta-1+2 \cos ^{2} \gamma-1$
$=2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)-3$
$=2 \times 1-3 \quad\left[\because \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\right]$
$=2-3$
$=-1$
6. (a) Events A and B are such that
$P(A)=\frac{1}{2}, P(B)=\frac{7}{12}$ and $P(\bar{A} \cup \bar{B})=\frac{1}{4}$
Find whether the events A and B are independent or not.

OR

(b) A box B_{1} contains 1 white ball and 3 red balls. Another box B_{2} contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B_{1} and B_{2}, then find the probability that the two balls drawn are of the same colour.

Ans.
(a) Given

$$
\mathrm{P}(\mathrm{~A})=\frac{1}{2}, \mathrm{P}(\mathrm{~B})=\frac{7}{12}
$$

and $\quad P(\overline{\mathrm{~A}} \cup \overline{\mathrm{~B}})=\frac{1}{4}$

For A and B are independent

$$
\begin{array}{ll}
& \mathrm{P}(\mathrm{~A} \cap \underline{\mathrm{~B}})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \\
\text { Now, } & \mathrm{P}(\overline{\mathrm{~A}} \cup \overline{\mathrm{~B}})=\mathrm{P}(\overline{\mathrm{~A} \cap \mathrm{~B}}) \\
\Rightarrow & \mathrm{P}(\overline{\mathrm{~A}} \cup \overline{\mathrm{~B}})=1-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
\end{array}
$$

$\Rightarrow \quad P(A \cap B)=1-P(\bar{A} \cup \bar{B})$
$\Rightarrow \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=1-\frac{1}{4}=\frac{3}{4}$
Now, $\quad P(A) \cdot P(B)=\frac{1}{2} \times \frac{7}{12}=\frac{7}{24}$
Since from eqs. (ii) \& (iii)

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \neq \mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})
$$

Therefore, events A and B are not independent.

OR

(b)

| Box $_{1}$ | 1 White Balls
 3 Red Balls |
| :--- | :--- | :--- | :--- |\quad| Box $_{2}$ | 2 White Balls
 3 Red Balls |
| :--- | :--- | :--- |

$\therefore \mathrm{P}($ Required $)=\mathrm{P}($ Both are white $)+\mathrm{P}($ Both are red $)$

$$
\begin{aligned}
& =\frac{1}{4} \times \frac{2}{5}+\frac{3}{4} \times \frac{3}{5} \\
& =\frac{2}{20}+\frac{9}{20}=\frac{11}{20}
\end{aligned}
$$

SECTION - B

Question numbers 7 to 10 carry $\mathbf{3}$ marks each.
7. Evaluate: $\int_{0}^{\pi / 4} \frac{d x}{1+\tan x}$

Ans. Let $\mathrm{I}=\int_{0}^{\pi / 4} \frac{d x}{1+\tan x}=\int_{0}^{\pi / 4} \frac{d x}{1+\frac{\sin x}{\cos x}}$

$$
\begin{aligned}
& \quad=\int_{0}^{\pi / 4} \frac{\cos x d x}{\cos x+\sin x}=\frac{1}{2} \int_{0}^{\pi / 4} \frac{2 \cos x}{\cos x+\sin x} d x \\
& =\frac{1}{2} \int_{0}^{\pi / 4} \frac{\cos x+\sin x+\cos x-\sin x}{\cos x+\sin x} d x \\
& =\frac{1}{2}\left[\int_{0}^{\pi / 4} \frac{\cos x+\sin x}{\cos x+\sin x} d x+\int_{0}^{\pi / 4} \frac{\cos x-\sin x}{\cos x+\sin x} d x\right] \\
& =\frac{1}{2}\left[\int_{0}^{\pi / 4} 1 d x+\int_{0}^{\pi / 4} \frac{\cos x-\sin x}{\cos x+\sin x} d x\right]=\frac{1}{2}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)
\end{aligned}
$$

where,

$$
\mathrm{I}_{1}=\int_{0}^{\pi / 4} 1 d x=[x]_{0}^{\pi / 4}=\frac{\pi}{4}
$$

$$
\text { and } \quad \mathrm{I}_{2}=\int_{0}^{\pi / 4} \frac{\cos x-\sin x}{\cos x+\sin x} d x
$$

$$
\text { Let } \quad \cos x+\sin x=t
$$

$$
\Rightarrow \quad(-\sin x+\cos x) d x=d t
$$

$$
\text { when } \quad x=0, t=1
$$

$$
\text { and } \quad x=\frac{\pi}{4}, t=\frac{2}{\sqrt{2}}
$$

$$
\therefore \quad \mathrm{I}_{2}=\int_{1}^{2 / \sqrt{2}} \frac{d t}{t}=[\log t]_{1}^{\frac{2}{\sqrt{2}}}
$$

$$
=\log \frac{2}{\sqrt{2}}-\log 1=\log \frac{2}{\sqrt{2}}-0
$$

$$
=\log 2^{3 / 2}=\frac{3}{2} \log 2
$$

$$
\begin{array}{ll}
\therefore & \mathrm{I}=\frac{1}{2}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \\
\text { or } & \mathrm{I}=\frac{1}{2}\left(\frac{\pi}{4}+\frac{3}{2} \log 2\right)
\end{array}
$$

8. (a) If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{b}|$, then prove that $(\vec{a}+2 \vec{b})$ is perpendicular to \vec{a}.

OR

(b) If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, then prove that $\sin \frac{\theta}{2}=\frac{1}{2}|\vec{a}-\vec{b}| \cdot 3$
Ans. (a) Given, $\quad|\vec{a}+\vec{b}|=|\vec{b}|$
On squaring both sides, we get

$$
\begin{aligned}
& |\vec{a}+\vec{b}|^{2}=|\vec{b}|^{2} \\
& \Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}|=|\vec{b}|^{2} \\
& \Rightarrow \quad|\vec{a}|^{2}+2|\vec{a}||\vec{b}|=0 \\
& \Rightarrow \quad|\vec{a}| \cdot(|\vec{a}|+2|\vec{b}|)=0 \\
& \Rightarrow \quad \vec{a} \cdot(\vec{a}+2 \vec{b})=0
\end{aligned}
$$

Since, dot product of \vec{a} and $\vec{a}+2 \vec{b}$ is zero, thus vectors are perpendicular.

Hence Proved OR

Given,

$$
|\vec{a}|=1 \text { and }|\vec{b}|=1
$$

Now, we take

$$
\begin{aligned}
&|\vec{a}-\vec{b}|^{2}=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
&=|\vec{a}|^{2}+|\vec{b}|-2|\vec{a}| \cdot|\vec{b}| \\
&=1+1-2|\vec{a}| \cdot|\vec{b}| \cos \theta \\
&=2-2 \times 1 \times 1 \cos \theta=2(1-\cos \theta) \\
&=2\left[1-\left(1-2 \sin ^{2} \frac{\theta}{2}\right)\right] \\
&=2\left(2 \sin ^{2} \frac{\theta}{2}\right) \\
&=4 \sin ^{2} \frac{\theta}{2} \\
& \text { or, } \quad \sin ^{2} \frac{\theta}{2}=\frac{|\vec{a}-\vec{b}|^{2}}{4} \\
& \Rightarrow \quad \sin \frac{\theta}{2}=\frac{|\vec{a}-\vec{b}|}{2} \\
& \text { Hence proved }
\end{aligned}
$$

* 9. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=10$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and passing through $(-2,3,1)$.

