NDA/NA

National Defence Academy / Naval Academy

MATHEMATICS

QUESTION PAPER 2025

Time Allowed: 2 hrs 30 min Total Marks: 300

Instructions

- 1. This Test Booklet contains 120 items (questions). Each item is printed in English. Each item comprises four responses (answers). You will select the response which you want to mark on the Answer Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 2. You have to mark all your responses **ONLY** on the separate Answer Sheet provided. See directions in the Answer Sheet.
- 3. *All* items carry equal marks.
- 4. Before you proceed to mark in the Answer Sheet the response to the various items in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per instructions.
- 5. Penalty for wrong answers:

THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY A CANDIDATE IN THE OBJECTIVE TYPE QUESTION PAPERS.

- (i). There are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, **one-third** of the marks assigned to that question will be deducted as penalty.
- (ii). If a candidate gives more than one answer, it will be treated as a **wrong answer** even if one of the given answers happens to be correct and there will be same penalty as above to that question.
- (iii). If a question is left blank, i.e., no answer is given by the candidate, there will be no penalty for that question.
- **1.** If $p^x = q^y = r^z$, where x, y and z are in GP, then consider the following statements:
 - **I.** p, q and r are in AP.
 - **II.** In p, $\ln q$ and $\ln r$ are in GP.

Which of the statements given above is/are correct?

- (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II
- **2.** If A and B are non-empty subsets of a set, and A^{c} and B^{c} represent their complements, then which of the following is/are correct?
 - **I.** $A B = B^c A^c$
 - **II.** $A B^c = A^c B$

Select the answer using the code given below.

- (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II
- 3. Let y = x! and z = (2x)!. If (z/y) = 120, then what is the value of (3x)!?
 - (a) 362880 (b) 181440 (c) 90720 (d) 45360
- **4.** Let n be a natural number. The number of consecutive zeros at the end of the expansion of n! is exactly 2. How many values of n are possible?
 - (a) 3
- (b) 4
- (c) 5
- (d) More than 5

- 5. If $(10 + \log_{10} x)$, $(10 + \log_{10} y)$ and $(10 + \log_{10} z)$ are in AP, then consider the following statements:
 - I. The GM of x and z is y^2 .
 - II. The AM of $\log_{10} x$ and $\log_{10} z$ is $\log_{10} y$. Which of the statements given above is/are correct?
 - (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II
- **6.** How many terms of the series 1 + 3 + 5 + 7 + ...amount to a sum equal to 12345678987654321?
 - (a) 11111111
- **(b)** 110000011
- (c) 111101111
- (d) 111111111
- 7. How many terms are identical in the two APS 19, 21, 23, ... up to 110 terms and 19, 22, 25, 28,... up to 75 terms?
 - (a) 35
- **(b)** 36
- (c) 37
- (d) 38

8. If

$$\alpha = \frac{-1 + \sqrt{-3}}{2}$$

then what is the value of

$$(1 + \alpha^{19} - \alpha^{35})^{100} - (1 - 3\alpha^{25} + \alpha^{38})^{50}$$
?

- (a) -2 (b) -1 (c) 0

- **9.** What is the remainder when 5^{99} is divided by 13?
 - (a) 10
- **(b)** 9
- (c) 8
- (d) 6

10. What is the value of the determinant of the inverse of the matrix

$$\begin{bmatrix} -4 & -5 \\ 2 & 2 \end{bmatrix}$$

- (a) $\frac{1}{2}$
- **(b)** 1
- (c) 2 (d) 4
- 11. In a class of 45 students, 34 like to play cricket and 26 like to play football. Further, each student likes to play at least one of the two games. How many students like to play exactly one game?
 - (a) 45
- **(b)** 30
- (c) 25
- (d) 15

12. The system of equations

$$2x - 3y - 5 = 0$$
, $15y - 10x + 50 = 0$

- (a) has a unique solution
 - (b) has infinitely many solutions
 - (c) is inconsistent
 - (d) is consistent and has exactly two solutions
- **13.** If

$$\left(\frac{1-i}{1+i}\right)^{2m} \left(\frac{1+i}{1-i}\right)^{2n} = 1$$

where $i = \sqrt{-1}$, then what is the smallest positive value of (m-n)?

