ISC Solved Paper 2022, Semester -1 **Class-XII**

Mathematics

(Maximum Marks : 40)

(Time allowed : One and a half hours)

Condidates are allowed an additional **10** minutes for only reading the paper.

They must NOT start writing during this time.

The Question Paper consists of three sections A, B and C.

Candidates are required to attempt all questions from Section A and all

questions either from Section B OR Section C.

Each question/subpart of a question carries two mark.

Select and write the correct option for each of the following question..

Ans. Option (a) is correct.

Given function

SECTION - A

1. Let 'R' be a relation on N_r , set of all natural given by $R = \{(a, b) : a - b = 2\}$. Then : (a) $(2, 4) \in R$ **(b)** $(10, 8) \in R$ (c) $(6, 8) \in R$ (d) $(8, 7) \in R$

Ans. Option (b) is correct.

The given relation is, $R = \{(a, b): a - b = 2\}$ As the relation is on set of all natural numbers therefore, 'a' should be greater than 'b'. In the given options, in option (b) 10 > 8 and 10 -8 = 2.

Thus, $(10, 8) \in R$.

2. If
$$A = \begin{vmatrix} zy & x & yz \\ xz & y & zx \\ yx & z & xy \end{vmatrix}$$
, then the value of A is equal to:

(a) 0 (b)
$$xyz$$

(c) 1 (d) $\frac{1}{xyz}$

Ans. Option (a) is correct.

Given determinant
$$A = \begin{vmatrix} zy & x & yz \\ xz & y & zx \\ yx & z & xy \end{vmatrix}$$

In *A*, C_1 and C_3 are identical.

According to the property of determinants, if two rows or columns are identical, then its value is zero.

Therefore, A = 0

- 3. The function $f(x) = \frac{x^3}{3} x$ is decreasing in the interval: (a) (-1, 1) **(b)** (−∞, −1)
 - (c) (1,∞) (d) $(-\infty, -1) \cup (1, \infty)$

Differentiating both sides w.r.t. x

$$f'(x) = \frac{3x^2}{3} - 1$$

or
Put
or
or
$$f'(x) = 0$$

or
$$x^2 - 1 = 0$$

or
$$(x - 1)(x + 1) = 0$$

or
$$x = -1, 1$$

In the interval (-1, 1) f(x) is decreasing.

4. If
$$\cot^{-1}\frac{1}{5} + \tan^{-1}x = \frac{\pi}{2}$$
, than value of x is:

(a)
$$\frac{1}{5}$$
 (b) 1
(c) 0 (d) $\frac{-1}{5}$

Ans. Option (a) is correct.

Also,

$$\cot^{-1}\frac{1}{5} + \tan^{-1}x = \frac{\pi}{2} \qquad \dots \dots (i)$$

Also,
$$\cot^{-1}x + \tan^{-1}x = \frac{\pi}{2} \qquad \dots \dots (ii)$$

From (i) & (ii), we get
$$x = \frac{1}{5}$$

5. Let the two functions f(x) and g(x) be defined as $f(x)=x^2-1$ and $g(x)=\sqrt{x}$ then (fog) (6) is:

[34 Marks]

 $f(x) = \frac{x^3}{3} - x$

(a) 5	(b) 7
(c) 35	(b) -35
Ans. Option (a) is correct	•
The given function	are $f(x) = x^2 - 1$ and $g(x) = \sqrt{x}$
(fog)(x) = f(g)	$f(x)$ = $f(\sqrt{x}) = (\sqrt{x})^2 - 1 = x - 1$
	(fog)(6) = 6 - 1 = 5
$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$	
6. If $\begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$, then the	matrix A^2 is equal to:
$\begin{pmatrix} 4 & 0 & 0 \end{pmatrix}$	
(a) $A^2 = \begin{bmatrix} 0 & 9 & 0 \end{bmatrix}$	
$\begin{pmatrix} 0 & 0 & 16 \end{pmatrix}$	
(b) $A^2 = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 9 & 0 \end{bmatrix}$	
$\begin{pmatrix} 0 \end{pmatrix} H = \begin{pmatrix} 0 & y & 0 \\ 16 & 0 & 0 \end{pmatrix}$	
(4 0 16)	
(c) $A^2 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	
$\begin{pmatrix} 0 & 9 & 0 \end{pmatrix}$	
$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	
(d) $A^2 = \begin{vmatrix} 4 & 9 & 16 \\ 0 & 0 & 0 \end{vmatrix}$	
$(0 \ 0 \ 0)$	
Ans. Option (a) is co	orrect.
$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$	
$A^2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$	$ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} $
(4+0+0) 0+0+	(0 0+0+0) (4 0 0)

$$= \begin{vmatrix} 0+0+0 & 0+9+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+16 \end{vmatrix} = \begin{vmatrix} 0 & 9 & 0 \\ 0 & 0 & 16 \end{vmatrix}$$

