ICSE Solved Paper 2022 Semester-2
 Mathematics

Class-X

(Maximum Marks : 40)
(Time allowed : One hours and a half)

SECTION-A

(10 marks)
(Attempt all questions.)

1. Choose the correct answers to the questions from the given options. (Do not copy the question. Write the correct answer only.)
[10]
(i) The probability of getting a number divisible by 3 in throwing a dice is:
(a) $\frac{1}{6}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) $\frac{2}{3}$
(ii) The volume of a conical tent is $462 \mathrm{~m}^{3}$ and the area of the base is $154 \mathrm{~m}^{2}$. The height of the cone is:
(a) 15 m
(b) 12 m
(c) 9 m
(d) 24 m
(iii) The median class for the given distribution is:

Class Interval	$0-10$	$10-20$	$20-30$	$30-40$
Frequency	2	4	3	5

(a) $0-10$
(b) 10-20
(c) $20-30$
(d) 30-40
(iv) If two lines are perpendicular to one another then the relation between their slopes m_{1} and m_{2} is:
(a) $m_{1}=m_{2}$
(b) $m_{1}=\frac{1}{m_{2}}$
(c) $m_{1}=-m_{2}$
(d) $m_{1 \times} m_{2}=-1$
(v) A lighthouse is 80 m high. The angle of elevation of its top from a point 80 m away from its foot along the same horizontal line is:
(a) 60°
(b) 45°
(c) 30°
(d) 90°
(vi) The modal class of a given distribution always corresponds to the:
(a) interval with highest frequency
(b) interval with lowest frequency
(c) the first interval
(d) the last interval
(vii) The coordinates of the point $P(-3,5)$ on reflecting on the X axis are:
(a) $(3,5)$
(b) $(-3,-5)$
(c) $(3,-5)$
(d) $(-3,5)$
(viii) ABCD is a cyclic quadrilateral. If $\angle \mathrm{BAD}=$ $(2 x+5)^{\circ}$ and $\angle \mathrm{BCD}=(x+10)^{\circ}$ then x is equal to:

(a) 65°
(b) 45°
(c) 55°
(d) 5°
(ix) $\mathrm{A}(1,4), \mathrm{B}(4,1)$ and $\mathrm{C}(x, 4)$ are the vertices of $\triangle A B C$. If the centroid of the triangle is G $(4,3)$ then x is equal to
(a) 2
(b) 1
(c) 7
(d) 4
(x) The radius of a roller 100 cm long is 14 cm . The curved surface area of the roller is:
(Take $\pi=\frac{22}{7}$)
(a) $13200 \mathrm{~cm}^{2}$
(b) $15400 \mathrm{~cm}^{2}$
(c) $4400 \mathrm{~cm}^{2}$
(d) $8800 \mathrm{~cm}^{2}$

Ans. (i) Option (b) is correct.
Explanation:
All possible out comes of a dice $=\{1,2,3,4,5,6\}$

$$
n(E)=6
$$

Favourable outcomes (divisible by 3)

$$
\begin{aligned}
& =\{3,6\} \\
n(\mathrm{~F}) & =2
\end{aligned}
$$

Probability of getting a number divisible by 3

$$
\begin{aligned}
& =\frac{\text { Favourable outcomes }}{\text { Total no. of outcomes }} \\
& =\frac{n(\mathrm{~F})}{n(\mathrm{E})}=\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

(ii) Option (c) is correct.

Explanation:

Given, Volume of conical tent $=462 \mathrm{~m}^{3}$
and \quad Area of the base $=154 \mathrm{~m}^{2}$
We know that

$$
\begin{aligned}
& \text { Volume of a conical tent }= \frac{1}{3} \pi r^{2} h \\
&= \frac{1}{3} \times \text { Area of base } \\
& \times \text { height } \\
& \Rightarrow \quad 462= \\
&=\frac{1}{3} \times 154 \times h \\
& \Rightarrow \quad h=\frac{462 \times 3}{154}=9 \mathrm{~m}
\end{aligned}
$$

(iii) Option (c) is correct.