- (a) 1
- **(b)** 2
- (c) 4
- (d) 8
- 14. In obtaining the solution of the system of equations x + y + z = 7, x + 2y + 3z = 16 and x+ 3y + 4z = 22 by Cramer's rule, the value of y is obtained by dividing D by D_2 , where

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{vmatrix}$$

What is the value of the determinant D_2 ?

- (a) -13
- (b) -3
- (c) 3
- (d) 13
- 15. Consider the following in respect of nonsingular matrices A and B:
 - I. $(AB)^{-1} = A^{-1}B^{-1}$
 - **II.** $(BA)(AB)^{-1} = I$, where I is the identity ma-

$$\mathbf{III.}(AB)^T = A^T B^T$$

How many of the above are correct?

- (a) None
- (b) One
- (c) Two
- (d) All three

16. The value of the determinant

is equal to

(a)
$$\begin{vmatrix} a & b & c \\ p & q & r \\ l & m & n \end{vmatrix}$$
 (b) $\begin{vmatrix} l & m & n \\ a & b & c \\ p & q & r \end{vmatrix}$ (c) $\begin{vmatrix} p & q & r \\ a & b & c \\ l & m & n \end{vmatrix}$ (d) $\begin{vmatrix} a & p & l \\ b & q & m \\ c & r & n \end{vmatrix}$

17. Let 1, ω , ω^2 be three cube roots of unity. If x =a + b, $y = a\omega + b\omega^2$, $z = a\omega^2 + b\omega$, then what is $x^2 + y^2 + z^2$ equal to? (a) 6ab (b) 3ab (c) $a^2 + b^2$ (d) 1

18. How many 4-digit numbers that are divisible by 4 can be formed using the digits 1, 2, 3 and 4 (repetition of digits is not allowed)?

- (a) 3
- (b) 6
- (c) 9
- (d) 12

19. If *a*, *b*, *c* are the sides of a triangle *ABC* and *p* is the perimeter of the triangle, then what is

$$\begin{vmatrix}
p+c & a & b \\
c & p+a & b \\
c & a & p+b
\end{vmatrix}$$

equal to?

- (a) p^3

- (b) $2p^3$ (c) $3p^3$ (d) $4p^3$

20. Which one of the following is the greatest coefficient in the expansion of $(1+x)^{100}$?

- (a) The coefficient of x^{100}
- **(b)** The coefficient of x^{99}
- (c) The coefficient of x^{51}
- (d) The coefficient of x^{50}

For the following two (02) items:

Let α and β be the roots of the quadratic equation

$$x^2 + (\log_{0.5}(a^2))x + (\log_{0.5}(a^2))^4 = 0$$

where $a^2 \neq 1$ and $\log_{0.5}(a^2) > 0$. Further, $\beta^2 = \alpha(\log_{2}2(0.5))$.

21. What is β equal to?

- (a) $\log_{a}2(0.5)$ (b) $\log_{0.5}(a^2)$ (c) $2(\log_{a}2(0.5))$ (d) $2\log_{0.5}(a^2)$

22. What is the relation between α and β ?

- (a) $\alpha = 2\beta$
- (b) $2\alpha = \beta$
- (c) $\alpha = -2\beta$
- (d) $2\alpha = -\beta$

Let
$$p = \sum_{i=1}^{n} \log_{10} 2^{j}$$
 and $q = \sum_{i=1}^{n} \log_{10} 5^{j}$.

- **23.** If p + q = 66, then which one following is correct?
 - (a) n < 7
- **(b)** 7 < n < 9
- (a) n < 7(c) 9 < n < 12
 - (d) n > 12
- **24.** If p + q = 15, then what is q p equal to?
 - (a) $\log_{10} 2.5$
- **(b)** 5log₁₀ 2.5
- (c) $10\log_{10} 2.5$ (d) $15\log_{10} 2.5$

For the following two (02) items:

Let $\sin A + \sin B = p$ and $\cos A + \cos B = q$.

- **25.** What is $\frac{p}{a}$ equal to?

