ICSE Solved Paper 2022 Semester-1 Mathematics

Class-X

(Maximum Marks : 40)
(Time allowed : One hours and a half)
All questions are compulsory.
The marks intended for questions are given in brackets [].
Select the correct option for each of the following questions.

1. If $(x+2)$ is a factor of the polynomial $x^{3}-k x^{2}-5 x$ +6 then the value of k is
[1]
(a) 1
(b) 2
(c) 3
(d) -2

Ans. Option (b) is correct.
Explanation:

$$
\begin{aligned}
x+2 & =0 \\
x & =-2
\end{aligned}
$$

$$
p(x)=x^{3}-k x^{2}-5 x+6=0
$$

Remainder $=p(-2)=0$

$$
\begin{aligned}
(-2)^{3}-k(-2)^{2}-5(-2)+6 & =0 \\
-8-4 k+10+6 & =0 \\
-4 k & =-8 \\
k & =2
\end{aligned}
$$

2. The solution set of the inequation $x-3 \geq-5, x \in R$ is
[1]
(a) $\{x: x>-2, x \in R\}$
(b) $\{x: x \leq-2, \mathrm{x} \in R\}$
(c) $\{x: x \geq-2, x \in R\}$
(d) $\{-2,-1,0,1,2\}$

Ans. Option (c) is correct.
Explanation: $x-3 \geq-5$

$$
\begin{aligned}
& x \geq-5+3 \\
& x \geq-2
\end{aligned}
$$

3. The product $A B$ of two matrices A and B is possible if
(a) A and B have the same number of rows.
(b) the number of columns of A is equal to the number of rows of B.
(c) the number of rows of A is equal to the number of columns of B.
(d) A and B have the same number of columns.

Ans. Option (b) is correct.
Explanation: The product of $A B$ of two matrices A and B is possible if the number of column in A is equal to the number of rows in B.
4. If $70,75,80,85$ are the first four terms of an Arithmetic Progression, then the $10^{\text {th }}$ term is [1]
(a) 35
(b) 25
(c) 115
(d) 105

Ans. Option (c) is correct.
Explanation: $a=70, d=75-70=5$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{10} & =70+(10-1) 5 \\
& =70+45
\end{aligned}
$$

$$
a_{10}=115
$$

5. The selling price of a shirt excluding GST is ₹ 800 . If the rate of GST is 12% then the total price of the shirt is
(a) ₹704
(b) ₹96
(c) ₹896
(d) ₹ 848

Ans. Option (c) is correct.
Explanation: \quad SP $=₹ 800, \mathrm{GST}=12 \%$

$$
\text { GST }=₹ \frac{12}{100} \times 800=₹ 96
$$

$$
\text { Total Cost }=800+96=₹ 896
$$

6. Which of the following quadratic equations has 2 and 3 as its roots?
(a) $x^{2}-5 x+6=0$
(b) $x^{2}+5 x+6=0$
(c) $x^{2}-5 x-6=0$
(d) $x^{2}+5 x-6=0$

Ans. Option (a) is correct.
Explanation:
$\because \quad x^{2}-($ sum of roots $) x-($ product of roots $)=0$
$\therefore \quad x^{2}-(2+3) x-(2 \times 3)=0$
$\Rightarrow \quad x^{2}-5 x+6=0$
7. $1 \mathrm{f} x, 5.4,5,9$ are in proportion then x is
[1]
(a) 3
(b) 9.72
(c) 25
(d) $25 / 3$

Ans. Option (a) is correct.
Explanation: Numbers are in proportion (given)
$\Rightarrow \quad \frac{x}{5.4}=\frac{5}{9}$
$\Rightarrow \quad 9 \times x=5.4 \times 5$
$\Rightarrow \quad x=\frac{5.4 \times 5}{9}=0.6 \times 5$
$\Rightarrow \quad x=3$
8. Mohit opened a Recurring deposit account in a bank for 2 years. He deposits ₹ 1000 every month and receives ₹ 25500 on maturity. The interest he earned in 2 years is
(a) ₹13500
(b) ₹3000
(c) ₹24000
(d) ₹ 1500

Ans. Option (d) is correct.
Explanation:
Maturity Amount $=₹ 25500$

$$
\begin{aligned}
\text { Total deposit } & =1000 \times 24=₹ 24000 \\
\therefore \quad \text { Interest } & =₹ 25,500-₹ 24,000 \\
& =₹ 1,500
\end{aligned}
$$