10. (a) Find: $\int e^{x} \cdot \sin 2 x d x$

OR
(b) Find: $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x$

Ans. (a) Let $\quad I=\int e^{x} \sin 2 x d x$
Applying integration by parts

$$
\begin{aligned}
& \mathrm{I}=\int e^{x} \sin 2 x d x \\
& \text { I II } \\
& =e^{x} \int \sin 2 x d x-\int\left[\frac{d}{d x}\left(e^{x}\right) \int \sin 2 x d x\right] d x \\
& =e^{x}\left(\frac{-\cos 2 x}{2}\right)+\frac{1}{2} \int e^{x} \cos 2 x d x \\
& =\frac{1}{2}\left(-e^{x} \cos 2 x\right)+\frac{1}{2}\left[e^{x} \int \cos 2 x d x-\int\left(\frac{d}{d x}\left(e^{x}\right) \int \cos 2 x d x\right) d x\right] \\
& =\frac{1}{2}\left(-e^{x} \cos 2 x\right)+\frac{1}{2}\left[\frac{e^{x} \sin 2 x}{2}-\frac{1}{2} \int e^{x} \sin 2 x d x\right] \\
& \mathrm{I}=\frac{1}{2}\left(-e^{x} \cos 2 x\right)+\frac{1}{4}\left(e^{x} \sin 2 x\right)-\frac{1}{4} \int e^{x} \sin 2 x d x+K \\
& \therefore 4 \mathrm{I}=-2 e^{x} \cos 2 x+e^{x} \sin 2 x-\mathrm{I}+K \\
& \text { or } 5 \mathrm{I}=-2 e^{x} \cos 2 x+e^{x} \sin 2 x+K \\
& \mathrm{I}=\frac{1}{5}\left(e^{x} \sin 2 x-2 e^{x} \cos 2 x\right)+\frac{K}{5} \\
& \text { or } \mathrm{I}=\frac{1}{5}\left(e^{x} \sin 2 x-2 e^{x} \cos 2 x\right)+c
\end{aligned} \quad\left(c=\frac{K}{5}\right)
$$

OR
Let

$$
I=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x
$$

By Partial Fractions

$$
\begin{aligned}
\text { let } & & \frac{1}{\left(x^{2}+1\right)\left(x^{2}+2\right)} & =\frac{\mathrm{A}}{x^{2}+1}+\frac{\mathrm{B}}{x^{2}+2} \\
\Rightarrow & & 1 & =\mathrm{A}\left(x^{2}+2\right)+\mathrm{B}\left(x^{2}+1\right) \\
\Rightarrow & & 1 & =(\mathrm{A}+\mathrm{B}) x^{2}+(2 \mathrm{~A}+\mathrm{B})
\end{aligned}
$$

On comparing both sides, we get

$$
\mathrm{A}+\mathrm{B}=0 \text { and } 2 \mathrm{~A}+\mathrm{B}=1
$$

On solving above equations, we get

$$
\begin{aligned}
& \mathrm{A}=1 \text { and } \mathrm{B}=-1 \\
& \mathrm{I}=\int\left(\frac{1}{x^{2}+1}-\frac{1}{x^{2}+2}\right) 2 x d x \\
& \mathrm{I}=\int \frac{2 x}{x^{2}+1} d x-\int \frac{2 x}{x^{2}+2} d x \\
& \mathrm{I}=\log \left|x^{2}+1\right|-\log \left|x^{2}+2\right|+C \\
& \mathrm{I}=\log \left|\frac{x^{2}+1}{x^{2}+2}\right|+C
\end{aligned}
$$

$$
\therefore \quad \mathrm{I}=\int\left(\frac{1}{x^{2}+1}-\frac{1}{x^{2}+2}\right) 2 x d x
$$

SECTION - C

Question numbers 11 to 14 carry 4 marks each.
11. Three persons A, B and C apply for a job a manager in a private company. Chances of their selection are in the ratio $1: 2: 4$. The probability that A, B and C can introduce chances to increase the profits of a company are $0.8,0.5$ and 0.3 respectively. If increase in the profit does not take place, find the probability that it is due to the appointment of A
Ans. Let

$$
\begin{aligned}
E_{1} & =\text { Person A gets the job } \\
E_{2} & =\text { Person } B \text { gets the job } \\
E_{3} & =\text { Person C gets the job } \\
A & =\text { No change takes place }
\end{aligned}
$$

The chances of selection of A, B and C are in the ratio 1:2:4

Hence,

$$
\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{7}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2}{7}, \mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{4}{7}
$$

Also, given $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{1}}\right)=0.2=\frac{2}{10}, \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{2}}\right)=0.5=\frac{5}{10}$
and $\quad \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{3}}\right)=0.7=\frac{7}{10}$
Required probability is

$$
\begin{aligned}
P\left(\frac{E_{1}}{A}\right) & =\frac{P\left(\frac{A}{E_{1}}\right) \cdot P\left(E_{1}\right)}{P\left(\frac{A}{E_{1}}\right) \cdot P\left(E_{1}\right)+P\left(\frac{A}{E_{2}}\right) \cdot P\left(E_{2}\right)+P\left(\frac{A}{E_{3}}\right) \cdot P\left(E_{3}\right)} \\
& =\frac{\frac{2}{10} \times \frac{1}{7}}{\frac{2}{10} \times \frac{1}{7}+\frac{5}{10} \times \frac{2}{7}+\frac{7}{10} \times \frac{4}{7}} \\
& =\frac{\frac{2}{70}}{\frac{2}{70}+\frac{10}{70}+\frac{28}{70}}=\frac{2}{40}=\frac{1}{20}
\end{aligned}
$$

\therefore If no change takes palace, the probability that it is due to appointment of person A is $\frac{1}{20}$.
12. Find the area bounded by the curve $y=|x-1|$ and $y=1$, using integration.

Ans.

We have,

$$
\begin{aligned}
& y=(x-1) \\
& y=x-1 \text {, if } x-1 \geq 0 \\
& y=-x+1 \text {, if } x-1<0 \\
& \text { Required Area }=\text { Area of shaded region } \\
& \mathrm{A}=\int_{0}^{2} y d x=\int_{0}^{1}(1-x) d x+\int_{1}^{2}(x-1) d x \\
& =\left[x-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{2} \\
& =\left(1-\frac{1}{2}\right)-\left(0-\frac{0}{2}\right)+\left(\frac{4}{2}-2\right)-\left(\frac{1}{2}-1\right) \\
& =\frac{1}{2}+\frac{1}{2} \\
& =1 \text { sq. unit }
\end{aligned}
$$

13. (a) Solve the following differential equation: $\left(y-\sin ^{2} x\right) d x+\tan x d y=0$

4

OR

(b) Find the general solution of the differential equation: $\left(x^{3}+y^{3}\right) d y=x^{2} y d x$
Ans. (a) Given differential equation is

$$
\begin{aligned}
&\left(y-\sin ^{2} x\right) d x+\tan x d y=0 \\
&\left(y-\sin ^{2} x\right) d x=-\tan x d y \\
& \frac{d y}{d x}=\frac{y-\sin ^{2} x}{-\tan x} \frac{d y}{d x}=\frac{\sin ^{2} x-y}{\tan x} \\
& \frac{d y}{d x}=\frac{\sin ^{2} x}{\tan x}-\frac{y}{\tan x} \\
& \frac{d y}{d x}=\sin x \cos x-y \cot x \\
& \frac{d y}{d x}+y \cot x=\sin x \cos x
\end{aligned}
$$

which is a linear differential equation of the form

$$
\frac{d y}{d x}+\mathrm{P} y=\mathrm{Q}
$$

where

$$
\begin{aligned}
\mathrm{P} & =\cot x \\
\mathrm{Q} & =\sin x \cos x \\
\text { I.f. } & =e^{\int \mathrm{P} d x}=e^{\int \cot x d x} \\
& =e^{\log |\sin x|}=\sin x
\end{aligned}
$$

Here,
\therefore Solution is given by

$$
\begin{align*}
& \text { y.I.f. }=\int \text { Q.I.f. } d x+C_{1} \\
& y \cdot \sin x=\int(\sin x \cos x \sin x) d x+C_{1} \\
& y \cdot \sin x=\int \sin ^{2} x \cos x d x+C_{1} \\
& y \cdot \sin x=I+C_{1} \tag{i}\\
& \text { where } \\
& \mathrm{I}=\int \sin ^{2} x \cos d x \\
& \text { let } \quad \sin x=t \\
& \Rightarrow \quad \cos x d x=d t \\
& \therefore \quad \mathrm{I}=\int t^{2} d t=\frac{t^{3}}{3}+\mathrm{C}_{2} \\
& \text { or } \\
& I=\frac{\sin ^{3} x}{3}+C_{2}
\end{align*}
$$

from eq. (i), we have

$$
\begin{aligned}
& y \cdot \sin x=\frac{\sin ^{3} x}{3}+C_{2}+C_{1} \\
& y \cdot \sin x=\frac{\sin ^{3} x}{3}+C
\end{aligned}
$$

$$
\text { (where } C=C_{1}+C_{2} \text {) }
$$

OR

Given differential equation is

$$
\begin{align*}
\left(x^{3}+y^{3}\right) d y & =x^{2} y d x \\
\frac{d x}{d y} & =\frac{x^{3}+y^{3}}{x^{2} y} \tag{i}
\end{align*}
$$

