ICSE Solved Paper 2018 Mathematics

Class-X

(Maximum Marks : 80)
(Time allowed: Two hours and a half)

Attempt all questions from Section A and any four questions from Section B.

> All working, including rough work, must be clearly shown and must be done on the same
> sheet as the rest of the answer.
> Omission of essential working will result in loss of marks.
> The intended marks for questions or parts of question are given in brackets [].

Mathematical tables are provided.

SECTION-A

Attempt all questions from this Section.

1. (a) Find the value of ' x ' and ' y ' if :
(b) Sonia had a recurring deposit account in a bank and deposited ₹ 600 per month for $21 / 2$ years. If the rate of interest was 10% p.a., find the maturity value of this account. [3]
(c) Cards bearing numbers $2,4,6,8,10,12,14,16$, 18 and 20 are kept in a bag. A card is drawn at random from the bag. Find the probability of getting a card which is :
[4]
(i) a prime number.
(ii) a number divisible by 4.
(iii) a number that is a multiple of 6 .
(iv) an odd number.

Ans. (a)

$$
2\left[\begin{array}{cc}
x & 7 \\
9 & y-5
\end{array}\right]+\left[\begin{array}{cc}
6 & -7 \\
4 & 5
\end{array}\right]=\left[\begin{array}{cc}
10 & 7 \\
22 & 5
\end{array}\right]
$$

$$
\begin{array}{rlr}
{\left[\begin{array}{cc}
2 x & 14 \\
18 & 2 y-10
\end{array}\right]+\left[\begin{array}{cc}
6 & -7 \\
4 & 5
\end{array}\right]} & =\left[\begin{array}{cc}
10 & 7 \\
22 & 15
\end{array}\right] \\
\text { or } & {\left[\begin{array}{cc}
2 x+6 & 7 \\
22 & 2 y-5
\end{array}\right]} & =\left[\begin{array}{cc}
10 & 7 \\
22 & 15
\end{array}\right]
\end{array}
$$

By equating $2 x+6=10$ or $x=2$
(b)

$$
2 y-5=15 \text { or } y=10
$$

$$
p=₹ 600
$$

$n=2 \frac{1}{2}$ year $=30$ months
$r=10 \%$ p.a.
M.V. $=$?
M.V. $=p \times n+\frac{p \times n(n+1) \times r}{2,400}$
(c) (i)

$$
\begin{aligned}
& =600 \times 30+\frac{600 \times 30 \times 31 \times 10}{2,400} \\
& =18,000+2,325 \\
& =₹ 20,325 \\
& \text { Prime number }=\{2\}
\end{aligned}
$$

No. of favourable cards $=1$
Total number of cards $=10$
Hence, probability of a getting a prime number card

$$
=\frac{\text { Number of favourable cards }}{\text { Total no. of cards }}=\frac{1}{10}
$$

(ii) Number divisible by $4=\{4,8,12,16,20\}$

$$
\text { No. of favourable cards }=5
$$

Hence, probability of a getting card, where number divisible by 4 .
$=\frac{\text { Number of favourable cards }}{\text { Total no. of cards }}=\frac{5}{10}=\frac{1}{2}$
(iii) Number which are multiple of $6=$ $\{6,12,18\}$

No. of favourable cards $=3$
Hence, probability of getting card, which is multiple of 6 .

$$
=\frac{\text { Number of favourable cards }}{\text { Total No. of cards }}=\frac{3}{10}
$$

(iv) Odd number $=0$ (No. odd card)

No. of favourable cards $=0$
Hence, probability of getting an odd number card

$$
=\frac{\text { Number of favourable cards }}{\text { Total No. of cards }}=\frac{0}{10}=0
$$

2. (a) The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm . Find the
(i) radius of the cylinder
(ii) volume of cylinder. (use $\pi=\frac{22}{7}$)
(b) If $(k-3),(2 k+1)$ and $(4 k+3)$ are three consecutive terms of an A.P., find the value of k.
(c) $P Q R S$ is a cyclic quadrilateral. Given $\angle Q P S=$ $73^{\circ}, \angle P Q S=55^{\circ}$ and $\angle P S R=82^{\circ}$, calculate :
[4]
(i) $\angle Q R S$
(ii) $\angle R Q S$
(iii) $\angle P R Q$

Ans. (a) Given
(i)

$$
\begin{aligned}
\text { circumference } & =132 \mathrm{~cm} \\
\text { height } & =25 \mathrm{~cm} \\
\text { circumference } & =2 \pi r \\
132 & =2 \pi r \\
132 & =\frac{2 \times 22}{7} \times r \\
r & =\frac{132 \times 7}{2 \times 22}=21 \mathrm{~cm}
\end{aligned}
$$