7. The value of
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
 is equal to:

(a)
$$\frac{1}{2}$$
 (b) 1
(c) -1 (d) $\frac{-1}{2}$

Ans. Option (a) is correct.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
$$= \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} \left[\text{Using}, 1 - \cos x = 2\sin^2 \frac{x}{2} \right]$$
$$= \lim_{x \to 0} 2 \left(\frac{\sin \frac{x}{2}}{x} \right)^2$$

$$= \lim_{x \to 0} 2 \left(\frac{\sin \frac{x}{2}}{\frac{2x}{2}} \right)^2 \quad \left[\text{Using, } \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$$
$$= 2 \times \frac{1}{4} = \frac{1}{2}$$

8. The expression for
$$\cos(\tan^{-1} x)$$
 is equal to:

(a)
$$\frac{1}{\sqrt{1-x^2}}$$
 (b) $\frac{1}{\sqrt{1+x^2}}$
(c) $\frac{\sqrt{1-x^2}}{2}$ (d) $\sqrt{1-x^2}$

Ans. Option (b) is correct.

Let
$$\theta = \tan^{-1} x$$

 $\Rightarrow \qquad x = \tan \theta$
Also, $\cos \theta = \frac{1}{\sec \theta} = \frac{1}{\sqrt{1 + \tan^2 \theta}} = \frac{1}{\sqrt{1 + x^2}}$
 $\therefore \qquad \cos(\tan^{-1} x) = \frac{1}{\sqrt{1 + x^2}}$

9. If $2\begin{pmatrix} a & 9 \\ 6 & d \end{pmatrix} + 3\begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} = 3\begin{pmatrix} 3 & 5 \\ 4 & 6 \end{pmatrix}$, then the values of *a* and *d* respectively are: (a) 3, 6 (b) 3, 5

(c) 3,9 (d) 3,7 Ans. Option (a) is correct.

$$2\binom{a \ 9}{6 \ d} + 3\binom{1 \ -1}{0 \ 2} = 3\binom{3 \ 5}{4 \ 6}$$
$$\binom{2a \ 18}{12 \ 2d} + \binom{3 \ -3}{0 \ 6} = \binom{9 \ 15}{12 \ 18}$$
$$\binom{2a + 3 \ 15}{12 \ 2d + 6} = \binom{9 \ 15}{12 \ 18}$$

On comparing the corresponding elements, we get

$$2a+3 = 9$$
 and $2d + 6 = 18$
 $2a = 6$ and $2d = 12$
 $a = 3$ and $d = 6$

10. Differentiation of log $(1 + x^2)$ with respect to $\tan^{-1} x$ is:

(a)
$$\frac{1}{1+x^2}$$
 (b) $2x$
(c) $\frac{-1}{1+x^2}$ (d) $-x$
Ans. Option (b) is correct.

or or

Let
$$u = \log(1 + x^2)$$
 and $v = \tan^{-1} x$
 $\frac{du}{dx} = \frac{d}{dx} \Big[\log(1 + x^2) \Big] = \frac{1}{1 + x^2} (2x) = \frac{2x}{1 + x^2}$

$$\frac{dv}{dx} = \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1+x^2}$$
$$\frac{du}{dv} = \frac{du}{dx} \times \frac{dx}{dv} = \frac{2x}{1+x^2} \times \frac{1+x^2}{1} = 2x$$

- 11. The relation $R = \{(a, a), (b, b), (c, c)\}$ on the set $\{a,b,c\}$ is:
 - (a) symmetric only (b) reflexive only
 - (c) transitive only (d) an equivalence relation

Ans. Option (d) is correct.

The given relation $R = \{(a, a), (b, b), (c, c) \text{ is an identity relation.} \}$

We know that, Identity relation is always an equivalence relation, therefore the given relation is an equivalence relation.

12. If the function
$$f(x) = \begin{cases} 3x-1, \ x<2\\ k, \ x=2 \end{cases}$$
 is continuous at $2x+1, \ x>2 \end{cases}$

x = 2, then the value of 'k' is: (a) k = 2 (b) k = 3(c) k = 5 (d) k = 1

Ans. Option (c) is correct.

Given the function f(x) is continuous at x = 2.