Put $\quad x=v y$
$\Rightarrow \quad \frac{d x}{d y}=v+y \frac{d v}{d y}$
from eq. (i), we have

$$
\begin{aligned}
v+y \frac{d v}{d y} & =\frac{(v y)^{3}+y^{3}}{(v y)^{2} y}, v+y \frac{d v}{d y}=\frac{v^{3} y^{3}+y^{3}}{v^{2} y^{3}} \\
v+y \frac{d v}{d y} & =\frac{v^{3}+1}{v^{2}}, y \frac{d v}{d y}=\frac{v^{3}+1}{v^{2}}-v \\
y \frac{d v}{d y} & =\frac{1}{v^{2}}, v^{2} d v=\frac{d y}{y}
\end{aligned}
$$

(variable separable method)
Integrating both sides, we get

$$
\begin{aligned}
\int v^{2} d v & =\int \frac{d y}{y} \\
\frac{v^{3}}{3} & =\log y+C
\end{aligned}
$$

Putting $v=\frac{x}{y}$, we get

$$
\frac{x^{3}}{3 y^{3}}=\log y+c
$$

Case Study Based Question

14. Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines $\vec{r}=\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and $\vec{r}=(3 \hat{i}+3 \hat{j})+\mu(2 \hat{i}+\hat{j}+\hat{k})$ respectively. $2 \times 2=4$

Based on the above information, answer the following questions:
(a) Find the shortest distance between the given lines.
(b) Find the point at which the motorcycles may collide.

2
Ans. (a) Given, lines are:

$$
\vec{r}=\lambda(\hat{i}+2 \hat{j}-\hat{k}) \text { and } \vec{r}=(3 \hat{i}+3 \hat{j})+\mu(2 \hat{i}+\hat{j}+\hat{k})
$$

We know that, shortest distance between the lines $\overrightarrow{r_{1}}=\vec{a}+\lambda b_{1}$ and $\vec{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{b_{1}}$ is

$$
d=\frac{\left|\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)\right|}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}
$$

Here,

$$
\overrightarrow{a_{1}}=0, \overrightarrow{a_{2}}=(3 \hat{i}+3 \hat{j})
$$

$$
\overrightarrow{b_{1}}=\hat{i}+2 \hat{j}-\hat{k}
$$

and $\quad \overrightarrow{b_{2}}=2 \hat{i}+\hat{j}+\hat{k}$

$$
\therefore \quad \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(3 \hat{i}+3 \hat{j})-0=3 \hat{i}+3 \hat{j}
$$

$$
\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & -1 \\
2 & 1 & 1
\end{array}\right|
$$

$$
=\hat{i}(2+1)-\hat{j}(1+2)+\hat{k}(1-4)
$$

$$
=3 \hat{i}-3 \hat{j}-3 \hat{k}
$$

and

$$
\begin{aligned}
\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right| & =\sqrt{3^{2}+(-3)^{2}+(-3)^{2}} \\
& =\sqrt{9+9+9}=3 \sqrt{3}
\end{aligned}
$$

Also, $\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=(3 \hat{i}+3 \hat{j}) \cdot(3 \hat{i}-3 \hat{j}-3 \hat{k})$

$$
=9-9=0
$$

$$
d=\frac{0}{3 \sqrt{3}}=0
$$

Thus, distance between lines is 0 .
(b) We have, $\quad \vec{r}=\lambda(\hat{i}+2 \hat{j}-\hat{k})$
and

$$
\begin{equation*}
\vec{r}=3 \hat{i}+3 \hat{j}+\mu(2 \hat{i}+\hat{j}+\hat{k}) \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
\vec{r}=(3+2 \mu) \hat{i}+(3+\mu) \hat{j}+\mu \hat{k} \tag{ii}
\end{equation*}
$$

Now, from eq. (i) \& eq. (ii), we get

$$
\lambda(\hat{i}+2 \hat{j}-\hat{k})=(3+2 \mu) \hat{i}+(3+\mu) \hat{j}+\mu \hat{k}
$$

On comparing both sides, we get

$$
3+2 \mu=\lambda, 3+\mu=2 \lambda \text { and } \mu=-\lambda
$$

On solving for values of λ and μ, we get

$$
\lambda=1 \text { and } \mu=-1
$$

from eq. (i), we get $\vec{r}=\hat{i}+2 j-\hat{k}$

$$
x \hat{i}+y \hat{j}+z \hat{k}=\hat{i}+2 \hat{j}-\hat{k}
$$

So, required point is $(1,2,-1)$.

Series: ABCD/5/5, Delhi Set-II

Note: Except these, all other Questions are from Set-I.

SECTION - A

1. Find the vector equation of a line passing trough a point with position vector $2 \hat{i}-\hat{j}+\hat{k}$ and parallel to the line joining the points $-\hat{i}+4 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+2 \hat{k}$.

Ans. Let A, B and C be the points with position vectors $2 \hat{i}-\hat{j}+\hat{k},-\hat{i}+4 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+2 \hat{k}$, respectively.
We have to find the equation of a line passing through the point A and parallel to vector BC .
Now,

$$
\begin{aligned}
\stackrel{\rightharpoonup}{\mathrm{BC}} & =\text { position vector of } \mathrm{C}-\text { position vector of } \overrightarrow{\mathrm{B}} \\
& =(\hat{i}+2 \hat{j}+2 \hat{k})-(-\hat{i}+4 \hat{j}+\hat{k}) \\
& =2 \hat{i}-2 \hat{j}+\hat{k}
\end{aligned}
$$

We know that, the equation of a line passing through a position vector \vec{a} and parallel to vector \vec{b} is

$$
\begin{array}{ll}
& \vec{r} \\
\therefore & \vec{a}+\lambda \vec{b} \\
\therefore & \vec{r}
\end{array}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})
$$

is the required equation of line in vector from.
[Here, $\overrightarrow{\mathrm{BC}}=\vec{b}$]

SECTION - B

9. (a) Let $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$. If \hat{n} is a unit vector such that $\vec{a} \cdot \hat{n}=0$ and $\vec{b} \cdot \hat{n}=0$, then find $|\vec{c}, \hat{n}|$.

OR

(b) If \vec{a} and \vec{b} are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with $(\vec{a}+3 \vec{b})$ and $(3 \vec{a}+\vec{b})$ as adjacent sides. 3
Ans. Given, $\quad \vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$
Also, given $\vec{a} \cdot \hat{n}=0$ and $\vec{b} \cdot \hat{n}=0$
Here, $\quad \hat{n}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
Here, $\quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right|$

$$
=\hat{i}(0-0)-\hat{j}(0-0)+\hat{k}(-1-1)=-2 \hat{k}
$$

$$
\therefore \quad \hat{n}=\frac{-2 \hat{k}}{\sqrt{(-2)^{2}}}=-\hat{k}
$$

Therefore, $|\vec{c} \cdot \hat{n}|=|(\hat{i}+\hat{j}+\hat{k}) \cdot(-\hat{k})|=|-1|=1$
OR
We know, Area of parallelogram with adjacents sides \vec{p} and \vec{q} is given by

$$
\mathrm{A}=|\vec{p} \times \vec{q}|
$$

Here, \quad Area $=|(\vec{a}+3 \vec{b}) \times(3 \vec{a}+\vec{b})|$

$$
\begin{aligned}
& =|3(\vec{a} \times \vec{a})+(\vec{a} \times \vec{b})+9(\vec{b} \times \vec{a})+3(\vec{b} \times \vec{b})| \\
& =|3 \times 0+(\vec{a} \times \vec{b})-9(\vec{a} \times \vec{b})+3 \times 0| \\
& \qquad \quad[\because \vec{a} \times \vec{a}=0=\vec{b} \times \vec{b} \text { and } \vec{b} \times \vec{a}=-\vec{a} \times \vec{b}] \\
& =|-8(\vec{a} \times \vec{b})|=8|\vec{a} \times \vec{b}| \\
& =8|\vec{a}| \cdot|\vec{b}| \sin \theta \\
& =8.1 .1 . \sin 30^{\circ} \quad\left[\text { Given, }|\vec{a}|=1=|\vec{b}| \text { and } \theta=30^{\circ}\right] \\
& =8 . \frac{1}{2} \\
& =4 \text { sq. units }
\end{aligned}
$$