Hence, radius of cylinder $=21 \mathrm{~cm}$.
(ii) volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 21 \times 21 \times 25 \\
& =34,650 \mathrm{~cm}^{3}
\end{aligned}
$$

(b) For three consecutive terms of an A.P., the common difference should be same, i.e,.

$$
\begin{aligned}
(2 k+1)-(k-3) & =(4 k+3)-(2 k+1) \\
2 k+1-k+3 & =4 k+3-2 k-1 \\
k+4 & =2 k+2 \\
k & =2
\end{aligned}
$$

(c) Given $\angle Q P S=73^{\circ}, \angle P Q S=55^{\circ}, \angle P S R=82^{\circ}$
(i) Since, sum of opposite pairs of angles in cyclic quadrilaterals is 180°.
Hence,

$$
\begin{aligned}
\angle Q R S+\angle Q P S & =180^{\circ} \\
\angle Q R S+73^{\circ} & =180^{\circ} \\
\angle Q R S & =180^{\circ}-73^{\circ} \\
& =107^{\circ}
\end{aligned}
$$

(ii)

$$
\angle P Q R+\angle P S R=180^{\circ}
$$

(PQRS is a cyclic quadrilateral)

$$
\begin{aligned}
\angle P Q R+82^{\circ} & =180^{\circ} \\
\angle P Q R & =180^{\circ}-82 \\
& =98^{\circ} \\
\because \quad \angle P Q S+\angle R Q S & =\angle P Q R \\
55^{\circ}+\angle R Q S & =98^{\circ} \\
\angle R Q S & =98^{\circ}-55^{\circ} \\
& =43^{\circ}
\end{aligned}
$$

(iii) Join P to R

In $\triangle P S Q$,

$$
\begin{aligned}
\angle S P Q+\angle P Q S+\angle P S Q & =180^{\circ} \\
73^{\circ}+55^{\circ}+\angle P S Q & =180^{\circ} \\
\angle P S Q & =180^{\circ}-128^{\circ} \\
& =52^{\circ}
\end{aligned}
$$

Now,
$\angle P R Q=\angle P S Q(\because$ Angle in same segment $)$

$$
\therefore \quad \angle P R Q=52^{\circ}
$$

3. (a) If $(x+2)$ and $(x+3)$ are factors of $x^{3}+a x+b$, find the values of ' a ' and ' b '.
(b) Prove that $\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\tan \theta+\cot \theta$
(c) Using a graph paper draw a histogram for the given distribution showing the number of runs scored by 50 batsmen. Estimate the mode of the data :

Runs scored	$3000-4000$	$4000-5000$	$5000-6000$	$6000-7000$	$7000-8000$	$8000-9000$	$9000-10000$
No. of batsmen	4	18	9	6	7	2	4

Ans. (a) $x^{3}+a x+b$
$(x+2)$ is a factor of given polynomial then
$x=-2$ will satisfy the polynomial

$$
\begin{align*}
(-2)^{3}+a(-2)+b & =0 \\
-8-2 a+b & =0 \\
b-2 a & =8 \tag{i}
\end{align*}
$$

$(x+3)$ is also a factor of given polynomial then $x=-3$ will satisfy the polynomial

$$
\begin{align*}
(-3)^{3}+a(-3)+b & =0 \\
-27-3 a+b & =0 \\
b-3 a & =27 \tag{ii}
\end{align*}
$$

On solving (i) and (ii), we get

$$
a=-19, b=-30
$$

(b) L.H.S. $=\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}$

$$
=\sqrt{1+\tan ^{2} \theta+1+\cot ^{2} \theta}
$$

[Since, $1+\tan ^{2} \theta=\sec ^{2} \theta$ and $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$]

$$
\begin{aligned}
& =\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2} \\
& =\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \cdot \cot \theta} \\
& \quad \quad[\because \tan \theta \cdot \cot \theta=1] \\
& =\sqrt{(\tan \theta+\cot \theta)^{2}} \\
& =\tan \theta+\cot \theta=\text { R.H.S. }
\end{aligned}
$$

(c)

4. (a) Solve the following inequation, write down the solution set and represent it on the real number line :
$-2+10 x \leq 13 x+10<24+10 x, x \in Z$
(b) If the straight lines $3 x-5 y=7$ and $4 x+a y+$ $9=0$ are perpendicular to one another, find value of a.
(c) Solve $x^{2}+7 x=7$ and give your answer correct to two decimal places.