Explanation:

C. I.	Frequency	c.f.
$0-10$	2	2
$10-20$	4	$2+4=6$
$20-30$	$3(f)$	$6+3=9$
$30-40$	5	$9+5=14$
	14	

$$
\mathrm{N}=14 \Rightarrow \frac{\mathrm{~N}}{2}=7
$$

We can see that cumulative frequency just greater than 7 is 9 , which is lie in the class interval 20-30.
So, the median class is $20-30$.
(iv) Option (d) is correct.

Explanation: If two lines, having slopes m_{1} and m_{2}, perpendicular to one another, then m_{1} $\times m_{2}=-1$
(v) Option (b) is correct.

Explanation: Height of the light house $=80 \mathrm{~m}$ Distance of the point from the foot of the light house $=80 \mathrm{~m}$
Let the angle of elevation be θ, then $\tan \theta$

$$
=\frac{\text { Perpendicular }}{\text { Base }}
$$

$$
\tan \theta=\tan 45^{\circ}
$$

$$
\left(\because \tan 45^{\circ}=1\right)
$$

So, $\theta=45^{\circ}$
(vi) Option (a) is correct.
(vii) Option (b) is correct.

Explanation: Given point $(-3,5)$ lies in $\mathrm{II}^{\text {nd }}$ quadrant. So, after reflection sign of Y-coordinate will invert and sign of X-coordinate remain same. Reflection of this point will be in $\mathrm{III}^{\text {rd }}$-quadrant, i.e., $(-3,-5)$.
(viii) Option (c) is correct.

Explanation: Given, $\angle \mathrm{BAD}=(2 x+5)^{\circ}$
and $\quad \angle \mathrm{BCD}=(x+10)^{\circ}$
So, $\quad \angle \mathrm{BAD}+\angle \mathrm{BCD}=180^{\circ}$
(Sum of opposite angles of a cyclic quadrilateral are supplementary)

$$
\begin{aligned}
\Rightarrow \quad(2 x+5)^{\circ}+(x+10)^{\circ} & =180^{\circ} \\
(3 x+15)^{\circ} & =180^{\circ} \\
3 x & =165^{\circ} \\
x & =\frac{165^{\circ}}{3}=55^{\circ}
\end{aligned}
$$

(ix) Option (c) is correct.

Explanation: Coordinates of centroid of a triangle is given by

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

So, coordinates of the centroid of triangle ABC is given by $\left(\frac{1+4+x}{3}, \frac{4+1+4}{3}\right)$ or $\left(\frac{5+x}{3}, 3\right)$

Also, coordinates of centroid of $\triangle \mathrm{ABC}(4,3)$
So, $4=\frac{5+x}{3} \Rightarrow 12=5+x \Rightarrow x=7$
(x) Option (d) is correct.

Explanation:We have,
radius of a roller $=14 \mathrm{~cm}$ height of the roller $=100 \mathrm{~cm}$
Now, C.S.A. of roller (Cylinder) $=2 \pi r h$
$=2 \times \frac{22}{7} \times 14 \times 100=8800 \mathrm{~cm}^{2}$
(Attempt any three questions from this Section.)
2. (i) Prove that
[2]

$$
\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta
$$

(ii) Find ' a ' if $\mathbf{A}(2 a+2,3), \mathrm{B}(7,4)$ and C ($2 a+5,2$) are collinear.
(iii) Calculate the mean of the following frequency distribution

Class Interval	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$
Frequency	2	6	4	8	4

(iv) In the given figure O is the centre of the circle. $P Q$ and $P R$ are tangents and $\angle Q P R=$ 70° Calculate:

(a) $\angle Q O R$
(b) $\angle Q S R$

Ans. (i) L.H.S.

$$
\begin{aligned}
& =\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta} \\
& =\frac{(1-\sin \theta)+(1+\sin \theta)}{(1+\sin \theta)(1-\sin \theta)} \\
& =\frac{2}{1-\sin ^{2} \theta}=\frac{2}{\cos ^{2} \theta} \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
& =2 \sec ^{2} \theta=\text { R.H.S. }\left(\because \frac{1}{\cos \theta}=\sec \theta\right)
\end{aligned}
$$