Then,

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$
Now,

$$\lim_{x \to 2^{-}} (3x - 1) = 3(2) - 1 = 5$$
and

$$\lim_{x \to 2^{+}} (2x + 1) = 2(2) + 1 = 5$$
Hence,

$$k = 5$$

13. If
$$x^2 + y^3 = 42$$
, then $\frac{dy}{dx}$ is:
(a) $\frac{dy}{dx} = \frac{-3y^2}{2x}$ (b) $\frac{dy}{dx} = \frac{3y^2}{2x}$

(c)
$$\frac{dy}{dx} = \frac{2x}{3y^2}$$
 (d) $\frac{dy}{dx} = \frac{-2x}{3y^2}$

Ans. Option (d) is correct.

The given equation is

$$x^2 + y^3 = 42$$

Differentiating both sides w.r.t. *x*, we get

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^3) = \frac{d}{dx}(42)$$
$$\Rightarrow 2x + 3y^2 \frac{dy}{dx} = 0$$
$$\Rightarrow \frac{dy}{dx} = \frac{-2x}{3y^2}$$

14. If the matrix $A = \begin{pmatrix} 1 & x & -1 \\ -1 & 3 & 2 \\ 2 & 1 & 1 \end{pmatrix}$ is singular, then the value of 'x' is:

(a)
$$x = \frac{8}{5}$$
 (b) $x = \frac{-8}{5}$
(c) $x = \frac{5}{8}$ (d) $x = 1$

Ans. Option (b) is correct.

When det(*A*) is zero , then *A* is a singular matrix. Therefore |A| = 0

$$\Rightarrow \begin{vmatrix} 1 & x & -1 \\ -1 & 3 & 2 \\ 2 & 1 & 1 \end{vmatrix} = 0$$
$$\Rightarrow 1\begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} - x\begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix} + (-1)\begin{vmatrix} -1 & 3 \\ 2 & 1 \end{vmatrix} = 0$$
$$\Rightarrow 1 + 5x + 7 = 0$$
$$\Rightarrow 5x = -8$$
$$\Rightarrow x = -\frac{8}{5}$$

15. The value of
$$\tan^{-1} 1 + \cos^{-1} \frac{1}{2}$$
 is:
(a) $\frac{5\pi}{12}$ (b) $\frac{\pi}{4}$

(c) $\frac{\pi}{2}$ (d) $\frac{7\pi}{12}$

Ans. Option (d) is correct.

 \Rightarrow

$$\tan^{-1} 1 = \frac{\pi}{4} \text{ and } \cos^{-1} \frac{1}{2} = \frac{\pi}{3}$$

 $\tan^{-1} 1 + \cos^{-1} \frac{1}{2} = \frac{\pi}{4} + \frac{\pi}{3} = \frac{7\pi}{12}$

16. The slope of the tangent to the curve $\sqrt{x} + \sqrt{y} = a \operatorname{at} \left(\frac{a^2}{4}, \frac{a^2}{4} \right)$ is: (a) 1 (b) -1 (c) $\frac{a}{4}$ (d) $\frac{a}{2}$

Ans. Option (b) is correct.

The given equation is, $\sqrt{x} + \sqrt{y} = a$ Differentiating both sides w.r.t. *x*, we get

$$\frac{d}{dx}(\sqrt{x}) + \frac{d}{dx}(\sqrt{y}) = \frac{d}{dx}(a)$$

$$\Rightarrow \qquad \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\sqrt{\frac{y}{x}}$$
At $\left(\frac{a^2}{4}, \frac{a^2}{4}\right) \qquad \frac{dy}{dx} = -1$

17. If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, then the matrix $A + A^T$ is: (a) Symmetric matrix

(b) Skew-symmetric matrix

- (c) Diagonal matrix
- (d) Identity matrix
- Ans. Option (a) is correct.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\Rightarrow \qquad A^{T} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
and
$$A + A^{T} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 5 & 8 \end{pmatrix} \dots (i)$$
Now,
$$(A + A^{T})^{T} = \begin{pmatrix} 2 & 5 \\ 5 & 8 \end{pmatrix} \dots (ii)$$

From (i) and (ii), $A + A^{T} = (A + A^{T})^{T}$ Therefore, $A + A^{T}$ is a symmetric matrix.

18. If
$$x = a \cos \theta$$
, $y = a \sin \theta$, then $\frac{dy}{dx}$ at $\theta = \frac{\pi}{2}$ will be:
(a) $\frac{dy}{dx} = -1$ (b) $\frac{dy}{dx} = 1$
(c) $\frac{dy}{dx} = 0$ (d) $\frac{dy}{dx} = 2$

Ans. Option (c) is correct.