[4]

Ans. (a)
or

$$
\begin{aligned}
-2+10 x & \leq 13 x+10<24+10 x \\
-2 & \leq 3 x+10<24
\end{aligned}
$$

or

$$
-12 \leq 3 x<14
$$

or

$$
-4 \leq x<\frac{14}{3}
$$

or

$$
-4 \leq x<4 \frac{2}{3}
$$

$\therefore \quad$ The solution set is $x \in[-4,4]$ and $x \in Z$

(b) Eqn. (i) $3 x-5 y=7$

$$
\begin{aligned}
& y
\end{aligned}=\frac{3}{5} x-\frac{7}{5}, ~\left(m_{1}=\frac{3}{5}\right.
$$

Eqn. (ii) $\quad 4 x+a y+9=0$

$$
\begin{aligned}
y & =\frac{-4}{a} x-\frac{9}{a} \\
\therefore \quad m_{2} & =\frac{-4}{a}
\end{aligned}
$$

Both lines are perpendicular to each other.
$\therefore \quad m_{1} \times m_{2}=-1$
or $\quad \frac{3}{5} \times\left(\frac{-4}{a}\right)=-1$
or

$$
\begin{aligned}
\frac{-12}{5 a} & =-1 \\
a & =\frac{12}{5}
\end{aligned}
$$

(c)

$$
\begin{array}{r}
x^{2}+7 x=7 \\
x^{2}+7 x-7=0
\end{array}
$$

Compare the equation to

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
a & =1, b=7, c=-7 \\
D & =b^{2}-4 a c \\
& =(7)^{2}-4 \times 1 \times(-7) \\
& =49+28 \\
& =77
\end{aligned}
$$

Roots are real, different and irrational number,
or

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{D}}{2 a} \\
& x=\frac{-7 \pm \sqrt{77}}{2} \\
& x=\frac{-7 \pm 8.7749}{2}
\end{aligned}
$$

Taking (+) sign

$$
\begin{aligned}
x & =\frac{-7+8.7749}{2} \\
& =\frac{1.7749}{2}=0.89
\end{aligned}
$$

Taking (-) sign

$$
\begin{aligned}
x & =\frac{-7-8.7749}{2} \\
& =-\frac{15.7749}{2} \\
& =-7.89
\end{aligned}
$$

SECTION-B

40 Marks
Attempt any four questions from this Section
5. (a) The $4^{\text {th }}$ term of a G.P. is 16 and the $7^{\text {th }}$ term is 128. Find the first term and common ratio of the series.
[3]
(b) A man invests ₹ 22,500 in ₹ 50 shares available at 10% discount. If the dividend paid by the company is 12%, calculate :
[3]
(i) The number of shares purchased.
(ii) The annual dividend received.
(iii) The rate of return he gets on his investment. Give your answer correct to the nearest whole number.
(c) Use graph paper for this question (Take 2 cm $=1$ unit along both x and y axis).
$A B C D$ is a quadrilateral whose vertices are $A(2,2), B(2,-2), C(0-1)$ and $D(0,1)$
(i) Reflect quadrilateral $A B C D$ on the y-axis and name it as $A^{\prime} B^{\prime} C D$.
(ii) Write down the coordinates of A^{\prime} and B^{\prime}.
(iii) Name two points which are invariant under the above reflection.
(iv) Name the polygon $A^{\prime} B^{\prime} C D$.

Ans. (a) Given, $\quad T_{4}=16$ and $T_{7}=128$
Let first term of G.P. be a and common ratio be r.
so $\quad T_{4}=a r^{3}=16$

$$
\begin{equation*}
T_{7}=a r^{6}=128 \tag{i}
\end{equation*}
$$

Dividing (ii) by (i), we get

$$
\begin{align*}
\frac{a r^{6}}{a r^{3}} & =\frac{128}{16} \tag{ii}\\
r^{3} & =8=2^{3} \\
r & =2
\end{align*}
$$

From (i)

$$
\begin{aligned}
a \cdot(2)^{3} & =16 \\
a \times 8 & =16 \\
a & =2
\end{aligned}
$$

(b) Given,

Total investment $=₹ 22,500$, Face value $=₹ 50$

$$
\begin{aligned}
& \text { Market value }=₹\left(50-\frac{10}{100} \times 50\right)=₹ 45 \\
& \quad(\because 10 \% \text { discount }) \\
& \text { Dividend }=12 \%
\end{aligned}
$$

