ISC Solved Paper 2022, Semester -1

Class-XII

Mathematics

(Maximum Marks : 40)
(Time allowed: One and a half hours)

Condidates are allowed an additional 10 minutes for only reading the paper.
They must NOT start writing during this time.
The Question Paper consists of three sections A, B and C.
Candidates are required to attempt all questions from Section A and all
questions either from Section B OR Section C.
Each question/subpart of a question carries two mark.

Select and write the correct option for each of the following question.

SECTION - A

[34 Marks]

1. Let ' R ' be a relation on N, set of all natural given by $R=\{(a, b): a-b=2\}$. Then :
(a) $(2,4) \in R$
(b) $(10,8) \in R$
(c) $(6,8) \in R$
(d) $(8,7) \in R$

Ans. Option (b) is correct.
The given relation is, $R=\{(a, b): a-b=2\}$
As the relation is on set of all natural numbers therefore, ' a ' should be greater than ' b '.
In the given options, in option (b) $10>8$ and $10-$ $8=2$.
Thus, $(10,8) \in R$.
2. If $A=\left|\begin{array}{lll}z y & x & y z \\ x z & y & z x \\ y x & z & x y\end{array}\right|$, then the value of A is equal to:
(a) 0
(b) $x y z$
(c) 1
(d) $\frac{1}{x y z}$

Ans. Option (a) is correct.
Given determinant $\quad A=\left|\begin{array}{lll}z y & x & y z \\ x z & y & z x \\ y x & z & x y\end{array}\right|$
In A, C_{1} and C_{3} are identical.
According to the property of determinants, if two rows or columns are identical, then its value is zero.
Therefore,

$$
A=0
$$

3. The function $f(x)=\frac{x^{3}}{3}-x$ is decreasing in the
interval:
(a) $(-1,1)$
(b) $(-\infty,-1)$
(c) $(1, \infty)$
(d) $(-\infty,-1) \cup(1, \infty)$

Ans. Option (a) is correct.
Given function

$$
f(x)=\frac{x^{3}}{3}-x
$$

Differentiating both sides w.r.t. x

	$f^{\prime}(x)=\frac{3 x^{2}}{3}-1$
or	$f^{\prime}(x)=x^{2}-1$
Put	$f^{\prime}(x)=0$
or	$x^{2}-1=0$
or	$(x-1)(x+1)=0$
or	$x=-1,1$

In the interval $(-1,1) f(x)$ is decreasing.
4. If $\cot ^{-1} \frac{1}{5}+\tan ^{-1} x=\frac{\pi}{2}$, than value of x is:
(a) $\frac{1}{5}$
(b) 1
(c) 0
(d) $\frac{-1}{5}$

Ans. Option (a) is correct.

$$
\begin{equation*}
\cot ^{-1} \frac{1}{5}+\tan ^{-1} x=\frac{\pi}{2} \tag{i}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\cot ^{-1} x+\tan ^{-1} x=\frac{\pi}{2} \tag{ii}
\end{equation*}
$$

From (i) \& (ii), we get $\quad x=\frac{1}{5}$
5. Let the two functions $f(x)$ and $g(x)$ be defined as $f(x)=x^{2}-1$ and $g(x)=\sqrt{x}$ then $(f o g)(6)$ is:
(a) 5
(b) 7
(c) 35
(b) -35

Ans. Option (a) is correct.
The given function are $f(x)=x^{2}-1$ and $g(x)=\sqrt{x}$

$$
\begin{gathered}
(f \circ g)(x)=f(g(x))=f(\sqrt{x})=(\sqrt{x})^{2}-1=x-1 \\
(f \circ g)(6)=6-1=5
\end{gathered}
$$

6. If $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right)$, then the matrix A^{2} is equal to:
(a) $A^{2}=\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 16\end{array}\right)$
(b) $A^{2}=\left(\begin{array}{ccc}0 & 0 & 4 \\ 0 & 9 & 0 \\ 16 & 0 & 0\end{array}\right)$
(c) $A^{2}=\left(\begin{array}{llc}4 & 0 & 16 \\ 0 & 0 & 0 \\ 0 & 9 & 0\end{array}\right)$
(d) $A^{2}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 4 & 9 & 16 \\ 0 & 0 & 0\end{array}\right)$

Ans. Option (a) is correct.

$$
\left.\begin{array}{c}
A=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \\
A^{2}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \\
=\left(\begin{array}{ll}
4+0+0 & 0+0+0 \\
0+0+0 & 0+9+0 \\
0+0+0 & 0+0+0
\end{array}\right. \\
0+0+0+16
\end{array}\right)=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 16
\end{array}\right), ~ \$
$$

7. The value of $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$ is equal to:
(a) $\frac{1}{2}$
(b) 1
(c) -1
(d) $\frac{-1}{2}$