10. Evaluate: $\int_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{2 / 3}} d x$

Ans. Let $\mathrm{I}=\int_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{2 / 3}} d x$

$$
\mathrm{I}=\int_{0}^{\pi / 2} \frac{1}{1+\left[\tan \left(\frac{\pi}{2}-x\right)\right]^{2 / 3}} d x
$$

[Using property $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$]

$$
\begin{aligned}
& \mathrm{I}=\int_{0}^{\pi / 2} \frac{1}{1+(\cot x)^{2 / 3}} d x \\
& \mathrm{I}=\int_{0}^{\pi / 2} \frac{(\tan x)^{2 / 3}}{(\tan x)^{2 / 3}+1} d x \\
& \mathrm{I}=\int_{0}^{\pi / 2} \frac{(\tan x)^{2 / 3}+1-1}{(\tan x)^{2 / 3}+1} d x \\
& \mathrm{I}=\int_{0}^{\pi / 2} \frac{1+(\tan x)^{2 / 3}}{1+(\tan x)^{2 / 3}} d x-\int_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{2 / 3}} d x \\
& \mathrm{I}=\int_{0}^{\pi / 2} 1 \cdot d x-\mathrm{I} \\
& 2 \mathrm{I}=\int_{0}^{\pi / 2} 1 \cdot d x \quad 2 \mathrm{I}=[x]_{0}^{\pi / 2} \quad 2 \mathrm{I}=\frac{\pi}{2} \quad \mathrm{I}=\frac{\pi}{4}
\end{aligned}
$$

[From eq.(i)]

SECTION - C

13. In a factory, machine A produces 30% of total output, machine B produces 25% and the machine C produces the remaining output. The defective items produced by machines A, B and C are $1 \%, 1.2 \%$, $\mathbf{2 \%}$ respectively. An item is picked at random from a day's output and found to be defective. Find the probability that it was produced by machine B ? 4
Ans. Let
$\mathrm{E}_{1}=$ choosing machine A
$\mathrm{E}_{2}=$ choosing machine B
$\mathrm{E}_{3}=$ choosing machine C
$\mathrm{A}=$ Producing a defective output
Given,

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1}\right) & =30 \%=\frac{30}{100}=0.3 \\
\mathrm{P}\left(\mathrm{E}_{2}\right) & =25 \%=\frac{25}{100}=0.25 \\
\mathrm{P}\left(\mathrm{E}_{3}\right) & =[100-(30+25)] \%=45 \% \\
& =\frac{45}{100}=0.45
\end{aligned}
$$

and $P\left(\frac{A}{E_{1}}\right)$
$=\mathrm{P}($ Producing defective output from machine A$)$
$=1 \%=\frac{1}{100}=0.01$
$\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{2}}\right)$
$=\mathrm{P}($ Producing defective output from machine B$)$
$=1.2 \%=\frac{1.2}{100}=0.012$
$\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{3}}\right)$
$=\mathrm{P}($ Producing defective output from machine C$)$
$=2 \%=\frac{2}{100}=0.02$
Required probability $=P\left(\frac{E_{2}}{A}\right)$
$=\mathrm{P}($ The found defective item is produced by machine B)
Using Bayes' theorem,
$P\left(\frac{E_{2}}{A}\right)$
$=\frac{P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)}$
$=\frac{0.25 \times 0.012}{(0.3 \times 0.01)+(0.25 \times 0.012)+(0.45 \times 0.02)}$
$=\frac{300}{300+300+900}=\frac{300}{1500}=\frac{1}{5}$
Thus, required probability is $\frac{1}{5}$.
Series: ABCD/5/5, Delhi Set-III
Note: Except these, all other Questions are from Set-I, II

SECTION - A

1. The Cartesian equation of a line AB is: $\frac{2 x-1}{12}=\frac{y+2}{2}=\frac{z-3}{3}$

Find the direction cosines of a line parallel to line AB.
Ans. We have, $\frac{2 x-1}{12}=\frac{y+2}{2}=\frac{z-3}{3}$
The equation of line $A B$ can be rewritten as

$$
\begin{equation*}
\frac{x-\frac{1}{2}}{6}=\frac{y-(-2)}{2}=\frac{z-3}{3} \tag{i}
\end{equation*}
$$

Thus, direction ratios of the line parallel to $A B$ are proportional to 6, 2,3 .
Hence, the direction cosines of the line parallel to AB are

$$
\frac{6}{\sqrt{6^{2}+2^{2}+3^{2}}}, \frac{2}{\sqrt{6^{2}+2^{2}+3^{2}}}, \frac{3}{\sqrt{6^{2}+2^{2}+3^{2}}}
$$

or $\frac{6}{\sqrt{49}}, \frac{2}{\sqrt{49}}, \frac{3}{\sqrt{49}}$
or $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$

SECTION - B

9. Evaluate: $\int_{1}^{3} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4-x}} d x$.

Ans. Let

$$
\begin{equation*}
\mathrm{I}=\int_{1}^{3} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4-x}} \tag{3}
\end{equation*}
$$

Using property $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$, we get

$$
\begin{equation*}
\mathrm{I}=\int_{1}^{3} \frac{\sqrt{4-x}}{\sqrt{4-x}+\sqrt{x}} d x \tag{ii}
\end{equation*}
$$

On adding eqs. (i) and (ii), we get

$$
2 \mathrm{I}=\int_{1}^{3} \frac{\sqrt{x}+\sqrt{4-x}}{\sqrt{x}+\sqrt{4-x}} d x=\int_{1}^{3} 1 d x
$$

$$
\begin{aligned}
& =[x]_{1}^{3} \\
& =3-1=2 \\
\therefore \quad & \mathrm{I}
\end{aligned}=1
$$

*10. Findthedistanceofthepoint $(2,3,4)$ measuredalongthe line $\frac{x-4}{3}=\frac{y+5}{6}=\frac{z+1}{2}$ from the plane $3 x+2 y+2 z$ $+5=0$.

SECTION - C

13. There are two boxes, namely box-I and box-II. Box-I contains 3 red and 6 black balls. Box-II contains 5 red and 5 black balls. One of the two boxes, is selected at random and a ball is drawn at random. The ball drawn is found to be red. Find the probability that this red ball comes out from box-II.
Ans. Let

$$
\begin{aligned}
& \mathrm{E}_{1}=\text { Selecting Box-I } \\
& \mathrm{E}_{2}=\text { Selecting Box-II }
\end{aligned}
$$

$\mathrm{A}=$ getting a red ball from the selected box

$$
\text { Here, } \quad \begin{aligned}
\mathrm{P}\left(\mathrm{E}_{1}\right) & =\frac{1}{2}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{2} \\
\mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{1}}\right) & =\frac{3}{9}=\frac{1}{3} \\
\mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{2}}\right) & =\frac{5}{10}=\frac{1}{2}
\end{aligned}
$$

Series: ABCD/4/3, Outside Delhi Set-I

SECTION - A

Question Nos. 1 to 6 carry 2 marks each.