(i) No. of shares $=\frac{\text { Investment }}{\text { Market value of share }}$

$$
=\frac{22500}{45}=500
$$

(ii) Annual dividend $=$ No. of shares \times Nominal value of share \times dividend rate

$$
\begin{aligned}
& =500 \times 50 \times \frac{12}{100} \\
& =₹ 3,000
\end{aligned}
$$

(iii) Return percentage

$$
\begin{aligned}
& =\frac{\text { Total dividend }}{\text { Total investment }} \times 100 \\
& =\frac{3,000}{22,500} \times 100 \\
& =13.33 \%=13 \%
\end{aligned}
$$

(c) (i)

(ii) Co-ordinates of $A^{\prime} \rightarrow(-2,2)$

Co-ordinates of $B^{\prime} \rightarrow(-2,-2)$
(iii) Two invariant points are $C(0,-1)$ and $D(0,1)$
(iv) $A^{\prime} B^{\prime} C D$ is a trapezium quadrilateral
6. (a) Using properties of proportion, solve for x. Given that x is positive :

$$
\frac{2 x+\sqrt{4 x^{2}-1}}{2 x-\sqrt{4 x^{2}-1}}=4
$$

(b) If $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right], B=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$, and $C=\left[\begin{array}{cc}1 & 0 \\ -1 & 4\end{array}\right]$, find $A C+B^{2}-10 C$.
(c) Prove that $(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+$ $\sec \theta)=2$

Ans. (a)

$$
\begin{equation*}
\frac{2 x+\sqrt{4 x^{2}-1}}{2 x-\sqrt{4 x^{2}-1}}=4 \tag{4}
\end{equation*}
$$

Applying componendo \& dividendo

$$
\begin{aligned}
\frac{2 x+\sqrt{4 x^{2}-1}+2 x-\sqrt{4 x^{2}-1}}{2 x+\sqrt{4 x^{2}-1}-2 x+\sqrt{4 x^{2}-1}} & =\frac{4+1}{4-1} \\
\frac{4 x}{2 \sqrt{4 x^{2}-1}} & =\frac{5}{3} \\
12 x & =10 \sqrt{4 x^{2}-1}
\end{aligned}
$$

Squaring both sides,

$$
\begin{aligned}
144 x^{2} & =100\left(4 x^{2}-1\right) \\
36 x^{2} & =25\left(4 x^{2}-1\right) \\
36 x^{2} & =100 x^{2}-25 \\
100 x^{2}-36 x^{2} & =25 \\
64 x^{2} & =25 \\
x^{2} & =\frac{25}{64} \\
x & = \pm \frac{5}{8}
\end{aligned}
$$

$\because \quad x$ is positive, hence $x=\frac{5}{8}$

$$
\begin{aligned}
\text { (b) } \begin{aligned}
& A C=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 4
\end{array}\right] \\
&=\left[\begin{array}{ll}
2 \times 1+3 \times-1 & 2 \times 0+3 \times 4 \\
5 \times 1+7 \times-1 & 5 \times 0+7 \times 4
\end{array}\right] \\
&=\left[\begin{array}{ll}
2-3 & 0+12 \\
5-7 & 0+28
\end{array}\right]=\left[\begin{array}{ll}
-1 & 12 \\
-2 & 28
\end{array}\right] \\
& B^{2}=\left[\begin{array}{cc}
0 & 4 \\
-1 & 7
\end{array}\right]\left[\begin{array}{cc}
0 & 4 \\
-1 & 7
\end{array}\right] \\
&=\left[\begin{array}{cc}
0 \times 0+4 \times-1 & 0 \times 4+4 \times 7 \\
-1 \times 0+7 \times-1 & -1 \times 4+7 \times 7
\end{array}\right] \\
&=\left[\begin{array}{cc}
0-4 & 0+28 \\
0-7 & -4+49
\end{array}\right]=\left[\begin{array}{cc}
-4 & 28 \\
-7 & 45
\end{array}\right] \\
& 10 C= 10\left[\begin{array}{cc}
1 & 0 \\
-1 & 4
\end{array}\right]=\left[\begin{array}{cc}
10 & 0 \\
-10 & 40
\end{array}\right] \\
& \therefore \quad A C+B^{2}-10 C=\left[\begin{array}{cc}
-1 & 12 \\
-2 & 28
\end{array}\right]+\left[\begin{array}{cc}
-4 & 28 \\
-7 & 45
\end{array}\right]-\left[\begin{array}{cc}
10 & 0 \\
-10 & 40
\end{array}\right] \\
&=\left[\begin{array}{cc}
-1-4-10 & 12+28-0 \\
-2-7+10 & 28+45-40
\end{array}\right] \\
&=\left[\begin{array}{cc}
-15 & 40 \\
1 & 33
\end{array}\right]
\end{aligned} r .
\end{aligned}
$$