Given,
$$x = a \cos\theta \& y = a \sin\theta$$

 $\therefore \qquad \frac{dx}{d\theta} = \frac{d}{d\theta}(a\cos\theta) = -a\sin\theta$

 $\frac{dy}{d\theta} = \frac{d}{d\theta} (a\sin\theta) = a\cos\theta$

 $\frac{dy}{dx} = \cot\frac{\pi}{2} = 0$

and

Now,

 $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{a\cos\theta}{-a\sin\theta} = -\cot\theta$ At $\theta = \frac{\pi}{2}$,

19. If $y = \tan^{-1} x$, then:

(a)
$$(1+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 0$$

(b) $\sqrt{(1-x^2)}\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 0$
(c) $(1-x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 0$

(d)
$$\sqrt{(1+x^2)}\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 0$$

Ans. Option (a) is correct.

 $y = \tan^{-1}x$ Given, Differentiating w.r.t. *x*, we get

$$\frac{dy}{dx} = \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$
$$\left(1 + x^2 \right) \frac{dy}{dx} = 1$$

Again differentiating w.r.t. x, we get

$$\left(1+x^2\right)\frac{d^2y}{dx^2} + \frac{dy}{dx}(2x) = 1$$

20. If $A = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}$, then A(adj A) is equal to:

(a)
$$\begin{pmatrix} 4 & 0 \\ 10 & 24 \end{pmatrix}$$
 (b) $\begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix}$
(c) $\begin{pmatrix} 4 & 5 \\ 5 & 4 \end{pmatrix}$ (d) $\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$

Ans. Option (b) is correct.

Given,

Minors of *A* are:

$$M_{11} = 3$$
, $M_{12} = 2$, $M_{21} = 1$, $M_{22} = -1$
Cofactors of A are:

 $A = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}$

$$C_{11} = 3, C_{12} = -2, C_{21} = -1, C_{22} = -1$$

Therefore,

$$Adj(A) = \begin{pmatrix} 3 & -2 \\ -1 & -1 \end{pmatrix}^{T} = \begin{pmatrix} 3 & -1 \\ -2 & -1 \end{pmatrix}$$

Now,

$$A(adj A) = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} -3-2 & 1-1 \\ 6-6 & -2-3 \end{pmatrix}$$
$$= \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix}$$

21. Consider the two functions $f: R \to R$ given by f(x) =x - 2 and $g : R \to R$ given by $g(x) = x^2$ (i) The function *f*(*x*) is (a) One to one but not onto (b) Onto but not one to one (c) Neither one to one nor onto (d) Bijective (ii) The value of f(1) + g(1) is: (a) **(b)** 0 (d) $\frac{-1}{2}$ (c) 1 (iii) The expression for (gof)(x) is: (a) x - 2**(b)** $(x-2)^2$ (c) $x^2 - 2$ (d) $x^2 - 3$ (iv) If (gof)(x) = 0, then the value of x will be: (a) $x = \pm 2$ (b) x = 2(c) $x = \pm \sqrt{2}$ (d) x = 3Ans. (i) Option (d) is correct.

Let	$x_1, x_2 \in R$
Now,	$f(x_1) = f(x_2)$
\Rightarrow	$x_1 - 2 = x_2 - 2$
\Rightarrow	$x_1 = x_2$
\Rightarrow	f(x) is one-one.

 $y \in R$ Let Let $y = f(x_0)$ Then, $x_0 - 2 = y$ \Rightarrow $x_0 = y + 2$ Now, $y \in R$ $y+2 \in R$ \Rightarrow $x_0 \in R$ \Rightarrow $f(x_0) = x_0 + 2 = y$ Therefore, for each $y \in R$, there exists $x_0 \in R$ such that $f(x_0) = y$

So, f(x) is onto.

Thus, f(x) is one-one and onto or bijective.

(ii) Option (b) is correct.

$$f(1) = 1 - 2 = -1$$
 and $g(1) = (1)^2 = 1$
Now, $f(1) + g(1) = -1 + 1 = 0$

(iii) Option (b) is correct.

$$gof(x) = g(f(x)) = g(x - 2) = (x - 2)^2$$

(iv) Option (b) is correct.

~ ~ ~

$$\Rightarrow \qquad (x-2)^2 = 0$$

$$\Rightarrow \qquad x-2 = 0$$

$$\Rightarrow \qquad x = 2$$

22. A school wants to award its students for their achievement in Sports, Music and Literature with a total cash prize of ₹ 6000.

Three times the prize money for Literature added to the prize money given for Sports is equal to ₹11000.

The prize money given for Sports and Literature together is equal to two times of the prize money given for Music.