Ans. Option (a) is correct.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{x^{2}}\left[\text { Using, } 1-\cos x=2 \sin ^{2} \frac{x}{2}\right] \\
& =\lim _{x \rightarrow 0} 2\left(\frac{\sin \frac{x}{2}}{x}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} 2\left(\frac{\sin \frac{x}{2}}{\frac{2 x}{2}}\right)^{2} \quad\left[\text { Using, } \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\
& =2 \times \frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

8. The expression for $\cos \left(\tan ^{-1} x\right)$ is equal to:
(a) $\frac{1}{\sqrt{1-x^{2}}}$
(b) $\frac{1}{\sqrt{1+x^{2}}}$
(c) $\frac{\sqrt{1-x^{2}}}{2}$
(d) $\sqrt{1-x^{2}}$

Ans. Option (b) is correct.

$$
\begin{array}{lrl}
\text { Let } & & \theta \\
\Rightarrow & =\tan ^{-1} x \\
\Rightarrow & x & =\tan \theta \\
\text { Also, } & \cos \theta & =\frac{1}{\sec \theta}=\frac{1}{\sqrt{1+\tan ^{2} \theta}}=\frac{1}{\sqrt{1+x^{2}}} \\
\therefore & & \cos \left(\tan ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}}
\end{array}
$$

9. If $2\left(\begin{array}{ll}a & 9 \\ 6 & d\end{array}\right)+3\left(\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right)=3\left(\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right)$, then the values of a and d respectively are:
(a) 3,6
(b) 3,5
(c) 3,9
(d) 3,7

Ans. Option (a) is correct.

$$
\begin{aligned}
2\left(\begin{array}{ll}
a & 9 \\
6 & d
\end{array}\right)+3\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right) & =3\left(\begin{array}{ll}
3 & 5 \\
4 & 6
\end{array}\right) \\
\left(\begin{array}{ll}
2 a & 18 \\
12 & 2 d
\end{array}\right)+\left(\begin{array}{cc}
3 & -3 \\
0 & 6
\end{array}\right) & =\left(\begin{array}{cc}
9 & 15 \\
12 & 18
\end{array}\right) \\
\left(\begin{array}{cc}
2 a+3 & 15 \\
12 & 2 d+6
\end{array}\right) & =\left(\begin{array}{cc}
9 & 15 \\
12 & 18
\end{array}\right)
\end{aligned}
$$

On comparing the corresponding elements, we get
or

$$
\begin{aligned}
2 a+3 & =9 \text { and } 2 d+6=18 \\
2 a & =6 \text { and } 2 d=12 \\
a & =3 \text { and } d=6
\end{aligned}
$$

10. Differentiation of $\log \left(1+x^{2}\right)$ with respect to $\tan ^{-1} x$ is:
(a) $\frac{1}{1+x^{2}}$
(b) $2 x$
(c) $\frac{-1}{1+x^{2}}$
(d) $-x$

Ans. Option (b) is correct.
Let $u=\log \left(1+x^{2}\right)$ and $v=\tan ^{-1} x$

$$
\frac{d u}{d x}=\frac{d}{d x}\left[\log \left(1+x^{2}\right)\right]=\frac{1}{1+x^{2}}(2 x)=\frac{2 x}{1+x^{2}}
$$

$$
\begin{aligned}
& \frac{d v}{d x}=\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \frac{d u}{d v}=\frac{d u}{d x} \times \frac{d x}{d v}=\frac{2 x}{1+x^{2}} \times \frac{1+x^{2}}{1}=2 x
\end{aligned}
$$

11. The relation $R=\{(a, a),(b, b),(c, c)\}$ on the set $\{a, b, c\}$ is:
(a) symmetric only
(b) reflexive only
(c) transitive only
(d) an equivalence relation

Ans. Option (d) is correct.
The given relation $R=\{(a, a),(b, b),(c, c)$ is an identity relation.
We know that, Identity relation is always an equivalence relation, therefore the given relation is an equivalence relation.
12. If the function $f(x)=\left\{\begin{array}{cc}3 x-1, & x<2 \\ k, & x=2 \\ 2 x+1, & x>2\end{array}\right.$ is continuous at $x=2$, then the value of ' k ' is:
(a) $k=2$
(b) $k=3$
(c) $k=5$
(d) $k=1$

Ans. Option (c) is correct.
Given the function $f(x)$ is continuous at $x=2$.
Then, $\quad \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
Now, $\quad \lim _{x \rightarrow 2^{-}}(3 x-1)=3(2)-1=5$
and $\quad \lim _{x \rightarrow 2^{+}}(2 x+1)=2(2)+1=5$
Hence,

$$
k=5
$$

13. If $x^{2}+y^{3}=42$, then $\frac{d y}{d x}$ is:
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-3 y^{2}}{2 x}$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 y^{2}}{2 x}$
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x}{3 y^{2}}$
(d) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x}{3 y^{2}}$