9. In the given figure $A B=24 \mathrm{~cm}, A C=18 \mathrm{~cm}$, $D E=12 \mathrm{~cm}, D F=9 \mathrm{~cm}$ and $\angle B A C=\angle E D F$.
Then $\triangle A B C \sim \triangle D E F$ by the condition

(a) $A A A$
(b) $S A S$
(c) $S S S$
(d) $A A S$

Ans. Option (b) is correct.
Explanation: In $\triangle D E F \& \triangle A B C$,

$$
\begin{aligned}
\frac{A C}{D F} & =\frac{A B}{D E}=\frac{2}{1} \\
\angle B A C & =\angle E D F
\end{aligned}
$$

Hence, $\quad \triangle A B C \sim \triangle D E F \quad$ (by $S A S$ criterion)
10. If $A=\left[\begin{array}{cc}5 & 10 \\ 3 & -4\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then $A I$ is equal to
[1]
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}5 & 10 \\ -3 & 4\end{array}\right]$
(c) $\left[\begin{array}{cc}5 & 10 \\ 3 & -4\end{array}\right]$
(d) $\left[\begin{array}{cc}15 & 15 \\ -1 & -1\end{array}\right]$

Ans. Option (c) is correct.
Explanation: $A \times I=A$
11. The polynomial $x^{3}-2 x^{2}+a x+12$ when divided by $(x+1)$ leaves, remainder 20 , then ' a ' is equal to
[1]
(a) -31
(b) 9
(c) 11
(d) -11

Ans. Option (d) is correct.
Explanation: $\quad x+1=0$

$$
x=-1
$$

Remainder $=p(-1)$

Let

$$
p(x)=x^{3}-2 x^{2}+a x+12
$$

Now, $p(-1)=20$

$$
\begin{aligned}
\Rightarrow & (-1)^{3}-2(-1)^{2}+a(-1)+12 & =20 \\
\Rightarrow & -1-2-a+12 & =20 \\
\Rightarrow & -a & =20-9 \\
\Rightarrow & a & =-11
\end{aligned}
$$

12. In an Arithmetic Progression (A.P.) if first term is 5 , common difference is -3 and the $n^{\text {th }}$ term is -7 , then n is equal to
[1]
(a) 5
(b) 17
(c) -13
(d) 7

Ans. Option (a) is correct.
Explanation: Given, $a=5, d=-3$ and $a_{n}=-7$
Since, $\quad a_{n}=a+(n-1) d$
$\therefore \quad-7=5+(n-1)(-3)$
$\Rightarrow \quad-7-5=-3 n+3$
$\Rightarrow \quad-12-3=-3 n$
$\Rightarrow \quad-15=-3 n$
$\Rightarrow \quad n=5$
13. In the given figure $P Q$ is parallel to $T R$, then by using condition of similarity

(a) $\frac{P Q}{R T}=\frac{O P}{O T}=\frac{O Q}{O R}$
(b) $\frac{P Q}{R T}=\frac{O P}{O R}=\frac{O Q}{O T}$
(c) $\frac{P Q}{R T}=\frac{O R}{O P}=\frac{O Q}{O T}$
(d) $\frac{P Q}{R T}=\frac{O P}{O R}=\frac{O T}{O Q}$

Ans. Option (b) is correct.
Explanation:
$P Q|\mid T R, P R$ is transversal,

$\Rightarrow \quad \angle P=\angle R \quad$ (alternate angles)
Also, $Q T$ is transversal,

$$
\begin{array}{lcr}
\Rightarrow & \angle Q & =\angle T \\
\therefore & \triangle R T O \sim \triangle P Q O & \text { (alternate angles) } \\
\therefore & \text { (by AA criterion) }
\end{array}
$$

$\therefore \quad \frac{P Q}{R T}=\frac{P O}{R O}=\frac{Q O}{T O}$
(by C.P. C.T.)
14. If a, b, c, and d are proportional then $\frac{a+b}{a-b}$ is equal
to
(a) $\frac{c}{d}$
(b) $\frac{c-d}{c+d}$
(c) $\frac{d}{c}$
(d) $\frac{c+d}{c-d}$