 - (a) $\tan\left(\frac{A-B}{2}\right)$ (b) $\cot\left(\frac{A-B}{2}\right)$
 - (c) $\tan\left(\frac{A+B}{2}\right)$ (d) $\cot\left(\frac{A+B}{2}\right)$
- **26.** What is $\frac{p^2 q^2}{p^2 + q^2}$ equal to?
 - (a) cos(A + B)
- **(b)** $\cos(A B)$
- (c) $\cos\left(\frac{\pi}{2} A B\right)$ (d) $\cos(\pi A B)$

For the following two (02) items:

Let $p = \csc 20^{\circ}$ and $q = \csc 70^{\circ}$.

- **27.** What is $\left(\frac{\sqrt{3}p}{4} \frac{q}{4}\right)$ equal to?
 - (a) -1 (b) 0
- (c) 1
- (d) 2
- **28.** What is $\frac{p^2+q^2}{p^2q^2}$ equal to?
- (a) $\frac{1}{2}$ (b) 1 (c) $\frac{3}{2}$
- (d) 2

For the following two (02) items:

Let $\cos(2x + 3y) = \frac{1}{2}$ and $\cos(3x + 2y) = \frac{\sqrt{3}}{2}$

where $-\pi < (2x + 3y) < \pi$ and $-\pi < (3x + 2y) < \pi$.

- **29.** How many values does (x + y) have?
 - (a) Two
- (b) Three
- (c) Four
- (d) More than four
- **30.** How many values does (y x) have?
 - (a) Two
- **(b)** Three
- (c) Four
- (d) More than four

For the following two (02) items:

Consider the equation

$$abx^2 + bcx + ca = cax^2 + abx + bc$$

- 31. If the roots of the equation are equal, then which one of the following is correct?
 - (a) $ac = b^2$
- **(b)** a + c = 2b
- (c) $\frac{1}{a} + \frac{1}{c} = \frac{1}{2h}$ (d) $\frac{1}{a} + \frac{1}{c} = \frac{2}{h}$
- **32.** If the roots of the equation are equal, then *a*, *b*, c are in
 - (a) AP
- (b) GP
- (c) HP
- (d) None of the above

For the following two (02) items:

Let (6 + 10 + 14 + ... up to m terms)

$$= (1 + 3 + 5 + 7 + \dots \text{ up to } n \text{ terms})$$

where m < 25 and n < 25.

- 33. What is the relation between m and n?
 - (a) $n^2 = m (m + 1)$ (b) $n^2 = m (m + 2)$
 - (c) $n^2 = 2m(m+1)$ (d) $n^2 = 2m(m+2)$
- **34.** How many values of m are possible?
 - (a) None
- (b) One
- (c) Two
- (d) More than two

For the following two (02) items:

There are 8 points on a plane out of which 4 points are collinear.

- 35. How many triangles can be formed by joining these points?
 - (a) 56
- **(b)** 54
- (c) 53
- (d) 52
- 36. How many quadrilaterals can be formed by joining these points?
 - (a) 70
- **(b)** 69
- (c) 53
- (d) None of the above

For the following two (02) items:

Let $f(x) = ax^2 + bx + c$ be a quadratic polynomial such that f(1) = f(4) = 2. Further, 2 is a root of f(x)

- **37.** What is the other root of f(x) = 0?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) Cannot be determined
- **38.** What is (a + b + c) equal to?
 - (a) 0
 - **(b)** 1

- (c) 2
- (d) Cannot be determined

Let

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

- 39. What is the value of the determinant of the matrix A^4 ?
 - (a) 0
- (c) $\cos 4\theta \sin 4\theta$
- (d $\cos^2 4\theta \sin^2 4\theta$
- **40.** What is $[adj A]^{-1}$ equal to?
- (b) $-A^T$
- 41. What is the sum of the binary numbers (101101101)₂ and (100011)₂?
 - (a) (110010000)₂
- **(b)** (110001000)₂
- (c) (110000100)₂
- (d) (100100000)₂
- **42.** Set X contains 3n elements and set Y contains 2n elements, and they have n elements in common elements does $(X - Y) \times (Y - X)$ have? (a) $5n^2$ (b) $4n^2$ (c) $3n^2$ (d) $2n^2$

- **43.** Let A = (-3, -2, -1, 0, 1, 2, 3) and $B = \{0, 1, 4, 9\}$. How many elements does the subset of $A \times B$ corresponding to the relation $R = \{(x, y) : |x| < a$ y} have, where $x \in A$ and $y \in B$?
- **(b)** 12
- (c) 15
- (d) 16
- **44.** Consider the following statements:

Statement-I: If *X* is an $n \times n$ matrix, then det $(mX) = m^n \det(X)$, where m is a scalar.