Ans. Option (d) is correct.
The given equation is

$$
x^{2}+y^{3}=42
$$

Differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{3}\right)=\frac{d}{d x}(42) \\
& \Rightarrow 2 x+3 y^{2} \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-2 x}{3 y^{2}}
\end{aligned}
$$

14. If the matrix $A=\left(\begin{array}{ccc}1 & x & -1 \\ -1 & 3 & 2 \\ 2 & 1 & 1\end{array}\right)$ is singular, then the value of ' x ' is:
(a) $x=\frac{8}{5}$
(b) $x=\frac{-8}{5}$
(c) $x=\frac{5}{8}$
(d) $x=1$

Ans. Option (b) is correct.
When $\operatorname{det}(A)$ is zero, then A is a singular matrix.
Therefore,

$$
|A|=0
$$

$$
\begin{aligned}
& \Rightarrow \\
& \left.\Rightarrow \begin{aligned}
& \\
& \Rightarrow 1\left|\begin{array}{ccc}
1 & x & -1 \\
-1 & 3 & 2 \\
2 & 1 & 1
\end{array}\right|
\end{aligned} \right\rvert\,=0 \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

15. The value of $\tan ^{-1} 1+\cos ^{-1} \frac{1}{2}$ is:
(a) $\frac{5 \pi}{12}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{2}$
(d) $\frac{7 \pi}{12}$

Ans. Option (d) is correct.

$$
\begin{array}{ll}
& \tan ^{-1} 1=\frac{\pi}{4} \text { and } \cos ^{-1} \frac{1}{2}=\frac{\pi}{3} \\
\Rightarrow \quad & \tan ^{-1} 1+\cos ^{-1} \frac{1}{2}=\frac{\pi}{4}+\frac{\pi}{3}=\frac{7 \pi}{12}
\end{array}
$$

16. The slope of the tangent to the curve $\sqrt{x}+\sqrt{y}=a$ at $\left(\frac{a^{2}}{4}, \frac{a^{2}}{4}\right)$ is:
(a) 1
(b) -1
(c) $\frac{a}{4}$
(d) $\frac{a}{2}$

Ans. Option (b) is correct.
The given equation is,

$$
\sqrt{x}+\sqrt{y}=a
$$

Differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
\frac{d}{d x}(\sqrt{x})+\frac{d}{d x}(\sqrt{y}) & =\frac{d}{d x}(a) \\
\Rightarrow \quad \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x} & =0 \\
\Rightarrow \frac{d y}{d x} & =-\sqrt{\frac{y}{x}} \\
\text { At }\left(\frac{a^{2}}{4}, \frac{a^{2}}{4}\right) \quad \frac{d y}{d x} & =-1
\end{aligned}
$$

17. If $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, then the matrix $A+A^{T}$ is:
(a) Symmetric matrix
(b) Skew-symmetric matrix
(c) Diagonal matrix
(d) Identity matrix

Ans. Option (a) is correct.

$$
\begin{align*}
& A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \\
& \Rightarrow \\
& \text { and } \quad A+A^{T}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
2 & 5 \\
5 & 8
\end{array}\right) \ldots(i) \\
& \text { Now, } \quad\left(A+A^{T}\right)^{T}=\left(\begin{array}{ll}
2 & 5 \\
5 & 8
\end{array}\right) \tag{ii}
\end{align*}
$$

From (i) and (ii),

$$
A+A^{T}=\left(A+A^{T}\right)^{T}
$$

Therefore, $A+A^{T}$ is a symmetric matrix.
18. If $x=a \cos \theta, y=a \sin \theta$, then $\frac{d y}{d x}$ at $\theta=\frac{\pi}{2}$ will be:
(a) $\frac{d y}{d x}=-1$
(b) $\frac{d y}{d x}=1$
(c) $\frac{d y}{d x}=0$
(d) $\frac{d y}{d x}=2$

Ans. Option (c) is correct.
Given,

$$
x=a \cos \theta \& y=a \sin \theta
$$

$\therefore \quad \frac{d x}{d \theta}=\frac{d}{d \theta}(a \cos \theta)=-a \sin \theta$
and

$$
\frac{d y}{d \theta}=\frac{d}{d \theta}(a \sin \theta)=a \cos \theta
$$

Now, $\quad \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=\frac{a \cos \theta}{-a \sin \theta}=-\cot \theta$

At $\theta=\frac{\pi}{2}$,

$$
\frac{d y}{d x}=\cot \frac{\pi}{2}=0
$$

19. If $y=\boldsymbol{\operatorname { t a n }}^{-1} x$, then:
(a) $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=0$
(b) $\sqrt{\left(1-x^{2}\right)} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=0$
(c) $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=0$
(d) $\sqrt{\left(1+x^{2}\right)} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=0$

Ans. Option (a) is correct.
Given,

$$
y=\tan ^{-1} x
$$

Differentiating w.r.t. x, we get
or

$$
\begin{aligned}
& \quad \frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \left(1+x^{2}\right) \frac{d y}{d x}=1
\end{aligned}
$$

Again differentiating w.r.t. x, we get

$$
\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}(2 x)=1
$$

20. If $A=\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)$, then $A(\operatorname{adj} A)$ is equal to:
(a) $\left(\begin{array}{cc}4 & 0 \\ 10 & 24\end{array}\right)$
(b) $\left(\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right)$
(c) $\left(\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}\right)$
(d) $\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$

Ans. Option (b) is correct.