Ans. Option (d) is correct.
Explanation:
Given,

$$
\frac{a}{b}=\frac{c}{d}
$$

By compodendo-dividendo

$$
\frac{a+b}{a-b}=\frac{c+d}{c-d}
$$

15. The first four terms of an Arithmetic Progression (A. P.), whose first term is 4 and common difference is -6 , are
(a) $4,-10,-16,-22$
(b) $4,10,16,22$
(c) $4,-2,-8,-14$
(d) $4,2,8,14$

Ans. Option (c) is correct.
Explanation: $a=4 ; d=-6$
First four terms of an A.P. are:

$$
\begin{array}{ll}
& a, a+d, a+2 d, a+3 d \\
\Rightarrow & 4,4+(-6), 4+2(-6), 4+3(-6) \\
\Rightarrow & 4,-2,-8,-14
\end{array}
$$

16. One of the roots of the quadratic equation $x^{2}-$ $8 x+5=0$ is 7.3166. The root of the equation correct to 4 significant figures is
(a) 7.3166
(b) 7.317
(c) 7.316
(d) 7.32

Ans. Option (b) is correct.
Explanation: Correct to 4 significant figures is 7.317 .
17. $(x+2)$ and $(x+3)$ are two factors of the polynomial $x^{3}+6 x^{2}+11 x+6$. If this polynomial is completely factorised the result is
(a) $(x-2)(x+3)(x+1)$
(b) $(x+2)(x-3)(x-1)$
(c) $(x+2)(x+3)(x-1)$
(d) $(x+2)(x+3)(x+1)$

Ans. Option (d) is correct.
Explanation:
Let $\quad p(x)=x^{3}+6 x^{2}+11 x+6$
If $\quad x+1=0$
then $\quad x=-1$
Now, $\quad p(-1)=(-1)^{3}+6(-1)^{2}+11(-1)+6$

$$
=-1+6-11+6=0
$$

Hence, $(x+1)$ is a third factor.
18. The sum of the first 20 terms of the Arithmetic Progression 2, 4, 6, 8, \qquad is
[2]
(a) 400
(b) 840
(c) 420
(d) 800

Ans. Option (c) is correct.
Explanation: $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here, $a=2, d=4-2=2$ and $n=20$

$$
\begin{aligned}
\therefore \quad \mathrm{S}_{20} & =\frac{20}{2}[2 \times 2+(20-1) 2] \\
& =10[4+38] \\
& =10 \times 42=420
\end{aligned}
$$

19. The solution set on the number line of the linear inequation
[2]
(a)

(b)

Ans. Option (b) is correct.
Explanation: $2 y-6<y+2$

$$
2 y-y<2+6
$$

$$
y<8
$$

and,

$$
y+2 \leq 2 y
$$

$$
2 \leq 2 y-y
$$

$$
2 \leq y
$$

So, $\quad 2 \leq y<8$
20. If x, y, z are in continued proportion then $\left(y^{2}+z^{2}\right)$: $\left(x^{2}+y^{2}\right)$ is equal to
[2]
(a) $z: x$
(b) $x: z$
(c) $z x$
(d) $(y+z):(x+y)$

Ans. Option (a) is correct.
Explanation: x, y, z are in proportion

$$
\begin{gathered}
y^{2}=x z \\
\therefore \quad \frac{y^{2}+z^{2}}{x^{2}+y^{2}}=\frac{x z+z^{2}}{x^{2}+x z}=\frac{z(x+z)}{x(x+z)}=\frac{z}{x}
\end{gathered}
$$

i.e., $\quad z: x$
21. The marked price of an article is ₹ 5000 . The shopkeeper gives a discount of 10%. If the rate of GST is 12%, then the amount paid by the customer including GST is
[2]
(a) ₹5040
(b) ₹ 6100
(c) ₹6272
(d) ₹6160

Ans. Option (a) is correct.
Explanation: \quad SP $=$ MP - Discount

$$
=5000-\frac{10}{100} \times 5000
$$

$$
=5000-500=4500
$$

$$
\mathrm{GST}=12 \%
$$

GST amount $=\frac{12}{100} \times 4500=540$
Total amount paid $=4500+540=₹ 5040$
22. If $A=\left[\begin{array}{ll}3 & 5 \\ 1 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]$, then $5 A-B C$ is equal to
[2]
(a) $\left[\begin{array}{cc}-5 & -23 \\ 1 & 17\end{array}\right]$
(b) $\left[\begin{array}{ll}5 & 23 \\ 1 & 17\end{array}\right]$
(c) $\left[\begin{array}{ll}-2 & 8 \\ -3 & 3\end{array}\right]$
(d) $\left[\begin{array}{cc}5 & 23 \\ -1 & 17\end{array}\right]$