Statement-II: If Y is a matrix obtained from X by multiplying any row or column by a scalar m, then det(Y) = mdet(X).

Which one of the following is correct in respect of the above statements?

- (a) Both Statement-I and Statement-II are correct and Statement-II explains Statement-I
- (b) Both Statement-I and Statement-II are correct but Statement-II does not explain Statement-I
- (c) Statement-I is correct but Statement-II is not correct
- (d) Statement-I is not correct but Statement-II is correct
- 45. Consider the following statements about the

$$\text{matrix } M = \begin{bmatrix} 71 & 23 & 48 \\ 57 & 28 & 29 \\ 65 & 17 & 48 \end{bmatrix} :$$

Statement I: The inverse of *M* does not exist.

Statement II: *M* is non-singular.

Which one of the following is correct in respect of the above statements?

- (a) Both Statement-I and Statement-II are correct and explains Statement-I Statement-II
- (b) Both Statement-I and Statement-II are correct but Statement-II does not explain
- (c) Statement-I is correct but Statement-II is not correct
- (d) Statement-I is not correct Statement-II is correct
- 46. What is

$$\cot^{-1} 9 + \csc^{-1} \left(\frac{\sqrt{41}}{4} \right)$$

equal to?

- (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$
- (d) π
- **47.** How many values of θ , where $-\pi < \theta < \pi$, satisfy both the equations $\cot \theta = -\sqrt{3}$ and $cosec\theta = -2 simultaneously?$

 - (a) 4 (b) 2
- (c) 1
- (d) None
- 48. If $x + \frac{1}{x} = 2\cos\theta$, then what is $x^3 + \frac{1}{x^3}$ equal
 - (a) $\cos^3 \theta$
- (b) $\cos 3\theta$
- (c) $2\cos 3\theta$
- (d) $3\cos 3\theta$
- **49.** If $0 \le x \le \frac{\pi}{2}$, then what is the number of values of *x* satisfying the equation

$$\tan x + \sec x = 2\cos x$$
?

- (a) 0
- **(b)** 1
- (c) 2
- (d) 3
- 50. What is the value of

$$tan \left[\frac{1}{2} sec^{-1} \left(\frac{2}{\sqrt{3}} \right) \right] ?$$

(a)
$$2-\sqrt{3}$$
 (b) $2+\sqrt{3}$ (c) $\sqrt{3}-1$ (d) $\sqrt{3}+1$

(c)
$$\sqrt{3}$$
 –

(d)
$$\sqrt{3} + 1$$

For the following two (02) items:

A plane P is parallel to the line having direction ratios $\langle 1, 3, 2 \rangle$ and contains the line of intersection of the planes 6x + 4y - 5z = 2 and x - 2y + 3z = 0.

- **51.** Which of the following are the direction ratios of the line of intersection of the given planes?
 - (a) $\langle 2, 23, 16 \rangle$
- **(b)** $\langle 2, -23, -16 \rangle$
- (c) (2, 3, 2)
- (d) $\langle -1, 3, -2 \rangle$

- **52.** What is the equation of the plane *P*?
 - (a) 2x 20y + 29z + 2 = 0
 - **(b)** 2x 20y + 29z 2 = 0
 - (c) 2x + 3y + 2z 4 = 0
 - (d x 3y + 2z + 5 = 0

Suppose S is the sphere with the smallest radius that passes through the points A(1, 0, 0), B(0, 1, 0)and C(0, 0, 1).

- **53.** What is the radius of *S*?