Given,

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
2 & 3
\end{array}\right)
$$

Minors of A are:

$$
M_{11}=3, M_{12}=2, M_{21}=1, M_{22}=-1
$$

Cofactors of A are:

$$
C_{11}=3, C_{12}=-2, C_{21}=-1, C_{22}=-1
$$

Therefore,

$$
\operatorname{Adj}(A)=\left(\begin{array}{cc}
3 & -2 \\
-1 & -1
\end{array}\right)^{T}=\left(\begin{array}{cc}
3 & -1 \\
-2 & -1
\end{array}\right)
$$

Now,

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left(\begin{array}{cc}
-1 & 1 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
3 & -1 \\
-2 & -1
\end{array}\right)\left(\begin{array}{cc}
-3-2 & 1-1 \\
6-6 & -2-3
\end{array}\right) \\
& =\left(\begin{array}{cc}
-5 & 0 \\
0 & -5
\end{array}\right)
\end{aligned}
$$

21. Consider the two functions $f: R \rightarrow R$ given by $f(x)=$ $x-2$ and $g: R \rightarrow R$ given by $g(x)=x^{2}$
(i) The function $f(x)$ is
(a) One to one but not onto
(b) Onto but not one to one
(c) Neither one to one nor onto
(d) Bijective
(ii) The value of $f(\mathbf{1})+g(1)$ is:
(a) $\frac{1}{2}$
(b) 0
(c) 1
(d) $\frac{-1}{2}$
(iii) The expression for $(g o f)(x)$ is:
(a) $x-2$
(b) $(x-2)^{2}$
(c) $x^{2}-2$
(d) $x^{2}-3$
(iv)If (gof) $(x)=0$, then the value of x will be:
(a) $x= \pm 2$
(b) $x=2$
(c) $x= \pm \sqrt{2}$
(d) $x=3$

Ans. (i) Option (d) is correct.

$$
\begin{array}{lrl}
\text { Let } & x_{1}, x_{2} & \in R \\
\text { Now, } & f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow & x_{1}-2 & =x_{2}-2 \\
\Rightarrow & x_{1} & =x_{2} \\
\Rightarrow & f(x) \text { is one-one. }
\end{array}
$$

$$
\begin{aligned}
& \text { Let } \quad y \in R \\
& \text { Let } \quad y=f\left(x_{0}\right) \\
& \text { Then, } \quad x_{0}-2=y \\
& \Rightarrow \quad x_{0}=y+2 \\
& \text { Now, } \quad y \in R \\
& \Rightarrow \quad y+2 \in R \\
& \Rightarrow \quad x_{0} \in R \\
& f\left(x_{0}\right)=x_{0}+2=y
\end{aligned}
$$

Therefore, for each $y \in R$, there exists $x_{0} \in R$ such that $f\left(x_{0}\right)=y$
So, $f(x)$ is onto.
Thus, $f(x)$ is one-one and onto or bijective.
(ii) Option (b) is correct.

$$
\begin{aligned}
f(1)=1-2 & =-1 \text { and } g(1)=(1)^{2}=1 \\
\text { Now, } f(1) & +g(1)=-1+1=0
\end{aligned}
$$

(iii) Option (b) is correct.

$$
g \circ f(x)=g(f(x))=g(x-2)=(x-2)^{2}
$$

(iv) Option (b) is correct.

$$
\begin{array}{rlrl}
& & g o f(x) & =0 \\
\Rightarrow & (x-2)^{2} & =0 \\
\Rightarrow & x-2 & =0 \\
\Rightarrow & x & =2
\end{array}
$$

22. A school wants to award its students for their achievement in Sports, Music and Literature with a total cash prize of ₹ 6000 .
Three times the prize money for Literature added to the prize money given for Sports is equal to ₹11000.