1. Find: $\int \frac{d x}{x^{2}-6 x+13}$

Ans. Given integral is

$$
\begin{aligned}
\mathrm{I} & =\int \frac{d x}{x^{2}-6 x+13}=\int \frac{d x}{(x-3)^{2}+13-9} \\
& =\int \frac{d x}{(x-3)^{2}+4}=\int \frac{d x}{(x-3)^{2}+2^{2}} \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{x-3}{2}\right)+C \\
& \quad\left[\text { Using } \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C\right]
\end{aligned}
$$

2. Find the general solution of the differential equation : $e^{d y / d x}=x^{2}$.
Ans. Given differential equation is

$$
e^{d y / d x}=x^{2}
$$

Taking log both sides, we get

$$
\frac{d y}{d x} \log e=2 \log x \quad\left[\because \log _{e}=1\right]
$$

Required probability $=P\left(\frac{E_{2}}{A}\right)$

$$
\begin{aligned}
& =\begin{array}{r}
\mathrm{P}(\text { Red ball comes out from } \\
\text { Box-II) Using Bayes' } \\
\text { theorem, }
\end{array} \\
\mathrm{P}\left(\frac{\mathrm{E}_{2}}{\mathrm{~A}}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{2}}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{1}}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{2}}\right)} \\
& =\frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{3}+\frac{1}{2} \times \frac{1}{2}} \\
& =\frac{\frac{1}{4}}{\frac{1}{6}+\frac{1}{4}} \\
& =\frac{\frac{1}{4}}{\frac{10}{24}}=\frac{1}{4} \times \frac{24}{10}=\frac{3}{5}
\end{aligned}
$$

Thus, probability that the red ball comes out form Box-II is $\frac{3}{5}$.

$$
\begin{array}{ll}
\Rightarrow & \frac{d y}{d x}=2 \log x \\
\Rightarrow & d y=2 \log x d x
\end{array}
$$

On integrating both sides, we get

$$
\begin{aligned}
\int d y & =2 \int \log x d x \\
\Rightarrow \quad y & =2 \int 1 \cdot \log x d x \\
\Rightarrow \quad y & =2\left[\log x \int 1 d x-\int \frac{d}{d x}(\log x)\left(\int 1 \cdot d x\right) d x\right]
\end{aligned}
$$

[Using integration by parts]
$\Rightarrow \quad y=2\left[\log x(x)-\int \frac{1}{x}(x) d x\right]$
$\Rightarrow \quad y=2[x \log x-x]+C$
$\Rightarrow \quad y=2 x(\log x-1)+C$
3. Write the projection of the vector $(\vec{b}+\vec{c})$ on the vector \vec{a}, where $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.

Ans. Given vectors,

$$
\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k} \quad \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}
$$

[^0]\[

$$
\begin{aligned}
\vec{c} & =2 \hat{i}-\hat{j}+4 \hat{k} \\
\vec{b}+\vec{c} & =(\hat{i}+2 \hat{j}-2 \hat{k})+(2 \hat{i}-\hat{j}+4 \hat{k}) \\
\text { or, } \quad \vec{b}+\vec{c} & =3 \hat{i}+\hat{j}+2 \hat{k}
\end{aligned}
$$
\]

Projection of $(\vec{b}+\vec{c})$ on $\vec{a}=\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|}$

$$
\begin{aligned}
& =\frac{(3 \hat{i}+\hat{j}+2 \hat{k}) \cdot(2 \hat{i}-2 \hat{j}+\hat{k})}{\sqrt{(2)^{2}+(2)^{2}+(1)^{2}}} \\
& =\frac{6-2+2}{3} \\
& =2
\end{aligned}
$$

* 4. If the distance of the point $(1,1,1)$ from the plane
$x-y+z+\lambda=0$ is $\frac{5}{\sqrt{3}}$, find the value(s) of $\lambda . \quad 2$

5. Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spade cards.
Ans. Let X denote the number of spades in a sample of 2 drawn cards from a well shuffle pack of 52 cards.
Then, X can take the values $0,1,2$.
Now, $\quad P(X=0)=P($ no spade $)$

$$
\begin{aligned}
& =\frac{{ }^{39} C_{2}}{{ }^{52} C_{2}}=\frac{741}{1326} \\
& =\frac{19}{34} \\
P(X & =1)=P \text { (one spade card) } \\
& =\frac{{ }^{13} C_{1} \times{ }^{39} C_{1}}{{ }^{52} C_{2}}=\frac{507}{1326}=\frac{13}{34}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} & =2)=\mathrm{P}(\text { both cards are spade }) \\
& =\frac{{ }^{13} C_{2}}{{ }^{52} C_{2}}=\frac{78}{1326}=\frac{1}{17}
\end{aligned}
$$

Thus, the probability distribution of X is given by

X	$P(X)$
0	$\frac{19}{34}$
1	$\frac{13}{34}$
2	$\frac{1}{17}$

[^1]6. A pair of dice is thrown and the sum of the numbers appearing on the dice is observed to be 7. Find the probability that the number 5 has appeared on atleast one die.

OR

The probability that A hits the target is $\frac{1}{3}$ and the probability that B hits it, is $\frac{2}{5}$. If both try to hit the target independently, find the probability that the target is hit.

2
Ans. Let $\mathrm{E}=$ event that 5 has appeared on atleast one die $\therefore \mathrm{E}=\{(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,5)$, $(4,5),(3,5),(2,5),(1,5)\}$
Let $\mathrm{F}=$ event that sum of no. on die is 7 .
$\therefore \mathrm{F}=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
$\mathrm{E} \cap \mathrm{F}=\{(2,5),(5,2)\}$
$\therefore n(\mathrm{E} \cap \mathrm{F})=2$
Now, $P\left(\frac{E}{F}\right)=\frac{P(E \cap F)}{P(F)}=\frac{n(E \cap F)}{n(F)}=\frac{2}{6}=\frac{1}{3}$

$$
\begin{aligned}
& \text { OR } \\
& \mathrm{P}(\mathrm{~A})=\mathrm{P}(\mathrm{~A} \text { hits target })=\frac{1}{3} \\
& \mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~B} \text { hits target })=\frac{2}{5} \\
& \text { Now, } \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\text { target will be hit }) \\
&=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
&=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \\
& {[\because \mathrm{A} \text { and } \mathrm{B} \text { are independent }] } \\
&=\frac{1}{3}+\frac{2}{5}-\frac{1}{3} \times \frac{2}{5} \\
&=\frac{5+6-2}{15} \\
&=\frac{9}{15}=\frac{3}{5}
\end{aligned}
$$

SECTION - B

Question Nos. $\mathbf{7}$ to 10 carry $\mathbf{3}$ marks each.
7. Evaluate: $\int_{0}^{2 \pi} \frac{d x}{1+e^{\sin x}}$

3

Ans. Let

$$
\begin{aligned}
& \mathrm{I}=\int_{0}^{2 \pi} \frac{d x}{1+e^{\sin x}} \\
& \quad=\int_{0}^{\pi}\left\{\frac{1}{1+e^{\sin x}}+\frac{1}{1+e^{\sin (2 \pi-x)}}\right\} d x \\
& {\left[\because \int_{0}^{2 a} f(x) d x=\int_{0}^{a}\{f(x)+f(2 a-x)\} d x\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi}\left\{\frac{1}{1+e^{\sin x}}+\frac{1}{1+e^{-\sin x}}\right\} d x \\
& =\int_{0}^{\pi}\left\{\frac{1}{1+e^{\sin x}}+\frac{e^{\sin x}}{1+e^{\sin x}}\right\} d x \\
& =\int_{0}^{\pi} \frac{1+e^{\sin x}}{1+e^{\sin x}} d x \\
& =\int_{0}^{\pi} 1 \cdot d x=[x]_{0}^{\pi}=\pi
\end{aligned}
$$

8. Find the particular solution of the differential equation $x \frac{d y}{d x}-y=x^{2} . e^{x}$, given $y(1)=0$.

OR

Find the general solution of the differential equation $x \frac{d y}{d x}=y(\log y-\log x+1)$.