Hence Proved.
(ii) Given $\mathrm{A}(2 a+2,3), \mathrm{B}(7,4)$ and $\mathrm{C}(2 a+5,2)$ are collinear.
When three points are colliner, then
$\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$
or $x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
We have

$$
x_{1}=2 a+2, x_{2}=7, \quad x_{3}=2 a+5
$$

$$
y_{1}=3, y_{2}=4, \quad y_{3}=2
$$

$$
\Rightarrow \quad[(2 a+2)(4-2)+7(2-3)+(2 a+5)
$$

$$
(3-4)]=0
$$

$$
\begin{array}{r}
4 a+4-7-2 a-5=0 \\
2 a-8=0
\end{array}
$$

$$
a=\frac{8}{2}=4
$$

(iii)

C. I.	Class mark (\boldsymbol{x})	Frequency (\boldsymbol{f})	$f \times \boldsymbol{x}$
$5-15$	10	2	20
$15-25$	20	6	120
$25-35$	30	4	120
$35-45$	40	8	320
$45-55$	50	4	200
Total		$\mathbf{2 4}$	$\mathbf{7 8 0}$

We know, Mean $(\bar{x})=\frac{\sum f x}{\sum f}$

$$
\bar{x}=\frac{780}{24}=32.5
$$

(iv) PQOR is a quadrilateral.

(a)
$\angle \mathrm{QPR}+\angle \mathrm{QOR}=180^{\circ}$
(supplementary angles)

$$
70^{\circ}+\angle \mathrm{QOR}=180^{\circ}
$$

$$
\angle \mathrm{QOR}=110^{\circ}
$$

(b)

$$
\begin{array}{r}
\text { Reflex } \angle \mathrm{QOR}=360^{\circ}-110^{\circ}=250^{\circ} \\
\angle \mathrm{QSR}=\frac{1}{2} \text { Reflex } \angle \mathrm{QOR}
\end{array}
$$

(\because The angle subtended by an arc at the centre is double the angle subtended by it on the remaining part of the circle.)

$$
\angle \mathrm{QSR}=\frac{1}{2} \times 250^{\circ}=125^{\circ}
$$

3. (i) A bag contains 5 white, 2 red and 3 black balls. A ball is drawn at random. What is the probability that the ball drawn is a red ball?
(ii) A solid cone of radius 5 cm and height 9 cm is melted and made into small cylinders of radius of 0.5 cm and height 1.5 cm . Find the number of cylinders so formed.
(iii) Two lamp posts AB and CD each of height 100 m are on either side of the road. P is a point on the road between the two lamp posts. The angles of elevation of the top of the lamp posts from the point P are 60° and 30°. Find the distances PB and PD.

(iv) Marks obtained by 100 students in an examination are given below.
[3]

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No of students	5	15	20	28	20	12

Draw a histogram for the given data using a graph paper and find the mode.
Take $2 \mathrm{~cm}=10$ marks along one axis and $2 \mathrm{~cm}=10$ students along the other axis.
Ans. (i) Given, No. of white balls $=5$
No. of red balls $=2$
No. of black balls $=3$
Total no. of balls $=5+2+3$ $=10$
Probability of getting a red ball
$=\frac{\text { No. of favourable outcomes (red balls) }}{\text { Total no. of balls }}$
$=\frac{2}{10}=\frac{1}{5}$
(ii) Given,

For cone,
Radius $(\mathrm{R})=5 \mathrm{~cm}$, Height $(\mathrm{H})=9 \mathrm{~cm}$
For cylinder,
Radius $(r)=0.5 \mathrm{~cm}$, Height $(h)=1.5 \mathrm{~cm}$
No. of cylinders $=\frac{\text { Volume of Cone }}{\text { Volume of cylinder }}$
$=\frac{\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{H}}{\pi r^{2} h}=\frac{\frac{1}{3} \times(5)^{2} \times 9}{(0.5)^{2} \times 1.5}=\frac{25 \times 3}{0.25 \times 1.5}=200$
(iii) Given,

Heights of the lamp posts $\mathrm{AB}=\mathrm{CD}=100 \mathrm{~m}$
and

$$
\begin{aligned}
& \angle \mathrm{APB}=30^{\circ} ; \\
& \angle \mathrm{CPD}=60^{\circ}
\end{aligned}
$$