The prize money given for Sports and Literature together is equal to two times of the prize money given for Music.
If x, y and z represent the prize money given for Sports, Music and Literature respectively, then:
(i) The set of linear equations representing the above information will be:
(a) $x+y+z=6000, x+3 z=11000$ and $x-2 y+z=$ 0
(b) $x+y+z=6000, x+3 z=11000$ and $x+y+2 z$ $=0$
(c) $x+y+z=6000,3 x+z=11000$ and $x+y-2 z=$ 0
(d) $x+y+z=6000, x+3 z=11000$ and $2 x+2 y-z$ $=0$
(ii) Consider $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & -2 & 1\end{array}\right)$

Then the value of $|A|$ is:
(a) 3
(b) 6
(c) 4
(d) -1
(iii) The adj $(A)=\left(\begin{array}{ccc}6 & p & 3 \\ q & 0 & r \\ -2 & 3 & -1\end{array}\right)$, the values of p, q and
r respectively will be:
(a) $3,2,-2$
(b) $3,-2,-2$
(c) $-3,2,-2$
(d) $3,2,2$
(iv)Using $|A|$ and adj A, calculate the prize money for Sports (x).
(a) $x=1500$
(b) $x=500$
(c) $x=1000$
(d) $x=2000$

Ans. (i) Option (a) is correct.
Given,
Cash prize for achievement in sports is $₹ x$.
Cash prize for achievement in music is ₹ y.
Cash prize for achievement in literature is ₹z.
Three times the prize money for literature is added to the money given for sports is equal to ₹ 11000 .

$$
\Rightarrow \quad x+3 z=11000
$$

The prize money given for sports and literature s equal to two times of prize money for music.

$$
\Rightarrow x+z=2 y \text { or } x-2 y+z=0
$$

Total cash prize for all the three subjects is ₹6000

$$
x+y+z=6000
$$

(ii) Option (b) is correct

$$
\begin{aligned}
|A| & =1\left|\begin{array}{cc}
0 & 3 \\
-2 & 1
\end{array}\right|-1\left|\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right|+1\left|\begin{array}{cc}
1 & 0 \\
1 & -2
\end{array}\right| \\
& =1[0+6]-1[1-3]+1[-2-0]=6+2-2 \\
& =6
\end{aligned}
$$

(iii) Option (c) is correct.

The above system of equations can be written in matrix form as $A X=B$.

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 3 \\
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6000 \\
11000 \\
0
\end{array}\right]
$$

Here, $|A|=6 \quad$ [From above part (ii)]
Which means A is non-singular. Hence, it is invertible.

Now, cofactors of A are:

$$
\begin{aligned}
& A_{11}=(-1)^{1+1}\left|\begin{array}{cc}
0 & 3 \\
-2 & 1
\end{array}\right|=0+6=6 \\
& A_{12}=(-1)^{1+2}\left|\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right|=-(1-3)=2 \\
& A_{13}=(-1)^{1+3}\left|\begin{array}{cc}
1 & 0 \\
1 & -2
\end{array}\right|=-2-0=-2 \\
& A_{21}=(-1)^{2+1}\left|\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right|=-(1+2)=-3 \\
& A_{22}=(-1)^{2+2}\left|\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right|=1-1=0
\end{aligned}
$$

$$
\begin{gathered}
A_{23}=(-1)^{2+3}\left|\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right|=-(-2-1)=3 \\
A_{31}=(-1)^{3+1}\left|\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right|=3-0=3 \\
A_{32}=(-1)^{3+2}\left|\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right|=-(3-1)=-2 \\
A_{33}=(-1)^{3+3}\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
\therefore \\
\therefore
\end{gathered}
$$

On comparing, we get
$p=-3, q=2$ and $r=-2$
(iv) Option (b) is correct.

$$
\begin{aligned}
& X=A^{-1} B \\
& \text { or } \quad X=\frac{\operatorname{adj}(A)}{|A|} \cdot B \\
& \Rightarrow \quad {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}
6 & -3 & 3 \\
2 & 0 & -2 \\
-2 & 3 & -1
\end{array}\right]\left[\begin{array}{c}
6000 \\
11000 \\
0
\end{array}\right] } \\
& \Rightarrow \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
36000-33000+0 \\
12000+0-0 \\
-12000+33000-0
\end{array}\right] \\
& \Rightarrow \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{3000}{6} \\
\frac{12000}{6} \\
\frac{21000}{6}
\end{array}\right]=\left[\begin{array}{c}
500 \\
2000 \\
3500
\end{array}\right]
\end{aligned}
$$

Therefore, the prize money for sports (x) is ₹ 500 .
23. A person has manufactured a water tank in the shape of a closed right circular cylinder. The volume of the cylinder is $\frac{539}{2}$ cubic units. If the height and radius of the cylinder be h and r, then: (i) The height h in terms of radius r and the given volume will be:
(a) $h=\frac{539}{\pi r^{2}}$
(b) $h=\frac{539}{2 \pi r^{2}}$
(c) $h=\frac{539}{2 \pi r}$
(d) $h=\frac{539}{\pi r}$
(ii) Let the total surface area of the closed cylindrical tank be S, given by $S=\frac{539}{r}+2 \pi r^{2}$