(c) L.H.S. $=(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)$

$$
\begin{aligned}
& =\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right) \\
& =\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right) \\
& =\frac{(\sin \theta+\cos \theta-1)(\sin \theta+\cos \theta+1)}{\sin \theta \cos \theta} \\
& =\frac{(\sin \theta+\cos \theta)^{2}-(1)^{2}}{\sin \theta \cos \theta} \\
& =\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta\right)-1}{\sin \theta \cdot \cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(1+2 \sin \theta \cos \theta)-1}{\sin \theta \cdot \cos \theta} \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2=\text { R.H.S.Hence proved }
\end{aligned}
$$

7. (a) Find the value of k for which the following equation has equal roots.

$$
\begin{equation*}
x^{2}+4 k x+\left(k^{2}-k+2\right)=0 \tag{3}
\end{equation*}
$$

(b) One map drawn to a scale of $1: 50,000$, a rectangular plot of land $A B C D$ has the following dimensions. $A B=6 \mathrm{~cm} ; B C=8 \mathrm{~cm}$ and all angles are right angles. Find :
(i) the actual length of the diagonal distance $A C$ of the plot in km .
(ii) the actual area of the plot in $s q \mathrm{~km}$.
(c) $A(2,5), B(-1,2)$ and $C(5,8)$ are the vertices of a triangle $A B C$, ' M ' is a point on $A B$ such that $A M: M B=1: 2$. Find the co-ordinates of ' M '. Hence find the equation of the line passing through the points C and M.
[4]
Ans. (a)

$$
x^{2}+4 k x+\left(k^{2}-k+2\right)=0
$$

Compare the equation to

$$
a x^{2}+b x+c=0
$$

$a=1, b=4 k, c=k^{2}-k+2$
Since, roots of the equation are equal

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
(4 k)^{2}-4 \times 1 \times\left(k^{2}-k+2\right) & =0 \\
16 k^{2}-4 k^{2}+4 k-8 & =0 \\
12 k^{2}+4 k-8 & =0 \\
3 k^{2}+k-2 & =0 \\
3 k^{2}+3 k-2 k-2 & =0 \\
3 k(k+1)-2(k+1) & =0 \\
(k+1)(3 k-2) & =0 \\
k & =-1, k=2 / 3
\end{aligned}
$$

(b) (i) Since, $\quad A B=6 \mathrm{~cm}$

$$
B C=8 \mathrm{~cm}
$$

By Pythagorean theorem

$$
\begin{aligned}
\text { Diagonal } A C & =\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}} \\
& =\sqrt{(6)^{2}+(8)^{2}} \\
& =\sqrt{100}=10 \mathrm{~cm}
\end{aligned}
$$

Since, it is given that

$$
\begin{array}{rlrl}
& & 1 \mathrm{~cm} & =50,000 \mathrm{~cm} \tag{1:50000}\\
\therefore & 10 \mathrm{~cm} & =5,00,000 \mathrm{~cm}
\end{array}
$$

Diagonal $A C=5 \mathrm{~km}$

$$
\begin{aligned}
& =48 \mathrm{~cm}^{2} \\
& =48 \times(50,000 \times 50,000) \\
& =1,20,00,00,00,000 \mathrm{~cm}^{2} \\
& =12 \mathrm{sq} . \mathrm{km} \\
{\left[1 \mathrm{~km}^{2}\right.} & \left.=10,00,00,00,000 \mathrm{~cm}^{2}\right]
\end{aligned}
$$

(c) Let $M\left(x_{1}, y_{1}\right)$ be the point which divides the line segment $A B$ in the ratio $1: 2$.
Hence, Coordinate of M are

$$
\begin{aligned}
M\left(x_{1}, y_{1}\right) & =\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
M\left(x_{1}, y_{1}\right) & =\left(\frac{1 \times(-1)+2 \times 2}{1+2}, \frac{1 \times 2+2 \times 5}{1+2}\right) \\
& =\left(\frac{-1+4}{3}, \frac{2+10}{3}\right) \\
& =(1,4)
\end{aligned}
$$

Coordinates of M are (1,4).
Now equation of line passing through $C(5,8)$ and $\mathrm{M}(1,4)$ is

$$
\begin{aligned}
y-8 & =\frac{4-8}{1-5}(x-5) \\
y-8 & =\frac{-4}{-4}(x-5) \\
y-8 & =x-5 \\
y & =x+3
\end{aligned}
$$