 - (a) $\sqrt{\frac{1}{3}}$ (b) $\sqrt{\frac{2}{3}}$ (c) $\frac{1}{3}$
- (d) 1
- 54. On which one of the following planes does the centre of S lie?
 - (a) x + y + z 1 = 0
 - **(b)** x + y + z + 1 = 0
 - (c) 3x + 3y + 3z 1 = 0
 - (d) 3x + 3y + 3x + 1 = 0

For the following two (02) items:

Let A(1, -1, 0), B(-2, 1, 8) and C(-1, 2, 7) are three consecutive vertices of a parallelogram *ABCD*.

- **55.** What is the fourth vertex *D*?
 - (a) (0, -2, 1)
- **(b)** (2, 0, -1)
- (c) (1, 0, 1)
- (d) (1, 2, 0)
- **56.** If angle *BCD* is θ , then what is $\cos^2 \theta$ equal to?
- (a) $\frac{26}{77}$ (b) $\frac{27}{77}$ (c) $\frac{82}{237}$ (d) $\frac{83}{237}$
- 57. For different values of m, the equation 4y = mx-m + 2 represents
 - (a) parallel lines
 - (b) concurrent lines
 - (c) lines at a fixed distance from the origin of coordinates
 - (d) the same line
- 58. The equation of the locus of a point equidistant from the points (a, b) and (c, d) is (a - c)x + (b - c)x + (d)y + k = 0. What is the value of k?
 - (a) $a^2 c^2 + b^2 d^2$
 - **(b)** $c^2 + d^2 a^2 b^2$
 - (c) $(a^2 c^2 + b^2 d^2)/2$
 - (d $(c^2 + d^2 a^2 b^2)/2$
- 59. Consider the following statements in respect of the equation $x^2 + 3y = 0$:
 - I. The equation represents equation to parabola that opens upwards.

- **II.** The axis of the parabola is x = 0.
- **III.** The equation of the latus rectum is 4y 3 =

How many of the statements given above are correct?

- (a) None
- (b) One
- (c) Two
- (d) All three
- **60.** What is the sum of the intercepts of the line

$$\frac{x}{a^2} + \frac{y}{b^2} = \frac{2}{a^2 + b^2}$$

on the coordinate axes?

- (a) 2

- (b) 1 (c) $\frac{1}{2}$ (d) $a^2 + b^2$
- 61. Which one of the following is perpendicular form of the straight line $\sqrt{3}x + 2y = 7$?

 - (a) $y = -\frac{\sqrt{3}}{2}x + \frac{7}{2}$ (b) $\frac{x}{\left(\frac{7}{\sqrt{3}}\right)} + \frac{y}{\left(\frac{7}{2}\right)} = 1$
 - (c) $\frac{\sqrt{3}}{\sqrt{7}}x + \frac{2}{\sqrt{7}}y = \sqrt{7}$ (d) $\frac{\sqrt{3}}{\sqrt{7}}x + \frac{2}{\sqrt{7}}y = 7$
- **62.** If the vertices B and D of a square ABCD are (2, 3) and (4, 1) respectively, then what is the area of the square?
 - (a) 2 square units
- (b) 3 square units
- (c) 4 square units
- (d) 8 square units
- **63.** What is the value of $\sin\theta$ if θ is the acute angle between the lines whose equations are px + qy= p + q and p(x - y) + q(x + y) = 2q?

- (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{\sqrt{2}}$
- **64.** The circle $x^2 + y^2 2kx 2ky + k^2 = 0$ touches the x-axis at P and y-axis at Q.

What is *PQ* equal to?

- (a) $\sqrt{2}k$
- **(b)** 2k
- (c) $2\sqrt{2}k$ (d) 4k
- 65. What is the distance between the foci of the hyperbola $x^2 - 4y^2 = 1$?

- (a) $\sqrt{3}$ (b) $\sqrt{5}$ (c) $2\sqrt{3}$ (d) $2\sqrt{5}$
- **66.** Let $\vec{p} = \vec{a} \vec{b}$, $\vec{q} = \vec{a} + \vec{b}$. If $|\vec{a}| = |\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 2$, then what is the value of $|\vec{p} \times \vec{q}|$?
- (a) $\sqrt{3}$ (b) $\sqrt{6}$ (c) $2\sqrt{3}$ (d) $4\sqrt{3}$

- 67. How many of the following can be a vector perpendicular to both the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + 3\hat{k}$?
 - I. $4\hat{i} + 5\hat{j} 3\hat{k}$
 - II. $-8\hat{i} 10\hat{i} + 6\hat{k}$
 - III. $\frac{1}{50}(-4\hat{i}-5\hat{j}+3\hat{k})$

Select the correct answer.