If the total surface area of the tank is minimum, then the value of r will be:
(a) $r=7 \mathrm{~cm}$
(b) $r=14 \mathrm{~cm}$
(c) $r=49 \mathrm{~cm}$
(d) $r=\frac{7}{2} \mathrm{~cm}$
(iii) The height of the tank h is equal to:
(a) $h=7 \mathrm{~cm}$
(b) $h=14 \mathrm{~cm}$
(c) $h=28 \mathrm{~cm}$
(d) $h=2 \mathrm{~cm}$
(iv)The minimum total surface area of the tank S will be:
(a) $231 \mathrm{sq} . \mathrm{cm}$
(b) 321 sq. cm
(c) 230 sq. cm
(d) $221 \mathrm{sq} . \mathrm{cm}$

Ans. (i) Option (b) is correct.
It is mentioned in the question that radius

$$
=r \text { units \& height }=h \text { units }
$$

Also, volume of cylinder $=\frac{539}{2}$ cubic units

$$
\begin{array}{ll}
\Rightarrow & \pi r^{2} h=\frac{539}{2} \\
\Rightarrow & h=\frac{539}{2 \pi r^{2}}
\end{array}
$$

(ii) Option (d) is correct.

Total surface area,

$$
\begin{aligned}
S & =2 \pi r h+2 \pi r^{2} \\
& =2 \pi r \frac{539}{2 \pi r^{2}}+2 \pi r^{2} \text { [From above part (i)] } \\
& =\frac{539}{r}+2 \pi r^{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \quad \frac{d s}{d r}=-\frac{539}{r^{2}}+4 \pi r \text { and } \frac{d^{2} s}{d r^{2}}=\frac{1078}{r^{3}}+4 \pi \\
& \text { Put } \frac{d s}{d r}=0 \Rightarrow-\frac{539}{r^{2}}+4 \pi r=0 \\
& \Rightarrow \quad r^{3}=\frac{539 \times 7}{4 \times 22} \\
& \Rightarrow \quad r^{3}=\frac{7 \times 7 \times 7}{2 \times 2 \times 2} \\
& \Rightarrow \quad r
\end{aligned}
$$

Here, at $r=\frac{7}{2}, \frac{d^{2} s}{d r^{2}}>0$. Hence, minimum.
(iii) Option (a) is correct.

As, $\quad h=\frac{539}{2 \pi r^{2}}=\frac{539}{2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}}=7 \mathrm{~cm}$
(iv) Option (a) is correct.

Surface area is minimum at $\quad r=\frac{7}{2} \mathrm{~cm}$ Therefore,

$$
\begin{aligned}
S & =\frac{539}{r}+2 \pi r^{2}=\frac{539}{\frac{7}{2}}+2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\
& =154+77=231 \text { sq. cm }
\end{aligned}
$$

SECTION - B

[16 Marks]
(Answer all Questions)
24. If $\vec{a}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $b=3 \hat{i}-2 \hat{j}-\lambda \hat{k}$ such that they are perpendicular to each other, then the value of λ will be:
(a) 2
(b) -2
(c) 3
(d) -3

Ans. Option (a) is correct.
When two vectors \vec{a} and \vec{b} are perpendicular,
then $\quad \vec{a} \cdot \vec{b}=0$
Therefore, $(2 \vec{i}+4 \vec{j}-\vec{k}) \cdot(3 \vec{i}-2 \vec{j}-\gamma \vec{k})=0$
$\Rightarrow \quad 6-8+\gamma=0$
\Rightarrow

$$
\gamma=2
$$

25. The equation of the line passing through the points $(0,1,2)$ and $(1,3,5)$ is:
(a) $\frac{x-1}{0}=\frac{y-2}{1}=\frac{z-3}{2}$
(b) $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
(c) $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$
(d) $\frac{x-1}{1}=\frac{y-3}{3}=\frac{z-5}{5}$

Ans. Option (c) is correct.
The equation of a line passing through two points $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)$ is given by,

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Therefore, The line is passing through $(0,1,2) \&$ $(1,3,5)$ is

$$
\begin{aligned}
& \frac{x-0}{1-0}=\frac{y-1}{3-1}=\frac{z-2}{5-2} \\
\Rightarrow \quad & \frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}
\end{aligned}
$$

26. The direction cosines of a line parallel to $\frac{x-1}{2}=\frac{y+3}{3}=\frac{z-6}{-6}$ are:
(a) $\left(\frac{-2}{7}, \frac{-3}{7}, \frac{-6}{7}\right)$
(b) $\left(\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}\right)$
(c) $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$
(d) $\left(\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}\right)$

Ans. Option (d) is correct.