8. (a) ₹ 7500 were divided equally among a certain number of children. Had there been 20 less children, each would have received ₹ 100 more. Find the original number of children.
(b) If the mean of the following distribution is 24, find the value of ' a '.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Number of students	7	a	8	10	5

(c) Using ruler and compass only, construct a $\triangle A B C$ such that $B C=5 \mathrm{~cm}$ and $A B=6.5 \mathrm{~cm}$ and $\angle A B C=120^{\circ}$.
(i) Construct a circum-circle of $\triangle A B C$.
(ii) Construct a cyclic quadrilateral $A B C D$, such that D is equidistant from $A B$ and $B C$.
Ans. (a) Let the number of children be x and $₹ y$ is given to each children then

$$
\begin{aligned}
& x \cdot y=7,500 \\
&\text { and } \left.\begin{array}{rl}
(x-20)(y+100) & =7,500 \\
x y+100 x-20 y-2,000 & =7,500 \\
7,500+100 x-20 y-2,000 & =7,500 \\
& {[\because x y=7,500]} \\
100 x-20 y-2,000 & =0 \\
100 x-20 \times \frac{7,500}{x}-2,000 & =0
\end{array}\right]=\text { (i) } \\
&=0
\end{aligned}
$$

[From (i) $\left.y=\frac{7,500}{x}\right]$
$100 x^{2}-1,50,000-2,000 x=0$

$$
x^{2}-20 x-1,500=0
$$

$$
x^{2}-50 x+30 x-1,500=0
$$

$$
x(x-50)+30(x-50)=0
$$

$$
(x-50)(x+30)=0
$$

$$
x=50,-30
$$

The number of children can not be - ve.

$$
x=50
$$

$\therefore \quad$ Number of children $=50$
(b)

Marks	Mid x_{i}	f_{i}	$f_{i} x_{i}$
$0-10$	5	7	35
$10-20$	15	a	$15 a$
$20-30$	25	8	200
$30-40$	35	10	350
$40-50$	45	5	225
		$30+a$	$810+15 a$

$$
\begin{aligned}
\bar{x} & =\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
24 & =\frac{810+15 a}{30+a} \\
720+24 a & =810+15 a \\
24 a-15 a & =810-720 \\
9 a & =90 \\
a & =10
\end{aligned}
$$

(c) (a) Steps of construction :
(i) Draw a line segment $B C=5 \mathrm{~cm}$.
(ii) Construct $\angle A B C=120^{\circ}$.
(iii) $\mathrm{Cut} B A=6.5 \mathrm{~cm}$
(iv) Join A to C.
(v) Construct perpendicular bisectors of $A B$ and $B C$, intersecting at O. Join $A O$.
(vi) Taking O as centre, and $O A$ as radius draw a circle, passing through A, B and C.
(b) (i) Draw the bisector of $\angle A B C$ such that it touches the circle at point D.
(ii) Join A to D and C to D.
(iii) $A B C D$ is required cyclic quadrilateral.

9. (a) Priyanka has a recurring deposit account of $₹ 1,000$ per month at 10% per annum. If she gets ₹ 5,550 as interest at the time of maturity, find the total time for which the account was held.
(b) In $\triangle P Q R, M N$ is parallel to $Q R$ and

$$
\frac{P M}{M Q}=\frac{2}{3}
$$

(i) Find $\frac{M N}{Q R}$
(ii) Prove that $\triangle O M N$ and $\triangle O R Q$ are similar.
(iii) Find, area of $\triangle O M N$: Area of $\triangle O R Q$.

(c) The following figure represents a solid consisting of a right circular cylinder with a hemisphere at one end and a cone at the other. Their common radius is 7 cm . The height of the cylinder and cone are each of 4 cm . Find volume of the solid.

Ans. (a) $P=₹ 1,000, R=10 \%$, p.a., S.I. $=₹ 5,550$ $n=$?

$$
\begin{aligned}
& \text { SI }=\frac{\operatorname{Pr}(n+1)}{2} \times \frac{1}{12} \times \frac{R}{100} \\
& 5,550=\frac{1000 \times n(n+1) \times 10}{2 \times 12 \times 100} \\
& n(n+1)=1332 \\
& n^{2}+n-1332=0 \\
& n^{2}+37 n-36 n-1332=0 \\
& n(n+37)-36(n+37)=0 \\
&(n+37)(n-36)=0 \\
& n=36,-37
\end{aligned}
$$