Ans. Given differential equation is

$$
\begin{aligned}
x \frac{d y}{d x}-y & =x^{2} . e^{x} \\
\frac{d y}{d x}-\frac{y}{x} & =x e^{x}, \text { which is of the form } \\
\frac{d y}{d x}+P y & =\mathrm{Q}
\end{aligned}
$$

Here,

$$
\begin{aligned}
\mathrm{P} & =-\frac{1}{x} \text { and } \mathrm{Q}=x e^{x} \\
\text { I.F. } & =e^{\int p d x}=e^{\int \frac{-1}{x} d x}=e^{-\log x} \\
& =e^{\log \frac{1}{x}}=\frac{1}{x} \log _{e} e=\frac{1}{x}
\end{aligned}
$$

The solution is given by

$$
\begin{align*}
y . \text { I.F. } & =\int \mathrm{Q} \times \text { I.F. } d x+C \\
y \cdot \frac{1}{x} & =\int x e^{x} \times \frac{1}{x} d x+C \\
\frac{y}{x} & =\int e^{x} d x+C \quad \frac{y}{x}=e^{x}+C \\
\frac{y}{x} & =e^{x} \tag{i}
\end{align*}
$$

Given $y=0$ when $x=1$
from eq (i), we get

$$
\Rightarrow \quad \begin{aligned}
& 0=1 . e^{1}+\mathrm{C} .1 \\
& \mathrm{C}=-e \\
& \text { OR } \\
& y=x e^{x}-e x
\end{aligned}
$$

Given differential equation is

$$
\begin{aligned}
& x \frac{d y}{d x} & =y(\log y-\log x+1) \\
\Rightarrow \quad & \frac{d y}{d x} & =\frac{y}{x}\left(\log \frac{y}{x}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Put } \quad y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \\
& \Rightarrow \quad v+x \frac{d v}{d x}=v(\log v+1) \\
& \Rightarrow \quad \frac{d v}{v \log v}=\frac{d x}{x}
\end{aligned}
$$

On integrating both sides, we get

$$
\begin{aligned}
& & \int \frac{d v}{v \log v} & =\int \frac{d x}{x} \\
\Rightarrow & & \log (\log v) & =\log x+\log C \\
\Rightarrow & & \log (\log v) & =\log C x \\
\Rightarrow & & \log (y / x) & =C x
\end{aligned}
$$

9. The two adjacent sides of a parallelogram are represented by vectors $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$.
Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.

OR

If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that the vector $(\vec{a}+\lambda \vec{b})$ is perpendicular to vector \vec{c}, then find the value of λ.

Ans. Given two adjacent sides of a parallelogram are

$$
\begin{aligned}
\vec{a} & =2 \hat{i}-4 \hat{j}+5 \hat{k} \\
\vec{b} & =\hat{i}-2 \hat{j}-3 \hat{k}
\end{aligned}
$$

Let \vec{c} be the diagonal of given parallelogram.

$$
\left.\begin{array}{l}
\qquad \begin{array}{rl}
\vec{c} & =\vec{a}+\vec{b} \\
& =(2 \hat{i}-4 \hat{j}+5 \hat{k})+(\hat{i}-2 \hat{j}-3 \hat{k}) \\
& =3 \hat{i}-6 \hat{j}+2 \hat{k}
\end{array} \\
\qquad \quad|\vec{c}|=\left|\sqrt{(3)^{2}+(-6)^{2}+(2)^{2}}\right|=7
\end{array} \text { Unit vector in direction of } \vec{c}=\frac{\vec{c}}{\mid \vec{c}}=\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{7}\right)
$$

$\therefore \quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 5 \\ 1 & -2 & -3\end{array}\right|$
$=(12+10) \hat{i}-(-6-5) \hat{j}+(-4+4) \hat{k}$
$=22 \hat{i}+11 \hat{j}$
Therefore, Area of parallelogram $=|\vec{a} \times \vec{b}|$
$=\left|\sqrt{(22)^{2}+(11)^{2}}\right|$
$=|\sqrt{484+121}|=11 \sqrt{5}$ sq. units

OR

Given vectors are $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and
$\vec{c}=3 \hat{i}+\hat{j}$
Now, $\quad \vec{a}+\lambda \vec{b}=(2 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+2 \hat{j}+\hat{k})$

$$
=(2-\lambda) \hat{i}+(2+2 \lambda) \hat{j}+(3+\lambda) \hat{k}
$$

If $\vec{a}+\lambda \vec{b}$ is perpendicular \vec{c}, then

$$
\begin{array}{rlrl}
& & (\vec{a}+\lambda \vec{b}) \cdot \vec{c} & =0 \\
& \Rightarrow & (2-\lambda) \hat{i}+(2+2 \lambda) \hat{j}+(3+\lambda) \hat{k} \cdot(3 \hat{i}+\hat{j}) & =0 \\
\Rightarrow & (2-\lambda) \cdot 3+(2+2 \lambda) \cdot 1+(3+\lambda) \cdot 0 & =0 \\
\Rightarrow & 6-3 \lambda+2+2 \lambda & =0 \\
\Rightarrow & -\lambda+8 & =0 \\
\Rightarrow & & \lambda & =8
\end{array}
$$

10. Show that the lines:

3
$\frac{1-x}{2}=\frac{y-3}{4}=\frac{z}{-1} \quad$ and $\quad \frac{x-4}{3}=\frac{2 y-2}{-4}=z-1 \quad$ are coplanar.
Ans. Given lines are:
$\frac{1-x}{2}=\frac{y-3}{4}=\frac{z}{-1}$ and $\frac{x-4}{3}=\frac{2 y-2}{-4}=z-1$
or $\frac{x-1}{-2}=\frac{y-3}{4}=\frac{z-0}{-1}$ and $\frac{x-4}{3}=\frac{y-1}{-2}=\frac{z-1}{1}$
These lines will be coplanar if

$$
\begin{aligned}
\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right| & =0 \\
\left|\begin{array}{ccc}
4-1 & 1-3 & 1-0 \\
-2 & 4 & -1 \\
3 & -2 & 1
\end{array}\right| & =\left|\begin{array}{ccc}
3 & -2 & 1 \\
-2 & 4 & -1 \\
3 & -2 & 1
\end{array}\right|=0
\end{aligned}
$$

[Since, $\mathrm{R}_{1}=\mathrm{R}_{3}$]
Thus, given lines are coplanar,

SECTION - C

Question Nos. 11 to 14 carry 4 marks each.
11. Find the area of the region bounded by curve $4 x^{2}=$ y and the line $y=8 x+12$, using integration. 4

Ans. Given curve is $4 x^{2}=y$ and line is $y=8 x+12$ On solving both equation, we get

$$
\begin{aligned}
& \begin{aligned}
4 x^{2} & =8 x+12 \\
\Rightarrow & x^{2}
\end{aligned}=2 x+3 \\
\Rightarrow & \\
\Rightarrow & \\
& \\
\text { Required area } & =\int_{-1}^{3}\left\{(8 x+12)-4 x^{2}\right\} d x \\
& =4 \int_{-1}^{3}\left(2 x+3-x^{2}\right) d x \\
& =4\left[x^{2}+3 x-\frac{x^{3}}{3}\right]_{-1}^{3} \\
& =4\left[(9+9-9)-\left(1-3+\frac{1}{3}\right)\right] \\
& =4\left(9+2-\frac{1}{3}\right) \\
& =4\left(11-\frac{1}{3}\right) \\
& =4 \times \frac{32}{3}=\frac{128}{3} \text { sq. units }
\end{aligned}
$$

12. Find: $\int \frac{x^{2}}{\left(x^{2}+1\right)\left(3 x^{2}+4\right)} d x$

Evaluate: $\int_{-2}^{1} \sqrt{\text { OR }} \sqrt{5-4 x-x^{2}} d x$

Ans. $\frac{x^{2}}{\left(x^{2}+1\right)\left(3 x^{2}+4\right)}$
Put $t=x^{2}$

$$
\begin{aligned}
\frac{t}{(t+1)(3 t+4)} & =\frac{\mathrm{A}}{t+1}+\frac{\mathrm{B}}{3 t+4} \\
t & =\mathrm{A}(3 t+4)+\mathrm{B}(t+1) \\
t & =(3 \mathrm{~A}+\mathrm{B}) t+(4 \mathrm{~A}+\mathrm{B})
\end{aligned}
$$