Equation of the line given in the question is, $\frac{x-1}{2}=\frac{y+3}{3}=\frac{z+6}{-6}$
Direction ratios of this line is $<2,3,-6>$
Direction ratios of the line parallel to the given line are also same, $<2,3,-6>$
Let the direction cosines of the second line are $<l, m$, $n>$
$l=\frac{2}{\sqrt{2^{2}+3^{2}+(-6)^{2}}}=\frac{2}{\sqrt{4+9+36}}=\frac{2}{\sqrt{49}}=\frac{2}{7}$
Similarly, $\quad m=\frac{3}{7}$ and $n=\frac{-6}{7}$
27. The angle between the pairs of lines
$\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ and
$\vec{r}=5 \hat{i}-2 \hat{k}+\mu(3 \hat{i}+2 \hat{j}+3 \hat{k})$ is:
(a) $\theta=\sin ^{-1} \frac{19}{21}$
(b) $\theta=\cos ^{-1} \frac{22}{21}$
(c) $\theta=\cos ^{-1} \frac{19}{20}$
(d) $\theta=\cos ^{-1} \frac{19}{21}$

Ans. Option (d) is correct.
The angle between two line $\vec{r}_{1}=\vec{a}_{1}+\gamma \vec{b}_{1}$ and $\vec{r}_{2}=\vec{a}_{2}+\mu \vec{b}_{2}$ is $\cos \theta=\frac{\vec{b}_{1}, \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}$

Therefore,

$$
\begin{aligned}
\cos \theta & =\frac{(\vec{i}+2 \vec{j}+2 \vec{k})(3 \vec{i}+2 \vec{j}+6 \vec{k})}{\sqrt{1^{2}+2^{2}+2^{2}} \sqrt{3^{2}+2^{2}+6^{2}}} \\
& =\frac{3+4+12}{\sqrt{9} \times \sqrt{49}}=\frac{19}{21} \\
\theta & =\cos ^{-1} \frac{19}{21}
\end{aligned}
$$

28. Consider the two vectors
$\vec{a}=3 \hat{i}+2 \hat{j}+4 \hat{k}$ and $\hat{b}=\hat{i}-3 \hat{j}+\hat{k}$
(i) The vector perpendicular to both \vec{a} and \vec{b} will be:
(a) $14 \hat{i}+\hat{j}-12 \hat{k}$
(b) $14 \hat{i}-\hat{j}+11 \hat{k}$
(c) $14 \hat{i}+\hat{j}-11 \hat{k} \quad$ (d) $14 \hat{i}+\hat{j}+11 \hat{k}$
(ii) The unit vector perpendicular to both \vec{a} and \vec{b} are:
(a) $\frac{14 \hat{i}+\hat{j}-12 \hat{k}}{\sqrt{308}}$
(b) $\frac{14 \hat{i}-\hat{j}+11 \hat{k}}{\sqrt{318}}$
(c) $\frac{14 \hat{i}+\hat{j}-11 \hat{k}}{\sqrt{318}}$
(d) $\frac{14 \hat{i}+\hat{j}+11 \hat{k}}{\sqrt{318}}$
(iii) The value of $|2 \vec{a}+\vec{b}|$ will be:
(a) $\sqrt{130}$
(b) $\sqrt{131}$
(c) $\sqrt{141}$
(d) $\sqrt{140}$
(iv)The area of the parallelogram formed by \vec{a} and \vec{b} as its diagonals will be
(a) $\frac{1}{2} \sqrt{318}$
(b) $2 \sqrt{318}$
(c) $\frac{1}{2} \sqrt{308}$
(d) $2 \sqrt{308}$

Ans. (i) Option (c) is correct.
The vector which is perpendicular to both \vec{a} and \vec{b} is $\vec{a} \times \vec{b}$.
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 4 \\ 1 & -3 & 1\end{array}\right|=\hat{i}(2+12)-\hat{j}(3-4)+\hat{k}(-9-2)$

$$
\vec{a} \times \vec{b}=14 \hat{i}+\hat{j}-11 \hat{k}
$$

(ii) Option (c) is correct.

Let unit vector perpendicular to both \vec{a} and \vec{b} is \hat{C}
$\hat{C}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}=\frac{14 \hat{i}+\hat{j}-11 \hat{k}}{\sqrt{14^{2}+1^{2}+11^{2}}}=\frac{14 \hat{i}+\hat{j}-11 \hat{k}}{\sqrt{318}}$
(iii) Option (b) is correct.

$$
\begin{aligned}
|2 \vec{a}+\vec{b}| & =|2(3 \hat{i}+2 \hat{j}+4 \hat{k})+(\hat{i}-3 \hat{j}+\hat{k})| \\
& =|6 \hat{i}+4 \hat{j}+8 \hat{k}+\hat{i}-3 \hat{j}+\hat{k}| \\
& =|7 \hat{i}+\hat{j}+9 \hat{k}|=\sqrt{7^{2}+1^{2}+9^{2}}: \\
& =\sqrt{49+1+81}=\sqrt{131}
\end{aligned}
$$

(iv) Option (a) is correct.