If x, y and z represent the prize money given for Sports, Music and Literature respectively, then:

- (i) The set of linear equations representing the above information will be:
- (a) x + y + z = 6000, x + 3z = 11000 and x 2y + z = 0

(b)
$$x + y + z = 6000$$
, $x + 3z = 11000$ and $x + y + 2z = 0$

(c)
$$x + y + z = 6000$$
, $3x + z = 11000$ and $x + y - 2z = 0$

(d) x + y + z = 6000, x + 3z = 11000 and 2x + 2y - z = 0

(ii) Consider
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & -2 & 1 \end{pmatrix}$$

Then the value of |A| is:

$$\begin{pmatrix} 6 & p \end{pmatrix}$$

(iii) The adj $(A) = \begin{bmatrix} r & r \\ -2 & 3 & -1 \end{bmatrix}$, the values of p, q and

3)

r respectively will be:

(c) -3, 2, -2 (d) 3, 2, 2 (iv)Using |*A*| and adj *A*, calculate the prize money

for Sports(x).

(a) x = 1500 (b) x = 500

(c) x = 1000 (d) x = 2000

Ans. (i) Option (a) is correct.

Given,

Cash prize for achievement in sports is $\overline{\mathbf{x}}$.

Cash prize for achievement in music is $\overline{\xi}y$.

Cash prize for achievement in literature is \overline{z} .

Three times the prize money for literature is added to the money given for sports is equal to ₹11000.

$$\Rightarrow \qquad x + 3z = 11000$$

The prize money given for sports and literature s equal to two times of prize money for music.

$$\Rightarrow x + z = 2y \text{ or } x - 2y + z = 0$$

Total cash prize for all the three subjects is $\overline{\mathbf{0}}$

$$x + y + z = 6000$$

(ii) Option (b) is correct

$$|A| = 1 \begin{vmatrix} 0 & 3 \\ -2 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix}$$

= 1[0+6] - 1[1-3]+1[-2-0] = 6 + 2 - 2
= 6

(iii) Option (c) is correct.

The above system of equations can be written in matrix form as AX = B.

[1	1	1]	$\begin{bmatrix} x \end{bmatrix}$		6000
1	0	3	y	=	11000
1	-2	1	$\lfloor z \rfloor$		0

Here, |A|=6 [From above part (ii)] Which means *A* is non-singular. Hence, it is

invertible.

Now, cofactors of *A* are:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 0 & 3 \\ -2 & 1 \end{vmatrix} = 0 + 6 = 6$$
$$A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} = -(1-3) = 2$$
$$A_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix} = -2 - 0 = -2$$
$$A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} = -(1+2) = -3$$
$$A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1 - 1 = 0$$

 $A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = -(-2-1) = 3$ $A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 1 \\ 0 & 3 \end{vmatrix} = 3 - 0 = 3$ $A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = -(3-1) = -2$ $A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = 0 - 1 = -1$ $adj(A) = \begin{bmatrix} 6 & 2 & -2 \\ -3 & 0 & 3 \\ 3 & -2 & -1 \end{bmatrix}^{T}$ $adj(A) = \begin{bmatrix} 6 & -3 & 3 \\ 2 & 0 & -2 \\ -2 & 3 & -1 \end{bmatrix}$ ÷. Therefore,

On comparing, we get

p = -3, q = 2 and r = -2

(iv) Option (b) is correct.

$$X = A^{-1} B$$

or
$$X = \frac{adj(A)}{|A|} B$$

$$\Rightarrow \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 6 & -3 & 3 \\ 2 & 0 & -2 \\ -2 & 3 & -1 \end{bmatrix} \begin{bmatrix} 6000 \\ 11000 \\ 0 \end{bmatrix}$$

$$\Rightarrow \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 36000 - 33000 + 0 \\ 12000 + 0 - 0 \\ -12000 + 33000 - 0 \end{bmatrix}$$

$$\Rightarrow \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{3000}{6} \\ \frac{12000}{6} \\ \frac{21000}{6} \end{bmatrix} = \begin{bmatrix} 500 \\ 2000 \\ 3500 \end{bmatrix}$$

Therefore, the prize money for sports (*x*) is ₹ 500.

23. A person has manufactured a water tank in the shape of a closed right circular cylinder. The volume of the cylinder is $\frac{539}{2}$ cubic units. If the height and radius of the cylinder be h and r_{t} then: (i) The height *h* in terms of radius *r* and the given volume will be:

(a)
$$h = \frac{539}{\pi r^2}$$
 (b) $h = \frac{539}{2\pi r^2}$
(c) $h = \frac{539}{2\pi r}$ (d) $h = \frac{539}{\pi r}$

(ii) Let the total surface area of the closed cylindrical

tank be S, given by $S = \frac{539}{r} + 2\pi r^2$

If the total surface area of the tank is minimum, then the value of *r* will be:

(a)
$$r = 7 \text{ cm}$$
 (b) $r = 14 \text{ cm}$
(c) $r = 49 \text{ cm}$ (d) $r = \frac{7}{2} \text{ cm}$

(iii) The height of the tank *h* is equal to:

(a)
$$h = 7 \text{ cm}$$
 (b) $h = 14 \text{ cm}$

(**d**) *h* = 2 cm (c) h = 28 cm

- (iv)The minimum total surface area of the tank S will be:
- (a) 231 sq. cm (b) 321 sq. cm
- (c) 230 sq. cm (d) 221 sq. cm

Ans. (i) Option (b) is correct.