Ans. Option (d) is correct.
Explanation:

$$
\begin{aligned}
5 A-B C & =5\left[\begin{array}{ll}
3 & 5 \\
1 & 4
\end{array}\right]-\left[\begin{array}{ll}
2 & 4 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
15 & 25 \\
5 & 20
\end{array}\right]-\left[\begin{array}{cc}
10 & 2 \\
6 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
5 & 23 \\
-1 & 17
\end{array}\right]
\end{aligned}
$$

23. In the given figure $A B C D$ is a trapezium in which $D C$ is parallel to $A B$.
$A B=16 \mathrm{~cm}$ and $D C=8 \mathrm{~cm}, O D=5 \mathrm{~cm}$,
$O B=(y+3) \mathrm{cm}, O A=11 \mathrm{~cm}$ and $O C=(x-1) \mathrm{cm}$.
Using the given information answer the following questions.

(i) From the given figure name the pair of similar triangles
(a) $\triangle O A B, \triangle O B C$
(b) $\triangle C O D, \triangle A O B$
(c) $\triangle A D B, \triangle A C B$
(d) $\triangle C O D, \triangle C O B$
(ii) The corresponding proportional sides with respect to the pair of similar triangles obtained in (i)
(a) $\frac{C D}{A B}=\frac{O C}{O A}=\frac{O D}{O B}$
(b) $\frac{A D}{B C}=\frac{O C}{O A}=\frac{O D}{O B}$
(c) $\frac{A D}{B C}=\frac{B D}{A C}=\frac{A B}{D C}$
(d) $\frac{O D}{O B}=\frac{C D}{C B}=\frac{O C}{O A}$
(iii) The ratio of the sides of the pair of similar triangles is
[1]
(a) $1: 3$
(b) $1: 2$
(c) $2: 3$
(d) $3: 1$
(iv) Using the ratio of sides of the pair of similar triangles the values of x and y are respectively
(a) $x=4.6, y=7$
(b) $x=7, y=7$
(c) $x=6.5, y=7$
(d) $x=6.5, y=2$

Ans.

(i) Option (b) is correct.

Explanation: $D C \| A B$ (given)

$$
\begin{array}{rlrl}
\angle C D O & =\angle A B O & & \text { (alternate angle) } \\
& \angle D C O & =\angle B A O & \\
\text { (alternate angle) } \\
\therefore \quad \triangle C O D & \sim \triangle A O B & & \text { (by } A A \text { criterion) }
\end{array}
$$

(ii) Option (a) is correct.

Explanation:

$$
\begin{array}{rlrl}
\triangle C O D & \sim \triangle A O B \\
\therefore \quad & \frac{C D}{A B} & =\frac{O D}{O B}=\frac{C O}{A O} \text { (by C.P. C.T.) }
\end{array}
$$

(iii) Option (b) is correct.

Explanation:

$$
\frac{C D}{A B}=\frac{O D}{O B}=\frac{C O}{A O}=\frac{8}{16}=\frac{1}{2}
$$

(iv) Option (c) is correct.

Explanation:

Here, $\frac{x-1}{11}=\frac{5}{y+3}=\frac{1}{2}$
$\therefore \frac{x-1}{11}=\frac{1}{2}$ and $\frac{5}{y+3}=\frac{1}{2}$
$\Rightarrow 2 x-2=11$ and $y+3=10$
$\Rightarrow \quad x=\frac{13}{2}=6.5$ and $y=7$
24. Two cars X and Y use 1 litre of diesel to travel $x \mathrm{~km}$ and $(x+3) \mathrm{km}$ respectively. If both the cars covered a distance of 72 km , then:
(i) The number of litres of diesel used by car X is
[1]
(a) $\frac{72}{x-3}$ litres
(b) $\frac{72}{x+3}$ litres
(c) $\frac{72}{x}$ litres
(d) $\frac{12}{x}$ litres
(ii) The number of litres of diesel used by car Y is
[1]
(a) $\frac{72}{x-3}$ litres
(b) $\frac{72}{x+3}$ litres
(c) $\frac{72}{x}$ litres
(d) $\frac{12}{x+3}$ litres
(iii) If car X used 4 litres of diesel more than car Y in the journey, then
(a) $\frac{72}{x-3}-\frac{12}{x}=4$
(b) $\frac{72}{x+3}-\frac{72}{x}=4$
(c) $\frac{72}{x}-\frac{72}{x+3}=4$
(d) $\frac{72}{x-3}-\frac{72}{x+3}=4$
(iv) The amount of diesel used by the car X is [
(a) 6 litres
(b) 12 litres
(c) 18 litres
(d) 24 litres