- (a) None
- (b) One
- (c) Two
- (d) All three
- 68. What is the area of the parallelogram whose sides are represented by the vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $2\hat{i} + \hat{j} + 2\hat{k}$?
 - (a) $\frac{1}{2}\sqrt{26}$ square unit (b) $\frac{1}{2}\sqrt{27}$ square unit

 - (c) $\sqrt{26}$ square unit (d) $\sqrt{27}$ square unit
- **69.** The position vectors of the vertices A, B, C and D of a quadrilateral ABCD are given by $3\hat{i} + 4\hat{j} - 2\hat{k}$, $4\hat{i} - 4\hat{j} - 3\hat{k}$, $2\hat{i} - 3\hat{j} + 2\hat{k}$ $6\hat{i} - 2\hat{j} + \hat{k}$ respectively. What is the angle between the diagonals AC and BD of the quadrilateral?
 - (a) 90°
- **(b)** 75°
- (c) 60°

(c) 1

- (d) 45°
- **70.** A force $\vec{F} = 2\hat{i} \lambda \hat{j} + 5\hat{k}$ is applied at the point A(1, 2, 5). If its moment about the point B(-1, -1)-2, 3) is $16\hat{i} - 6\hat{j} + 2\lambda\hat{k}$, then what is the value of λ ?
 - (a) -2
- **(b)** 0

For the following two (02) items:

Let

$$f(x) \begin{cases} \frac{1 - \cos 2x}{x^2} &, & x < 0 \\ 9 &, & x = 0 \\ \frac{\sqrt{x}}{\sqrt{(16) + \sqrt{x} - 4}} &, & x > 0 \end{cases}$$

- **71.** What is $\lim_{x \to a} f(x)$ equal to?
 - (a) 2
- (b) 4
- (c) 6
- (d) 8
- **72.** What is $\lim_{x \to a} f(x)$ equal to?
 - (a) 6
- **(b)** 7
- (c) 8
- (d) 9

For the following three (03) items:

Consider the function f(x) = x|x|.

- **73.** What is $\lim_{x \to -1} f(x)$ equal to?
 - (a) -1
- **(b)** 0
- (c) 1
- (d) Limit does not exist
- **74.** What is the area bounded by the curve f(x), the x-axis and the lines x = -2 and x = 1?
 - (a) $\frac{1}{3}$ (b) $\frac{2}{3}$ (c) $\frac{5}{2}$
- (d) 3
- **75.** Consider the following statements:
 - I. The function is increasing in the interval $(-\infty, \infty)$.
 - **II.** The function is differentiable at x = 0. Which of the statements given above is/are
 - correct? (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II

For the following two (02) items:

Consider the function

$$f(x) = \frac{x}{1-x}(x > 0, x \neq 1)$$

76. What is $\frac{f(x)}{f(x+1)}$ equal to?

(a)
$$-f(x^2)$$
 (b) $-f(\sqrt{x})$ (c) $f(x^2)$ (d) $f(x-1)$

- 77. What is $(1-x)f(\sqrt{x}) + xf(\sqrt{x} + 1)$ equal to?
 - (a) -f(x) (b) f(x)
- (d) 0

For the following three (03) items:

Let
$$y = f(x) = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} + \ln \sqrt{1 - x^2}$$
.

- **78.** What is the slope of the tangent to the curve *y* = f(x) at x = 0.5?
 - (a) $\frac{4\pi\sqrt{3}}{27}$ (b) $\frac{8\pi\sqrt{3}}{27}$ (c) 4π
- (d) 8π
- **79.** What is $\frac{d^2y}{dx^2}$ at x = 0 equal to?
 - **(a)** 0
- **(b)** 0.5
- (c) 1
- (d) 1.5
- **80.** If $x = \sin\theta$, then what is $\frac{dy}{dx}$ equal to?
 - (a) $\theta \sec \theta$
- (b) $\theta \sec^2 \theta$
- (c) $\theta \sec^3 \theta$
- (d) $2\tan\theta + \theta \sec^2\theta$

Consider the function $f(x) = 1 - \sqrt[3]{(x-1)^2}$.