 \Rightarrow

 \Rightarrow

It is mentioned in the question that radius =r units & height =h units

Also, volume of cylinder = $\frac{539}{2}$ cubic units

$$\pi r^2 h = \frac{539}{2}$$
$$h = \frac{539}{2\pi r^2}$$

(ii) Option (d) is correct.

$$S = 2\pi r h + 2\pi r$$

$$= 2\pi r \frac{539}{2\pi r^2} + 2\pi r^2$$
 [From above part (i)]
$$= \frac{539}{r} + 2\pi r^2$$

Now,

=

_

=

$$\frac{ds}{dr} = -\frac{539}{r^2} + 4\pi r \text{ and } \frac{d^2s}{dr^2} = \frac{1078}{r^3} + 4\pi$$
Put $\frac{ds}{dr} = 0 \Rightarrow -\frac{539}{r^2} + 4\pi r = 0$

$$\Rightarrow r^3 = \frac{539 \times 7}{4 \times 22}$$

$$\Rightarrow r^3 = \frac{7 \times 7 \times 7}{2 \times 2 \times 2}$$

$$\Rightarrow r = \frac{7}{2}$$
We have $r = \frac{7}{2}$

Here, at $r = \frac{r}{2}, \frac{u}{dr^2} > 0$. Hence, minimum.

(iii) Option (a) is correct.

As,
$$h = \frac{539}{2\pi r^2} = \frac{539}{2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}} = 7 \text{ cm}$$

(iv) Option (a) is correct.

Surface area is minimum at $r = \frac{7}{2}$ cm Therefore,

$$S = \frac{539}{r} + 2\pi r^2 = \frac{539}{\frac{7}{2}} + 2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$$
$$= 154 + 77 = 231 \text{ sq. cm}$$

SECTION - B

[16 Marks]

(Answer all Questions)

- 24. If $\vec{a} = 2\hat{i} + 4\hat{j} \hat{k}$ and $b = 3\hat{i} 2\hat{j} \lambda\hat{k}$ such that they are perpendicular to each other, then the value of λ will be:
 - (a) 2 (b) -2 (c) 3 (d) -3
- Ans. Option (a) is correct.

When two vectors \vec{a} and \vec{b} are perpendicular, \vec{a} , $\vec{b} = 0$ then Therefore, $(2\vec{i}+4\vec{j}-\vec{k}).(3\vec{i}-2\vec{j}-\gamma\vec{k})=0$

 $6 - 8 + \gamma = 0$

$$\Rightarrow$$

 $\gamma = 2$ 25. The equation of the line passing through the points (0, 1, 2) and (1, 3, 5) is:

(a)
$$\frac{x-1}{0} = \frac{y-2}{1} = \frac{z-3}{2}$$

(b) $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$
(c) $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$
(d) $\frac{x-1}{1} = \frac{y-3}{3} = \frac{z-5}{5}$

Ans. Option (c) is correct.

The equation of a line passing through two points $(x_1, y_1, z_1) (x_2, y_2, z_2)$ is given by,

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

Therefore, The line is passing through (0, 1, 2) & (1, 3, 5) is

$$\frac{x-0}{1-0} = \frac{y-1}{3-1} = \frac{z-2}{5-2}$$
$$\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$$

26. The direction cosines of a line parallel to $\frac{x-1}{2} = \frac{y+3}{3} = \frac{z-6}{-6}$ are:

(a)
$$\left(\frac{-2}{7}, \frac{-3}{7}, \frac{-6}{7}\right)$$
 (b) $\left(\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}\right)$
(c) $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$ (d) $\left(\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}\right)$

Ans. Option (d) is correct.

 \Rightarrow

Equation of the line given in the question is, $\frac{x-1}{2} = \frac{y+3}{3} = \frac{z+6}{-6}$

Direction ratios of this line is <2, 3, -6>

Direction ratios of the line parallel to the given line are also same, <2, 3, -6>

Let the direction cosines of the second line are <*l*,*m* , *n*>

$$l = \frac{2}{\sqrt{2^2 + 3^2 + (-6)^2}} = \frac{2}{\sqrt{4 + 9 + 36}} = \frac{2}{\sqrt{49}} = \frac{2}{7}$$

Similarly, $m = \frac{3}{7}$ and $n = \frac{-6}{7}$

27. The angle between the pairs of lines $\vec{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k})$ and

$$\vec{r} = 5\hat{i} - 2\hat{k} + \mu (3\hat{i} + 2\hat{j} + 3\hat{k})$$
 is:

(a)
$$\theta = \sin^{-1} \frac{19}{21}$$
 (b) $\theta = \cos^{-1} \frac{22}{21}$

(c)
$$\theta = \cos \frac{1}{20}$$
 (d) $\theta = \cos \frac{1}{20}$

Ans. Option (d) is correct.