Ans. (i) Option (c) is correct.
Explanation:

$$
\begin{aligned}
x \mathrm{~km} & =1 \text { litre } \\
72 \mathrm{~km} & =\frac{72}{x} \text { litres }
\end{aligned}
$$

(ii) Option (b) is correct.

Explanation:

$$
\begin{aligned}
(x+3) \mathrm{km} & =1 \text { litre } \\
72 \mathrm{~km} & =\frac{72}{x+3} \text { litres }
\end{aligned}
$$

(iii) Option (c) is correct.

Explanation: Since, given car X used 4 litres of diesel more than car Y .
Therefore, $\quad \frac{72}{x}-\frac{72}{x+3}=4$
(iv) Option (b) is correct.

Explanation: We have, $\frac{72}{x}-\frac{72}{x+3}=4$

$$
\begin{array}{rrl}
\Rightarrow & 72(x+3)-72 x & =4 x^{2}+12 x \\
\Rightarrow & 72 x+216-72 x & =4 x^{2}+12 x \\
\Rightarrow & 4 x^{2}+12 x-216 & =0 \\
\Rightarrow & x^{2}+3 x-54 & =0 \\
\Rightarrow & x^{2}+9 x-6 x-54 & =0 \\
\Rightarrow & x(x+9)-6(x+9) & =0 \\
\Rightarrow & (x-6)(x+9) & =0 \\
\Rightarrow & x & =6
\end{array}
$$

(distance cannot be -ve)
\therefore Amount of diesel used by car X is $\frac{72}{6}=12$ litres
25. Joseph has a recurring deposit account in a bank for two years at the rate of 8% per annum simple interest.
(i) If at the time of maturity Joseph receives $₹ 2000$ as interest then the monthly installment is
(a) ₹ 1200
(b) ₹ 600
(c) ₹ 1000
(d) ₹ 1600
(ii) The total amount deposited in the bank
(a) ₹ 25000
(b) ₹ 24000
(c) ₹ 26000
(d) ₹ 23000
(iii) The amount Joseph receives on maturity is
[1]
(a) ₹ 27000
(b) ₹ 25000
(c) ₹ 26000
(d) ₹ 28000
(iv) If the monthly installment is ₹ 100 and the rate of interest is 8%, in how many months Joseph will receive $₹ 52$ as interest?
(a) 18
(b) 30
(c) 12
(d) 6

Ans. (i) Option (c) is correct.
Explanation: Given, $R=8 \% ; I=₹ 2000, n=24$

$$
\begin{aligned}
I & =P \times \frac{n(n+1)}{2} \times \frac{R}{1200} \\
2000 & =P \times \frac{24 \times 25}{2} \times \frac{8}{1200} \\
2000 & =P \times 12 \times \frac{8}{48} \\
P & =\frac{2000}{2}=₹ 1,000
\end{aligned}
$$

(ii) Option (b) is correct.

Explanation: Total amount $=₹ 1000 \times 24$

$$
=₹ 24,000
$$

(iii) Option (c) is correct.

Explanation:
Maturity amount $=$ Total amount + Interest

$$
\begin{aligned}
& =₹ 24000+₹ 2000 \\
& =₹ 26,000
\end{aligned}
$$

(iv) Option (c) is correct.

Explanation: $R=8 \% ; I=₹ 52, P=₹ 100$

$$
\begin{aligned}
I & =P \times \frac{n(n+1)}{2} \times \frac{R}{1200} \\
52 & =100 \times \frac{n(n+1)}{2} \times \frac{8}{1200} \\
n(n+1) & =3 \times 52
\end{aligned}
$$

$$
\begin{array}{r}
n^{2}+n-156=0 \\
n^{2}+13 n-12 n-156=0 \\
n(n+13)-12(n+13)=0
\end{array}
$$

$$
(n+13)(n-12)=0
$$

$$
n=12 \text { months }
$$