The value of time cannot be $-v e$. Hence

$$
n=36 \text { months }
$$

or $n=3$ years
(b) (i) Given $M N|\mid Q R$, then
or $\therefore \quad \frac{P M}{P Q}=\frac{M N}{Q R}$ (By Thales theorem)
or $\frac{P M}{P M+M Q}=\frac{M N}{Q R}$
or $\quad \frac{2}{2+3}=\frac{M N}{Q R}$
$\Rightarrow \quad \frac{M N}{Q R}=\frac{2}{5}$
(ii) $M N \| Q R$ (Given)

$$
\begin{array}{rlr}
\angle O M N & =\angle O R Q & \\
& \quad \text { (Alternate angle) } \\
\angle O N M & =\angle O Q R & \\
& \text { (Alternate angle) } \\
\angle M O N & =\angle R O Q & \text { (Vert. Opp. angles) } \\
\therefore & \triangle O M N \sim \triangle O R Q & \text { (by AAA similarity) }
\end{array}
$$

(iii) $\because \triangle O M N$ and $\triangle O R Q$ are similar triangle.

We know that ratio of the areas of two similar triangle is equal to ratio of the squares of the corres-ponding sides.

$$
\begin{aligned}
\therefore \quad \frac{\operatorname{ar}(\triangle O M N)}{\operatorname{ar}(\triangle O R Q)} & =\frac{M N^{2}}{Q R^{2}} \\
& =\left(\frac{M N}{Q R}\right)^{2}=\left(\frac{2}{5}\right)^{2} \\
& =\frac{4}{25}
\end{aligned}
$$

Hence, $\operatorname{ar}(\triangle O M N): \operatorname{ar}(\triangle O R Q)=4: 25$
(c) Common radius $(r)=7 \mathrm{~cm}$

Height of cylinder $=$ Height of cone

$$
=h=4 \mathrm{~cm}
$$

Volume of solid = volume of hemisphere + volume of cylinder + volume of cone

$$
\begin{aligned}
& =\frac{2}{3} \pi r^{3}+\pi r^{2} h+\frac{1}{3} \pi r^{2} h \\
& =\frac{2}{3} \pi \times 7 \times 7 \times 7+\pi \times 7 \times 7 \times 4+\frac{1}{3} \times \pi \times 7 \times 7 \times 4 \\
& =\frac{686 \pi}{3}+196 \pi+\frac{196 \pi}{3}
\end{aligned}
$$

$$
=\frac{686 \pi+588 \pi+196 \pi}{3}
$$

$$
=\frac{1,470 \pi}{3}=490 \pi \mathrm{~cm}^{3}
$$

$$
=\frac{490 \times 22}{7}=1540 \mathrm{~cm}^{3}
$$

10. (a) Use Remainder theorem to factorize the following polynomial :

$$
2 x^{3}+3 x^{2}-9 x-10
$$

(b) In the figure given below ' O ' is the centre of the circle. If $Q R=O P$ and $\angle O R P=20^{\circ}$. Find the value of ' x ' giving reasons.
[3]

(c) The angle of elevation from a point P of the top of a tower $Q R, 50 \mathrm{~m}$ high is 60° and that of the tower $P T$ from a point Q is 30°. Find the height of the tower PT, correct to the nearest metre.
[4]

Ans. (a) Let
$f(x)=2 x^{3}+3 x^{2}-9 x-10$
The factors of the constant terms are $\pm 1, \pm 2, \pm$ 5 and ± 10.
We have
$f(-1)=2(-1)^{3}+3(-1)^{2}-9(-1)-10$

$$
=-2+3+9-10=0
$$

So, $(x+1)$ is a factor of $f(x)$.
We now divide $f(x)=2 x^{3}+3 x^{2}-9 x-10$ by $(x+1)$ to get the other factor of $f(x)$.

$$
\begin{array}{r}
x + 1 \longdiv { 2 x ^ { 2 } + x - 1 0 } \begin{array} { l }
{ 2 x ^ { 3 } + 3 x ^ { 2 } - 9 x - 1 0 } \\
{ 2 x ^ { 3 } + 2 x ^ { 2 } } \\
{ - \quad - } \\
{ \frac { x ^ { 2 } - 9 x - 1 0 } { x ^ { 2 } + x } } \\
{ \frac { - } { - \quad - 1 0 x - 1 0 } } \\
{ \frac { - 1 0 x - 1 0 } { + \quad + } } \\
{ \frac { 0 } { } }
\end{array}
\end{array}
$$