The angle between two line

$$\vec{r}_1 = \vec{a}_1 + \gamma \vec{b}_1$$
 and $\vec{r}_2 = \vec{a}_2 + \mu \vec{b}_2$ is
 $\cos \theta = \frac{\vec{b}_1, \vec{b}_2}{\left|\vec{b}_1\right| \left|\vec{b}_2\right|}$

21

Therefore,

$$\cos \theta = \frac{\left(\vec{i} + 2\vec{j} + 2\vec{k}\right)\left(3\vec{i} + 2\vec{j} + 6\vec{k}\right)}{\sqrt{1^2 + 2^2 + 2^2}\sqrt{3^2 + 2^2 + 6^2}}$$
$$= \frac{3 + 4 + 12}{\sqrt{9} \times \sqrt{49}} = \frac{19}{21}$$
$$\theta = \cos^{-1}\frac{19}{21}$$

28. Consider the two vectors

- $\vec{a} = 3\hat{i} + 2\hat{j} + 4\hat{k}$ and $\hat{b} = \hat{i} 3\hat{j} + \hat{k}$
- (i) The vector perpendicular to both \vec{a} and \vec{b} will be:
- (a) $14\hat{i} + \hat{j} 12\hat{k}$ (b) $14\hat{i} \hat{j} + 11\hat{k}$

- (c) $14\hat{i} + \hat{j} 11\hat{k}$ (d) $14\hat{i} + \hat{j} + 11\hat{k}$
- (ii) The unit vector perpendicular to both \vec{a} and \vec{b} are:

(a)
$$\frac{14\hat{i} + \hat{j} - 12\hat{k}}{\sqrt{308}}$$
 (b) $\frac{14\hat{i} - \hat{j} + 11\hat{k}}{\sqrt{318}}$
(c) $\frac{14\hat{i} + \hat{j} - 11\hat{k}}{\sqrt{318}}$ (d) $\frac{14\hat{i} + \hat{j} + 11\hat{k}}{\sqrt{318}}$

- (iii) The value of $|2\vec{a} + \vec{b}|$ will be:
- (a) $\sqrt{130}$ (b) $\sqrt{131}$ (c) $\sqrt{141}$ (d) $\sqrt{140}$
- (iv)The area of the parallelogram formed by \vec{a} and \vec{b} as its diagonals will be

(a)
$$\frac{1}{2}\sqrt{318}$$
 (b) $2\sqrt{318}$
(c) $\frac{1}{2}\sqrt{308}$ (d) $2\sqrt{308}$

Ans. (i) ²Option (c) is correct.

The vector which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} is $\overrightarrow{a} \times \overrightarrow{b}$. $\begin{vmatrix} \hat{i} & \hat{i} & \hat{k} \end{vmatrix}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ 3 & 2 & 4 \\ 1 & -3 & 1 \end{vmatrix} = \hat{i} (2+12) - \hat{j} (3-4) + \hat{k} (-9-2)$$

$$\vec{a} \times \vec{b} = 14\hat{i} + \hat{i} - 11\hat{k}$$

(ii) Option (c) is correct.

Let unit vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} is \hat{C}

$$\hat{C} = \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|} = \frac{14\hat{i} + \hat{j} - 11\hat{k}}{\sqrt{14^2 + 1^2 + 11^2}} = \frac{14\hat{i} + \hat{j} - 11\hat{k}}{\sqrt{318}}$$

(iii) Option (b) is correct.

$$2\vec{a} + \vec{b} = \left| 2\left(3\hat{i} + 2\hat{j} + 4\hat{k}\right) + \left(\hat{i} - 3\hat{j} + \hat{k}\right) \right|$$
$$= \left|6\hat{i} + 4\hat{j} + 8\hat{k} + \hat{i} - 3\hat{j} + \hat{k}\right|$$
$$= \left|7\hat{i} + \hat{j} + 9\hat{k}\right| = \sqrt{7^2 + 1^2 + 9^2} = \sqrt{49 + 1 + 81} = \sqrt{131}$$

(iv) Option (a) is correct.