Now, in $\triangle A P R$

$$
\begin{aligned}
\tan \mathrm{P} & =\frac{\text { Perpendicular }(\mathrm{AB})}{\text { Base }} \\
\tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BP}}=\frac{100}{\mathrm{BP}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\sqrt{3}}=\frac{100}{B P} & \Rightarrow B P=100 \sqrt{3} \mathrm{~m} \\
B P & =100 \times 1.732=173.2 \mathrm{~m}
\end{aligned}
$$

Correction-In this question paper $\angle \mathrm{APB}=$ 40° is given, which should be 30° to solve it.
Now, In $\triangle \mathrm{PCD}$

$$
\begin{aligned}
\tan \mathrm{P} & =\frac{\mathrm{CD}}{\mathrm{PD}}=\frac{100}{\mathrm{PD}} \\
\tan 60^{\circ} & =\frac{100}{\mathrm{PD}} \\
\sqrt{3} & =\frac{100}{\mathrm{PD}} \\
\Rightarrow \quad \mathrm{PD} & =\frac{100}{\sqrt{3}} \mathrm{~m} \\
& =\frac{100 \sqrt{3}}{3}=\frac{173.2}{3} \\
\mathrm{PD} & =57.73 \mathrm{~m}
\end{aligned}
$$

(iv) Mode $=35$ Marks

To find mode,
(i) First identify the rectangle with highest frequency (Modal class); here 30-40.
(ii) Join the top corners of the modal rectangle with immediate next corners of the adjacent rectangles.
(iii) Let the point where the joining lines cut each other (here A). Draw a perpendicular from A to X-axis. The point ' P ', where the perpendicular meet the X -axis will give the mode.
4. (i) Find a point P which divides internally the line segment joining the points $A(-3,9)$ and B $(1,-3)$ in the ratio 1:3.
(ii) A letter of the word 'SECONDARY' is selected at random. What is the probability that the letter selected is not a vowel?
(iii) Use a graph paper for this question. Take $2 \mathrm{~cm}-1$ unit along both the axes.
(a) Plot the points A $(0,4), \mathrm{B}(2,2), \mathrm{C}(5,2)$ and $D(4,0), \mathrm{E}(0,0)$ is the origin.
(b) Reflect B, C, D on the Y-axis and name them as B^{\prime}, C^{\prime} and D^{\prime} respectively.
(c) Join the points $A B C D D^{\prime} C^{\prime} B^{\prime}$ and A in order and give a geometrical name to the closed figure.
(iv) A solid wooden cylinder is of radius 6 cm and height 16 cm . Two cones each of radius 2 cm and height 6 cm are drilled out of the cylinder. Find the volume of the remaining solid.
(Take $\pi=\frac{22}{7}$)

Ans. (i) Given points are

Let $\mathrm{P}(x, y)$ divides the line segment AB in the ratio $1: 3$. Then by using section formula,

$$
\begin{aligned}
& =\left(\frac{1 \times 1+3 \times-3}{1+3}, \frac{1 \times-3+3 \times 9}{1+3}\right) \\
\mathrm{P}(x, y) & =\left(\frac{-8}{4}, \frac{24}{4}\right) \\
\mathrm{P}(x, y) & =(-2,6)
\end{aligned}
$$

(ii) Given word is 'SECONDARY'

No. of vowels $=3$
No. of consonants $=6$
Total no. of letters $=9$
Probability of not selecting a vowel
$=$ Probability of selecting a consonant

$$
P(\text { not a vowel })=\frac{6}{9}=\frac{2}{3}
$$

(iii) (a) See graph
(b) Reflected points are:
$\mathrm{B}^{\prime}(-2,2), \mathrm{C}^{\prime}(-5,2)$ and $\mathrm{D}^{\prime}(-4,0)$
(c) On joining the points $A B C D D^{\prime} C^{\prime} B^{\prime} A$, the shape obtain is not proper geometrical shape, but collection of a quadrilateral and triangle.