$\therefore \quad 2 x^{3}+3 x^{2}-9 x-10=(x+1)\left(2 x^{2}+x-10\right)$
$=(x+1)\left[2 x^{2}+5 x-4 x-10\right]$
$=(x+1)[x(2 x+5)-2(2 x+5)]$

$$
\begin{equation*}
=(x+1)(x-2)(2 x+5) \tag{i}
\end{equation*}
$$

(b) Given $\quad Q R=O P$
and $\quad \angle O R P=20^{\circ}$
$\because \quad \angle O R Q=\angle O R P=20^{\circ}$
$\because \quad O P=O Q$
(Radius of the circle)
$\therefore \quad Q R=O Q \quad$ (From (i))
In $\triangle O Q R$,

$$
\begin{aligned}
\because & O Q & =Q R \\
\therefore & \angle Q O R & =\angle O R Q \\
& & =20^{\circ}
\end{aligned}
$$

Now $\quad \angle O Q R+\angle O R Q+\angle Q O R=180^{\circ}$
(By angle sums property)

$$
\begin{aligned}
& \angle O Q R+20^{\circ}+20^{\circ}=180^{\circ} \\
& \angle O Q R=180^{\circ}-40^{\circ} \\
&=140^{\circ} \\
& \text { Now } \angle O Q R+\angle O Q P=180^{\circ} \quad \text { (By linear pair) } \\
& 140^{\circ}+\angle O Q P=180^{\circ} \\
& \angle O Q P=180^{\circ}-140^{\circ}=40^{\circ} \\
& \text { In } \triangle P O Q, \quad \\
& \because \quad O P=O Q \\
& \therefore \quad \angle O P R=\angle O Q P=40^{\circ} \\
& \text { Now } \quad \angle P O Q+\angle O P R+\angle O Q P=180^{\circ}
\end{aligned}
$$

(By angle sum property)

$$
\begin{aligned}
\angle P O Q+40^{\circ}+40^{\circ} & =180^{\circ} \\
\angle P O Q & =180^{\circ}-80^{\circ}=100^{\circ}
\end{aligned}
$$

Now

$$
\begin{aligned}
\angle R O Q+\angle P O Q+x & \left.=180^{\circ} \quad \text { (By linear pair }\right) \\
20^{\circ}+100^{\circ}+x & =180^{\circ} \\
x & =180^{\circ}-120^{\circ} \\
x & =60^{\circ}
\end{aligned}
$$

(c) Let the height of the tower PT be h and distance $P Q=x \mathrm{~m}$
In $\triangle P R Q$,

$$
\tan 60^{\circ}=\frac{R Q}{P Q}
$$

$$
\begin{aligned}
\sqrt{3} & =\frac{50}{x} \\
x & =\frac{50}{\sqrt{3}}
\end{aligned}
$$

In right $\triangle P T Q$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{P T}{P Q}=\frac{h}{x} \\
\frac{1}{\sqrt{3}} & =\frac{h}{50 / \sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
3 h & =50 \\
h & =\frac{50}{3}=16.66=17 \mathrm{~m}
\end{aligned}
$$

11. (a) The $4^{\text {th }}$ term of an A.P. is 22 and $15^{\text {th }}$ term is 66 . Find the first term and the common difference. Hence find the sum of the series to 8 terms.
[4]
(b) Use Graph paper for this question.

A survey regarding height (in cm) of 60 boys belonging to Class 10 of a school was conducted. The following data was recorded :

Height in cm	$135-$ 140	$140-$ 145	$145-$ 150	$150-$ 155	$155-$ 160	$160-$ 165	$165-170$
No. of boys	4	8	20	14	7	6	1

Taking $2 \mathrm{~cm}=$ height of 10 cm along one axis and $2 \mathrm{~cm}=10$ boys along the other axis draw an ogive of the above distribution. Use the graph to estimate the following :
(i) the median
(ii) lower quartile
(iii) if above 158 cm is considered as the tall boys of the class. Find the number of boys in the class who are tall.
Ans. (a) Let first term be a and common difference be d.

$$
\begin{align*}
& T_{4}=a+3 d=22 \tag{i}\\
& T_{15}=a+14 d=66 \tag{ii}
\end{align*}
$$

Subtracting (ii) from (i)

$$
\begin{aligned}
a+14 d-a-3 d & =66-22 \\
11 d & =44 \\
d & =4
\end{aligned}
$$

Here, $n=60$
(i) Median $=\frac{60}{2}$ th term $=30$ th term $=149.5$
(ii) Lower quartile $=\frac{60}{4}$ th term $=15$ th term $=145.5$
(iii) Through mark of 158 on x-axis, draw a vertical line which meets the graph at a point on the ogive. Then through that point, draw a horizontal line which meets the y-axis at the mark of 48. Therefore, number of boys in the class who are tall $=60-48=12$.