Here,

At

Area of parallelogram

$$= \frac{1}{2} \begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix} = \frac{1}{2} \sqrt{318}$$
 sq. units

[Given \overrightarrow{a} and \overrightarrow{b} are diagonals]

SECTION - C

[16 Marks]

(Answer all Questions)

29. The cost function of a firm is given by $C(x)=1500+25x+\frac{x^2}{10}$. Then the marginal cost of the firm MC(x) will be: (a) $1500+\frac{x}{5}$ (b) $\frac{-1500}{x^2}+\frac{1}{10}$

(a)
$$1500 + \frac{1}{5}$$
 (b) $\frac{1}{x^2} + \frac{1}{10}$

(c)
$$25 - \frac{1}{5}$$
 (d) $25 + \frac{1}{5}$
Ans. Option (d) is correct.

Given,
$$C(x) = 1500 + 25x + \frac{x^2}{10}$$

Therefore, $MC(x) = \frac{d}{dx} \left(1500 + 25x + \frac{x^2}{10} \right)$
$$= 25 + \frac{2x}{10} = 25 + \frac{x}{5}$$

30. The revenue of a monopolist is given by $R(x) = 120x^2 + 300 - x$. Then, the average revenue function AR(x) at x = 10 will be: (a) 1229 (b) 1500 (c) 1210 (d) 12210

Given, $R(x) = 120x^2 + 300 - x$ Therefore,

$$AR(x) = \frac{R(x)}{x} = \frac{120x^2 + 300 - x}{x}$$
$$x = 10,$$
$$AR(10) = \frac{120(10)^2 + 300 - 10}{10}$$
$$= \frac{12000 + 300 - 10}{10}$$
$$= \frac{12290}{10} = 1229$$

31. A company sells its product at the rate of ₹10 per unit. The variable costs are estimated to be 25% of the total revenue received. If the fixed costs for the product are ₹4500, then the cost function will be:

(a)
$$\frac{15}{2} - 4500 x$$
 (b) $\frac{15}{x} - 4500$
(c) $\frac{5x}{2} + 4500$ (d) $\frac{25x}{2} - 4500$
Ans. Option (c) is correct.

Let *x* be the number of units sold. Price of 1 unit ₹10. Total revenue = ₹10*x* Cost function, C(x) = 4500 + 25% of ₹10*x* $= 4500 + \frac{25}{100} \times 10x = 4500 + \frac{5}{2}x$

32. Let the total cost function be C(x) = 5x + 350 and the total revenue function be $R(x) = 50x - x^2$ for a company.

Then, the break-even points will be:

(a) -35 and 10 (b) 35 and 10

(c) 35 and -10 (d) -35 and -10

Ans. Option (b) is correct.

For break-even values, C(x) = R(x)Therefore, $5x + 350 = 50x - x^2$ or $x^2 - 45x + 350 = 0$

Which is a quadratic equation in *x*, using quadratic formula

$$D = b^2 - 4ac$$
 and $x = \frac{-b \pm \sqrt{D}}{2a}$

Here, $D = (-45)^2 - 4(1)(350) = 2025 - 1400 = 625$

Therefore,

$$x = \frac{-(-45) \pm \sqrt{625}}{2(1)} = \frac{45 + 25}{2}, \frac{45 - 25}{2}$$
$$x = \frac{70}{2}, \frac{20}{2} = 35, 10$$

or,

- 33. The demand function of a firm producing *x* units is given by p = 200 5x
 - (i) The revenue function at x = 20 will be:

(a) 4000 (b) 2000

(c) 100 (d) -100

(ii) The marginal revenue MR(*x*) will be: (a) $200 - 10x^2$ **(b)** 200 - 5x(d) $-5x^2$ (c) 200 - 10x(iii) The value of x, for which revenue increases, will be: (a) x < 20(b) x > 20(c) x = 20(d) x = 200(iv)The slope of the marginal revenue will be: (a) -45 **(b)** 45 (c) 10 (d) -10 Ans. (i) Option (b) is correct. Demand function p = 200 - 5x $R(x) = px = 200x - 5x^2$ Revenue function, $R(x) = 200(20) - 5(20)^2$ At x = 20, = 4000 - 2000= 2000(ii) Option (c) is correct. $R(x) = 200x - 5x^2$ Here, $MR(x) = \frac{d}{dx} (200x - 5x^2)$ Therefore, = 200 - 10x(iii) Option (a) is correct. MR > 0200 - 10x > 0 \Rightarrow -10x > -200 \Rightarrow $x < \frac{200}{10}$ \Rightarrow \Rightarrow x < 20(iv) Option (d) is correct. Slope of Marginal revenue,

$$\frac{d}{dx}(MR) = \frac{d}{dx}(200 - 10x) = -10$$