(iv) Given:

For Cylinder,

$$
\begin{aligned}
\text { Radius }(\mathrm{R}) & =6 \mathrm{~cm} \\
\operatorname{Height}(\mathrm{H}) & =16 \mathrm{~cm}
\end{aligned}
$$

We know, Volume $=\pi \mathrm{R}^{2} \mathrm{H}$

$$
\begin{aligned}
& =\frac{22}{7} \times(6)^{2} \times(16) \\
& =\frac{12672}{7} \mathrm{~cm}^{3}
\end{aligned}
$$

For cone,

Radius $(r)=2 \mathrm{~cm}$
Height $(h)=6 \mathrm{~cm}$
We know, Volume $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times(2)^{2} \times 6 \\
& =\frac{176}{7} \mathrm{~cm}^{3}
\end{aligned}
$$

Remaining Volume $=$ Volume of cylinder $2 \times$ Volume of a cone

$$
\begin{aligned}
& =\frac{12672}{7}-2 \times \frac{176}{7} \\
& =\frac{12672}{7}-\frac{352}{7} \\
& =\frac{12672-352}{7} \\
& =\frac{12320}{7} \\
& =1760 \mathrm{~cm}^{3}
\end{aligned}
$$

5. (i) Two chords AB and CD of a circle intersect externally at E . If $\mathrm{EC}=2 \mathrm{~cm}, \mathrm{EA}=3 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$, find the length of $C D$.

(ii) Line $A B$ is perpendicular to $C D$ coordinates of B, C and D respectively $(4,0),(0,-1)$ and $(4,3)$.
[2]

Find
(a) Slope of CD
(b) Equation of AB
(iii) Prove that:
[3]

$$
\frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\sec ^{2} \theta+\tan ^{2} \theta
$$

(iv) The mean of the following distribution is 50 . Find the unknown frequency.
[3]

Class Interval	Frequency
$0-20$	6
$20-40$	f
$40-60$	8
$60-80$	12
$80-100$	8

Ans. (i) From the given figure,

We have $\mathrm{EA}=3 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$

$$
\mathrm{EC}=2 \mathrm{~cm}
$$

When two chords intersect externally, then
(from figure)

$$
\mathrm{EA} \times \mathrm{EB}=\mathrm{EC} \times \mathrm{ED}
$$

or $\quad \mathrm{EA} \times(\mathrm{EA}+\mathrm{AB})=\mathrm{EC} \times(\mathrm{EC}+\mathrm{CD})$
$\Rightarrow \quad 3 \times(3+5)=2(2+C D)$ $24=4+2 C D$
$\Rightarrow \quad 2 \mathrm{CD}=20$ $C D=10 \mathrm{~cm}$
(ii) (a) Slope of line CD is given by $m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-3}{0-4}=1$
(b) Slope of line $A B$, Which is perpendicular to $C D$ given by

$$
m_{1}=\frac{1}{-m_{2}}=-\frac{1}{1}=-1
$$

Now, equation of a line (AB), when slope and a coordinates is given

$$
y-y_{1}=m_{1}\left(x-x_{1}\right)
$$

where $\quad y_{1}=0, m_{1}=-1, x_{1}=4$
So,

$$
\begin{aligned}
y-0 & =-1(x-4) \\
y & =-x+4 \\
x+y & =4
\end{aligned}
$$

(iii) L.H.S.
$=\frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}$
$=\frac{1^{2}+\sin ^{2} \theta+2 \sin \theta+1^{2}+\sin ^{2} \theta-2 \sin \theta}{2 \cos ^{2} \theta}$
$=\frac{2+2 \sin ^{2} \theta}{2 \cos ^{2} \theta}=\frac{1+\sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{1}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
$=\sec ^{2} \theta+\tan ^{2} \theta=$ R.H.S. Hence Proved.
(iv)

C. I.	Class mark (\boldsymbol{x})	Frequency (\boldsymbol{f})	$f \times \boldsymbol{x}$
$0-20$	10	6	60
$20-40$	30	f	$30 f$
$40-60$	50	8	400
$60-80$	70	12	840
$80-100$	90	8	720
Total		$34+f$	$2020+30 f$