On comparing both sides, we get

$$
3 \mathrm{~A}+\mathrm{B}=1 \text { and } 4 \mathrm{~A}+\mathrm{B}=0
$$

$$
\begin{aligned}
& \therefore \\
& =-\int \frac{1}{x^{2}+1} d x+4 \int \frac{1}{3 x^{2}+4} d x \\
& =-\int \frac{1}{x^{2}+1} d x+\int \frac{+4}{3 x^{2}+4} d x \\
& =-1 \tan ^{-1} x+\frac{4}{2 \sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{3} x}{2}\right)+C \\
& =-\tan ^{-1} x+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{3} x}{2}\right)+C
\end{aligned}
$$

OR

Let $\quad \mathrm{I}=\int_{-2}^{1} \sqrt{5-4 x-x^{2}} d x=\int_{-2}^{1} \sqrt{-\left(x^{2}+4 x-5\right)} d x$

$$
=\int_{-2}^{1} \sqrt{-\left(x^{2}+4 x+2^{2}-2^{2}-5\right)} d x
$$

$$
=\int_{-2}^{1} \sqrt{-\left\{(x+2)^{2}-9\right\}} d x
$$

$$
=\int_{-2}^{1} \sqrt{3^{2}-(x+2)^{2}} d x
$$

$$
=\left[\frac{x+2}{2} \sqrt{3^{2}-(x+2)^{2}}+\frac{3^{2}}{2} \sin ^{-1}\left(\frac{x+2}{3}\right)\right]_{-2}^{1}
$$

$$
=0+\frac{9}{2} \cdot \frac{\pi}{2}-(0+0)=\frac{9 \pi}{4}
$$

*13. Find the distance of the point $(1,-2,0)$ from the
point of the line $\vec{r}=4 \hat{i}+2 \hat{j}+7 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$
and the plane $\vec{r} .(\hat{i}-\hat{j}+\hat{k})=10$.
4

Case Study Based Problem:

14. A shopkeeper sells three types of flower seeds A1, A2, A3. They are sold is the form of a mixture, where the proportions of these seeds are $4: 4: 2$ respectively. The germination rates of the three types of seeds are $\mathbf{4 5 \%}, \mathbf{6 0 \%}$ and 35% respectively. 4

Based on the above information :

(a) Calculate the probability that a randomly chosen seed will germinate:
(b) Calculate the probability that the seed is of type A2, given that a randomly chosen seed germinates.

Ans. (a)

Here, $\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{4}{10}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{4}{10}, \mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{2}{10}$

$$
\begin{aligned}
& P\left(\frac{A}{E_{1}}\right)=\frac{45}{100}, P\left(\frac{A}{E_{2}}\right)=\frac{60}{100}, P\left(\frac{A}{E_{3}}\right)=\frac{35}{100} \\
& \therefore P(A)=P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right) \\
& =\frac{4}{10} \times \frac{45}{100}+\frac{4}{10} \times \frac{60}{100}+\frac{2}{10} \times \frac{35}{100} \\
& =\frac{180}{1000}+\frac{240}{1000}+\frac{70}{100} \\
& =\frac{490}{1000}
\end{aligned}
$$

(b) Required probability $=P\left(\frac{E_{2}}{\mathrm{~A}}\right)$

$$
\begin{aligned}
& =\frac{P\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{2}}\right)}{\mathrm{P}(\mathrm{~A})} \\
& =\frac{\frac{4}{10} \times \frac{60}{100}}{\frac{490}{1000}} \\
& =\frac{240}{490}=\frac{24}{49}
\end{aligned}
$$

Series: ABCD/4/3, Outside Delhi Set-II

Note: Except these, all other Questions are from Set-I.

SECTION - A

2. Find the general solution of the differential equation: $\log \left(\frac{d y}{d x}\right)=a x+b y$.

Ans. Given differential equation is

$$
\begin{array}{rlrl}
& & \log \left(\frac{d y}{d x}\right) & =a x+b y \\
\Rightarrow & \frac{d y}{d x} & =e^{a x+b y} \\
\Rightarrow & \frac{d y}{d x} & =e^{a x \cdot} \cdot e^{b y} \\
\Rightarrow & \frac{d y}{e^{b y}} & =e^{a x} d x \\
\Rightarrow & & e^{-b y} d y & =e^{a x} d x
\end{array}
$$

On integrating both sides, we get

$$
\begin{aligned}
\int e^{-b y} d y & =\int e^{a x} d x \\
\frac{e^{-b y}}{-b} & =\frac{e^{a x}}{a}+C \\
\Rightarrow \quad \frac{e^{a x}}{a}+\frac{e^{-b y}}{b}+C & =0
\end{aligned}
$$

SECTION - B

7. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq 0$, then show that $\vec{b}=\vec{c}$.

OR
If $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=4$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then find the value of $(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$.

Ans. Given,

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c} \tag{3}
\end{equation*}
$$

$$
\begin{array}{lr}
\Rightarrow & \vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}=0 \\
\Rightarrow & \vec{a} \cdot(\vec{b}-\vec{c})=0 \\
\Rightarrow \text { But } & \vec{a} \neq \vec{c}
\end{array}
$$

So,

$$
\vec{b}-\vec{c}=0
$$

or,

$$
\vec{b}=\vec{c}
$$

Also, given $\quad \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$

$$
\begin{array}{ll}
\Rightarrow & \vec{a} \times \vec{b}-\vec{a} \times \vec{c}=0 \\
\Rightarrow & \vec{a} \times(\vec{b}-\vec{c})=0
\end{array}
$$

$$
\begin{array}{lr}
\Rightarrow \text { Since, } & \vec{a} \neq \overrightarrow{0} \\
\text { So, } & \vec{b}-\vec{c}=0
\end{array}
$$

Hence, vector $\vec{b}=\vec{c}$.
OR

Given, $\quad|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=4$
and $\quad \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
$\therefore \quad|\vec{a}+\vec{b}+\vec{c}|=|\overrightarrow{0}|$
$\Rightarrow \quad|\vec{a}+\vec{b}+\vec{c}|^{2}=0$
$\Rightarrow(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=0$
$\Rightarrow \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}+\vec{c} \cdot \vec{c}=0$
$\Rightarrow|\vec{a}|^{2}+\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{a}+\vec{a} \cdot \vec{b}+|\vec{b}|^{2}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}+\vec{b} \cdot \vec{c}+|\vec{c}|^{2}=0$
$[\because \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}, \vec{a} \cdot \vec{c}=\vec{c} \cdot \vec{a}, \vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{b}]$
$\Rightarrow \quad|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$
$\Rightarrow(3)^{2}+(5)^{2}+(4)^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$
$\Rightarrow \quad 9+25+16+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$
$\Rightarrow \quad 50+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$
$\Rightarrow \quad \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-25$
8. Evaluate: $\int_{-1}^{2}\left|x^{3}-x\right| d x$

Ans. Let $\mathrm{I}=\int_{-1}^{2}\left|x^{3}-x\right| d x$

$$
\begin{aligned}
& =\int_{-1}^{2}\left|x\left(x^{2}-1\right)\right| d x \\
& =\int_{-1}^{2}|x(x-1)(x+1)| d x
\end{aligned}
$$

Here, $x^{3}-x=0$, when $x=0,1,-1$

Value of x	Value of $\left(x^{3}-x\right)$
$-1<x<0$	+ ve
$0<x<1$	-ve
$1<x<2$	+ ve

$$
\begin{aligned}
\therefore\left|x^{3}-x\right| & =\left\{\begin{array}{ccc}
x^{3}-x & \text { if } & -1<x<0 \\
-x^{3}+x & \text { if } & 0<x<1
\end{array} \text { and } 1<x<2\right. \\
\mathrm{I} & =\int_{-1}^{0}\left(x^{3}-x\right) d x+\int_{0}^{1}\left(-x^{3}+x\right) d x+\int_{1}^{2}\left(x^{3}-x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{-1}^{0}+\left[\frac{-x^{4}}{4}+\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{1}{4}+\frac{1}{4}+2+\frac{1}{4} \\
& =2+\frac{3}{4}=\frac{11}{4}
\end{aligned}
$$