Here,
Area of parallelogram

$$
=\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{1}{2} \sqrt{318} \text { sq. units }
$$

[Given \vec{a} and \vec{b} are diagonals]

SECTION - C

[16 Marks]
(Answer all Questions)
29. The cost function of a firm is given by $C(x)=1500+25 x+\frac{x^{2}}{10}$. Then the marginal cost of the firm $M C(x)$ will be:
(a) $1500+\frac{x}{5}$
(b) $\frac{-1500}{x^{2}}+\frac{1}{10}$
(c) $25-\frac{x}{5}$
(d) $25+\frac{x}{5}$

Ans. Option (d) is correct.

$$
\begin{aligned}
& \text { Given, } \left.\begin{array}{rl}
C(x) & =1500+25 x+\frac{x^{2}}{10} \\
\text { Therefore, } M C(x) & =\frac{d}{d x}\left(1500+25 x+\frac{x^{2}}{10}\right) \\
& =25+\frac{2 x}{10}=25+\frac{x}{5}
\end{array} \text { (} \begin{array}{rl}
M C
\end{array}\right)
\end{aligned}
$$

30. The revenue of a monopolist is given by $R(x)=$ $120 x^{2}+300-x$. Then, the average revenue function $A R(x)$ at $x=10$ will be:
(a) 1229
(b) 1500
(c) 1210
(d) 12310
31. Option (a) is correct.

Given, $\quad R(x)=120 x^{2}+300-x$
Therefore,

$$
\text { At } \quad x=10 \text {, }
$$

$$
\begin{aligned}
A R(x) & =\frac{R(x)}{x}=\frac{120 x^{2}+300-x}{x} \\
x & =10 \\
A R(10) & =\frac{120(10)^{2}+300-10}{10} \\
& =\frac{12000+300-10}{10} \\
& =\frac{12290}{10}=1229
\end{aligned}
$$

31. A company sells its product at the rate of $₹ 10$ per unit. The variable costs are estimated to be 25% of the total revenue received. If the fixed costs for the product are $₹ 4500$, then the cost function will be:
(a) $\frac{15}{2}-4500 x$
(b) $\frac{15}{x}-4500$
(c) $\frac{5 x}{2}+4500$
(d) $\frac{25 x}{2}-4500$

Ans. Option (c) is correct.

Let x be the number of units sold.
Price of 1 unit ₹ 10 .
Total revenue $=₹ 10 x$
Cost function, $C(x)=4500+25 \%$ of $₹ 10 x$

$$
=4500+\frac{25}{100} \times 10 x=4500+\frac{5}{2} x
$$

32. Let the total cost function be $C(x)=5 x+350$ and the total revenue function be $R(x)=50 x-x^{2}$ for a company.
Then, the break-even points will be:
(a) -35 and 10
(b) 35 and 10
(c) 35 and -10
(d) -35 and -10

Ans. Option (b) is correct.

$$
\begin{aligned}
& \text { For break-even values, } \quad C(x)=R(x) \\
& \text { Therefore, } \quad 5 x+350=50 x-x^{2} \\
& \text { or } \quad x^{2}-45 x+350=0
\end{aligned}
$$

Which is a quadratic equation in x, using quadratic formula

$$
D=b^{2}-4 a c \text { and } x=\frac{-b \pm \sqrt{D}}{2 a}
$$

Here, $\quad D=(-45)^{2}-4(1)(350)=2025-1400=625$
Therefore,

$$
\begin{gathered}
x=\frac{-(-45) \pm \sqrt{625}}{2(1)}=\frac{45+25}{2}, \frac{45-25}{2} \\
\text { or, } \\
x=\frac{70}{2}, \frac{20}{2}=35,10
\end{gathered}
$$

33. The demand function of a firm producing x units is given by $p=200-5 x$
(i) The revenue function at $x=20$ will be:
(a) 4000
(b) 2000
(c) 100
(d) -100
(ii) The marginal revenue $\operatorname{MR}(x)$ will be:
(a) $200-10 x^{2}$
(b) $200-5 x$
(c) $200-10 x$
(d) $-5 x^{2}$
(iii) The value of x, for which revenue increases, will be:
(a) $x<20$
(b) $x>20$
(c) $x=20$
(d) $x=200$
(iv) The slope of the marginal revenue will be:
(a) -45
(b) 45
(c) 10
(d) -10

Ans. (i) Option (b) is correct.

Demand function
Revenue function,
At $x=20$,

$$
\begin{aligned}
p & =200-5 x \\
R(x) & =p x=200 x-5 x^{2} \\
R(x) & =200(20)-5(20)^{2} \\
& =4000-2000 \\
& =2000
\end{aligned}
$$

(ii) Option (c) is correct.

Here,

$$
\begin{aligned}
R(x) & =200 x-5 x^{2} \\
M R(x) & =\frac{d}{d x}\left(200 x-5 x^{2}\right) \\
& =200-10 x
\end{aligned}
$$

Therefore,
(iii) Option (a) is correct.

$$
\begin{array}{cc}
& M R
\end{array}>0
$$

(iv) Option (d) is correct.

Slope of Marginal revenue,

$$
\frac{d}{d x}(M R)=\frac{d}{d x}(200-10 x)=-10
$$