We know, $\operatorname{Mean}(\bar{x})=\frac{\sum f x}{\sum f}$

$$
\begin{aligned}
50 & =\frac{2020+30 f}{34+f} \\
1700+50 f & =2020+30 f \\
50 f-30 f & =2020-1700 \\
20 f & =320 \\
f & =16
\end{aligned}
$$

6. (i) Prove that:

$$
\mathbf{1}+\frac{\boldsymbol{\operatorname { t a n }}^{2} \theta}{\mathbf{1}+\boldsymbol{\operatorname { s e c }} \theta}=\sec \theta
$$

(ii) In the given figure A, B, C and D are points on the circle with centre O. Given $\angle \mathrm{ABC}=$ 62°.
[2]
Find:

(a) $\angle \mathrm{ADC}$
(b) $\angle \mathrm{CAB}$
(iii) Find the equation of a line parallel to the line $2 x+y-7=0$ and passing through the intersection of the lines $x+y-4=0$ and $2 x$ $-y=8$.
(iv) Marks obtained by 40 students in an examination are given below.
[3]

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
No of students	3	8	14	9	4	2

Using graph paper draw an ogive and estimate the median marks. Take $2 \mathrm{~cm}=10$ marks along one axis and $2 \mathrm{~cm}=5$ students along the other axis.
Ans. (i) L.H.S.
$=1+\frac{\tan ^{2} \theta}{1+\sec \theta}$
$=1+\frac{\left(\sec ^{2} \theta-1\right)}{1+\sec \theta} \quad\left(\because \sec ^{2} \theta-\tan ^{2} \theta=1\right)$
$=1+\frac{(\sec \theta+1)(\sec \theta-1)}{(1+\sec \theta)}$
$=1+\sec \theta-1$
$=\sec \theta=$ R.H.S.
(ii) (a) Given, $\angle \mathrm{ABC}=62^{\circ}$

$$
\angle \mathrm{ABC}=\angle \mathrm{ADC}=62^{\circ}
$$

(\because Angles in the same segment are equal)

(b) In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \angle \mathrm{ABC}=62^{\circ} \\
& \angle \mathrm{ACB}=90^{\circ}
\end{aligned}
$$

(\because Angles in a semicircle is a right angle)
Now, $\quad \angle A B C+\angle A C B+\angle C A B=180^{\circ}$
(Angle sum property)

$$
\begin{aligned}
62^{\circ}+90^{\circ}+\angle \mathrm{CAB} & =180^{\circ} \\
\angle \mathrm{CAB} & =180^{\circ}-152^{\circ} \\
\angle \mathrm{CAB} & =28^{\circ}
\end{aligned}
$$

(iii) Given,
and

$$
x+y-4=0 \text { or } x+y=4
$$

On solving above two equations we get the intersection points as $(4,0)$.
Now, equation of line parallel to $2 x+y-7=$ 0 is given by

$$
2 x+y=\lambda
$$

which is passing through $(4,0)$
So,

$$
\begin{aligned}
2 \times 4+0 & =\lambda \\
\lambda & =8
\end{aligned}
$$

So,the required equation of the line is $2 x+y$ $=8$
or, $\quad 2 x+y-8=0$
(iv)

Marks	No. of students	Marks less than	Cumulative frequency
$10-20$	3	20	3
$20-30$	8	30	11
$30-40$	14	40	25
$40-50$	9	50	34
$50-60$	4	60	38
$60-70$	2	70	40

Other than the given class intervals, we assume a class interval $0-10$ prior the first class with zero frequency.
Now, plot the points $(10,0),(20,3),(30,11)$, $(40,25),(50,34),(60,38),(70,40)$ on the graph paper.
In order to obtain ogive, we draw a smooth curve passing through these points.
In order to find the median, we first locate the point $\frac{\mathrm{N}}{2}=\frac{40}{2}=20$ on Y-axis. Let the point P from this draw a line parallel to X -axis cutting the curve at Q. From Q draw a line parallel to Y-axis meeting the X -axis at point M . The coordinate of M is 37.5 . Hence, the median is 37.5.

Now, plot the points $(10,0),(20,3),(30,11)$, $(40,25),(50,34),(60,38),(70,40)$ on the graph paper.

In order to obtain ogive, we draw a smooth curve passing through these, points.