- **81.** What is the domain of the function?
 - (a) $(1, \infty)$
- (b) $(-\infty, \infty)$
- (c) $(0, \infty)$
- (d) $(-\infty, \infty \setminus \{1\}$
- **82.** The function has
 - (a) a minimum at x = 1
 - **(b)** a maximum at x = 1
 - (c) neither maximum nor minimum at x = 1
 - (d) no extremum

For the following two (02) items:

Consider the function

$$f(x) = \begin{cases} 4(5^x), & x < 0 \\ 8k + x, & x \ge 0 \end{cases}$$

- 83. If the function is continuous, then what is the value of k?
 - (a) 0.5 **(b)** 1
- (c) 1.5
- (d) 2
- **84.** What is f'(-1) equal to?
 - (a) $\frac{2}{5} \ln 5$ (b) $\frac{3}{5} \ln 5$ (c) $\frac{4}{5} \ln 5$ (d) $20 \ln 5$

For the following two (02) items:

Let $u = \int e^x \cos x \, dx$ and $v = \int e^x \sin x \, dx$.

- 85. What is u + v equal to?
 - (a) $-\frac{du}{dx}$ (b) $-\frac{dv}{dx}$ (c) $\frac{du}{dx}$

- **86.** Consider the following:
 - I. $\frac{du}{dx} = -v$
 - II. $\frac{dv}{dx} = -u$

Which of the above is/are correct?

- (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II

For the following two (02) items:

Let the function f(x) = |x-3| + |x-4| be defined on the interval [0, 5].

- 87. What is $\frac{dy}{dx}$ at x = 3.5 equal to?
- **(b)** 1
- (d) 3.5
- **88.** Consider the following statements:
 - **I.** The function is differentiable at x = 3.
 - **II.** The function is differentiable at x = 4.

Which of the statements given above is/are correct?

- (a) I only
- **(b)** II only
- (c) Both I and II
- (d) Neither I nor II

For the following two (02) items:

Consider the function $f(x) = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$.

- **89.** What is $f \circ f \circ f \circ f \circ f(0)$ equal to?
 - (a) 0
- **(b)** 1 **(c)** 5
- (d) 10
- **90.** What is the inverse of the function?

 - (a) $\log_{10}(2x-1)$ (b) $\frac{1}{2}\log_{10}(2x-1)$
 - (c) $\frac{1}{4}\log_{10}\left(\frac{2x}{2-x}\right)$ (d) $\frac{1}{2}\log_{10}\left(\frac{1+x}{1-x}\right)$
- 91. What is the degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} = \left(\frac{dy}{dx}\right)^{\frac{5}{2}}?$$

- (a) 3

- (b) 2 (c) $\frac{5}{2}$ (d) $\frac{3}{2}$
- **92.** What is $\int_{0}^{n+1} (x [x]) dx$, where [.] is the greatest integer function and *n* is natural number?
 - (a) $\frac{4n+1}{2}$ (b) $\frac{2n+1}{2}$ (c) $\frac{1}{2}$
- 93. Consider the following statements:
 - I. $y = xe^{2x}$ is the solution of $\frac{dy}{dx} = y\left(2 + \frac{1}{x}\right)$.
 - II. $y = x \ln |x| + cx$ is the solution of $\frac{dy}{dx} = \frac{x+y}{x}$.

Which of the statements given above. is/are correct?