SECTION - C

12. Using integration, find the area of the region bounded by the curves $x^{2}+y^{2}=4, x=\sqrt{3} y$ and X-axis lying in the first quadrant.
Ans. Given equation of circle

$$
\begin{array}{ll}
& \\
& x^{2}+y^{2}=4 \\
\text { or } & x^{2}+y^{2}=(2)^{2} \\
\therefore & \\
\text { radius } & =2
\end{array}
$$

So, point A is $(2,0)$ and point B is $(0,2)$
Let line $x=\sqrt{3} y$ intersect the circle at point C

Series: ABCD/4/3, Outside Delhi Set-III

On solving $x^{2}+y^{2}=4$ and $x=\sqrt{3} y$, we get

$$
(\sqrt{3} y)^{2}+y^{2}=4
$$

$\Rightarrow 3 y^{2}+y^{2}=4 \Rightarrow 4 y^{2}=4 \Rightarrow y^{2}=1 \Rightarrow y= \pm 1$
for $y=1, x=\sqrt{3}$ and $y=-1, x=-\sqrt{3}$
Since point C is in $1^{\text {st }}$ quadrant
$\therefore C=(\sqrt{3}, 1)$
\therefore Required Area $=\int_{0}^{\sqrt{3}} y_{\text {line }} d x+\int_{\sqrt{3}}^{2} y_{\text {circle }} d x$
$=\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{3}} d x+\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x$
$=\frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} x d x+\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x$
$=\frac{1}{\sqrt{3}}\left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{3}}+\left[\frac{1}{2} x \sqrt{4-x^{2}}+\frac{(2)^{2}}{2} \sin ^{-1} \frac{x}{2}\right]_{\sqrt{3}}^{2}$
$=\frac{1}{2 \sqrt{3}}\left\{(\sqrt{3})^{2}-0\right\}+\left[\begin{array}{l}\left\{\frac{1}{2}(2) \sqrt{4-2^{2}}+2 \sin ^{-1}\left(\frac{2}{2}\right)\right\} \\ -\left\{\frac{1}{2}(\sqrt{3}) \sqrt{4-(\sqrt{3})^{2}}-2 \sin ^{-1} \frac{\sqrt{3}}{2}\right\}\end{array}\right]$
$=\frac{\sqrt{3}}{2}+2 \sin ^{-1}(1)-\frac{\sqrt{3}}{2}-2 \sin ^{-1} \frac{\sqrt{3}}{2}$
$=2 \frac{\pi}{2}-2 \frac{\pi}{3}$
$=\pi-\frac{2 \pi}{3}=\frac{\pi}{3}$ sq. units

65/3/3
Note: Except these all other Questions are from Set-I.

SECTION - A

3. Find the general solution of the differential equation: $\frac{d y}{d x}=\frac{3 e^{2 x}+3 e^{4 x}}{e^{x}+e^{-x}}$

2

Ans. Given differential equation is

$$
\begin{aligned}
& \frac{d y}{d x} & =\frac{3 e^{2 x}+3 e^{4 x}}{e^{x}+e^{-x}} \\
\Rightarrow & \frac{d y}{d x} & =\frac{3 e^{2 x}\left(1+e^{2 x}\right)}{e^{x}+\frac{1}{e^{x}}} \\
\Rightarrow \quad & \frac{d y}{d x} & =\frac{3 e^{2 x}\left(1+e^{2 x}\right)}{\left(e^{2 x}+1\right)} \times e^{x} \\
\Rightarrow \quad & \frac{d y}{d x} & =3 e^{3 x} \\
\Rightarrow \quad & d y & =3 e^{3 x} d x
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
\int d y & =3 \int e^{3 x} d x \\
\Rightarrow \quad y & =3 \frac{e^{3 x}}{3}+C \Rightarrow y=e^{3 x}+C
\end{aligned}
$$

SECTION - B

7. Find the shortest distance between the following lines:
$\vec{r}=3 \hat{i}+5 \hat{j}+7 \hat{k}+\lambda(\hat{i}-2 \hat{j}+\hat{k})$ and

$$
\vec{r}=(-\hat{i}-\hat{j}-\hat{k})+\mu(7 \hat{i}-6 \hat{j}+\hat{k}) .
$$

Ans. Given lines are:
and

$$
\begin{aligned}
\vec{r} & =3 \hat{i}+5 \hat{j}+7 \hat{k}+\lambda(\hat{i}-2 \hat{j}+\hat{k}) \\
\vec{r} & =(-\hat{i}-\hat{j}-\hat{k})+\mu(7 \hat{i}-6 \hat{j}+\hat{k})
\end{aligned}
$$

Let the given lines be $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{2}}$ and $\vec{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{b_{2}}$
Shortest distance between two lines

$$
\begin{aligned}
d & =\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right| \\
\therefore \vec{a}_{2}-\vec{a}_{1} & =(-\hat{i}-\hat{j}-\hat{k})-(3 \hat{i}+5 \hat{j}+7 \hat{k})=-4 \hat{i}-6 \hat{j}-8 \hat{k} \\
\vec{b}_{1} \times \vec{b}_{2} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 1 \\
7 & -6 & 1
\end{array}\right| \\
& =\hat{i}(-2+6)-\hat{j}(1-7)+\hat{k}(-6+14) \\
& =4 \hat{i}+6 \hat{j}+8 \hat{k}
\end{aligned}
$$

$$
\therefore\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\left|\sqrt{4^{2}+6^{2}+8^{2}}\right|
$$

$$
=|\sqrt{16+36+64}|
$$

$$
=\sqrt{116}=2 \sqrt{29}
$$

Therefore, $d=\left|\frac{(-4 \hat{i}-6 \hat{j}-8 \hat{k}) \cdot(4 \hat{i}+6 \hat{j}+8 \hat{k})}{\sqrt{116}}\right|$
$=\left|\frac{-16-36-64}{\sqrt{116}}\right|=\left|\frac{-116}{\sqrt{116}}\right|=\sqrt{116}=2 \sqrt{29}$ units
10. Evaluate: $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(\sin |x|+\cos |x|) d x$

Ans. We have, $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(\sin |x|+\cos |x|) d x$
Let $\quad f(x)=\sin |x|+\cos |x|$
Then, $f(x)=f(-x)$
Since, $f(x)$ is an even function
So, $\quad \mathrm{I}=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(\sin |x|+\cos |x|) d x$

$$
\begin{aligned}
& =2 \int_{0}^{\frac{\pi}{2}}(\sin x+\cos x) d x \\
& =2[-\cos x+\sin x]_{0}^{\frac{\pi}{2}} \\
& =2\left[-\cos \frac{\pi}{2}+\sin \frac{\pi}{2}+\cos 0-\sin 0\right] \\
& =2[0+1+1-0] \\
& =2(2)=4
\end{aligned}
$$

SECTION - C

13. Find the area of the region enclosed by the curves $y^{2}=x, x=\frac{1}{4}, y \geq 0$ and $x=1$, using integration. 4

Ans. The area of the region bounded by the curve,
$y^{2}=x$, the lines $x=\frac{1}{4}$ and $x=1$ and $y=0$
(i.e., X-axis) is the a $A B C D$

Thus, area of $\mathrm{ABEF}=2$ area of ABCD
Required area $=\int_{\frac{1}{4}}^{1} y d x=\int_{\frac{1}{4}}^{1} \sqrt{x} d x$
$=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{\frac{1}{4}}^{1}=\frac{2}{3}\left[(1)^{\frac{3}{2}}-\left(\frac{1}{4}\right)^{\frac{3}{2}}\right]$
$=\frac{2}{3}\left[1-\frac{1}{8}\right]=\frac{2}{3}\left[\frac{7}{8}\right]=\frac{7}{12}$ units

[^0]: * Out of Syllabus

[^1]: * Out of Syllabus