- (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II
- 94. If k is an arbitrary constant, then what is the general solution of the equation $(x + y)^2$ $\frac{dy}{dx} = k^2?$
 - (a) $y + x = \tan(x + c) + k$ (b) $x + y = k \tan\left(\frac{y c}{k}\right)$
 - (c) $x-y=k\tan\left(\frac{y-c}{k}\right)$ (d) $y-x=\tan(x+c)+k$

95. What is $\int \frac{dx}{10^x + 10^{-x}}$ equal to?

- (a) $tan^{-1}(10^x) + c$
- **(b)** (ln 10) $\tan^{-1}(10^x) + c$
- (c) $\frac{1}{\ln 10} \tan^{-1}(10^x) + c$ (d) $\ln(10^x + 10^{-x}) + c$
- **96.** A wire of length 20 cm is to be bent into a rectangle. Which of the following statements is/are correct?
 - I. The rectangle of the largest area is the square.
 - II. It is possible to form a rectangle of an area of 27 cm^2 .

Select the answer using the code given below.

- (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II
- **97.** If $I_1 = \int_e^{e^2} \frac{dx}{\ln x}$ and $I_2 = \int_1^2 \frac{e^x}{x} dx$, then which one of the following is correct?

- (a) $I_1 I_2 = 0$ (b) $I_1 + I_2 = 0$ (c) $I_1 2I_2 = 0$ (d) $2I_1 I_2 = 0$
- 98. What is the area of the region bounded by $|x| \le 2k$ and $|y| \le k$, where k is a positive real
- (a) $2k^2$ (b) $4k^2$ (c) $5k^2$ (d) $8k^2$
- 99. Consider the following regarding the function $f(x) = \frac{1}{x-5}$:

Statement I: f(x) is decreasing on the intervals x < 5 and x > 5.

Statement II: f'(x) > 0 for all $x \neq 5$.

Which one of the following is correct in 6 respect of the above statements?

- (a) Both Statement-I and Statement-II are correct and Statement-II explains Statement-I
- (b) Both Statement-I and Statement-II are correct but Statement-II does not explain Statement-I
- (c) Statement-I is correct but Statement-II is not correct
- (d) Statement-I is not correct but Statement-II is correct
- **100.** Consider the following statements:

Statement I: The function $f(x) = \frac{x^3 + 128}{x}$ has a minimum value 48 at x = 4.

Statement II: As x increases through 4, f'(x)changes sign from positive negative.

Which one of the following is correct in respect of the above statements?

- (a) Both Statement-I and Statement-II are correct and Statement-II explains Statement-I
- (b) Both Statement-I and Statement-II are correct but Statement-II does not explain Statement-I
- (c) Statement-I is correct but Statement-II is not correct
- (d) Statement-I is not correct but Statement-II is correct
- **101.** What is the harmonic mean of the numbers *C*(10, 3), *C*(10, 4), *C*(10, 5), *C*(10, 6) and *C*(10, 7)?
 - (a) $\frac{3150}{19}$ (b) $\frac{4000}{19}$ (c) 252
- (d) 225
- 102. In a sample survey of a village, the probability that a farmer is in debt is 0.60. What is the probability that three randomly selected farmers are all in debt (assume independence of events)?
 - (a) 0.000216
- **(b)** 0.064
- (c) 0.216
- (d) 0.512
- 103. The probability that a family owns a laptop is 0.68; that it also owns a desktop is 0.56. If the probability that it owns both is 0.48, then what is the probability that a randomly selected family owns a laptop or a desktop?
 - (a) 0.80
- **(b)** 0.76
- (c) 0.36
- (d) 0-28
- 104. An urn contains 10 white and 5 red balls. If two balls are drawn at random, then what is the probability that both the balls are red?
 - (a) $\frac{2}{21}$ (b) $\frac{1}{7}$ (c) $\frac{4}{21}$ (d) $\frac{3}{7}$

- **105.** An urn contains 5 white, 6 red and 4 blue balls. Three balls are drawn at random. What is the probability that a white ball, a red ball and a blue ball are drawn?

- (a) $\frac{28}{91}$ (b) $\frac{2}{7}$ (c) $\frac{24}{91}$ (d) $\frac{23}{91}$
- 106. Under which of the following conditions may binomial distribution be used?
 - I. The number of trials is infinite and not fixed.
 - **II.** The trials are independent.
 - III. Each trial has two possible outcomes.

Select the correct answer using the code given below.

- (a) II only
- (b) III only
- (c) I and II
- (d) II and III

- 107. A person X speaks the truth 4 out of THE 5 times and person Y speaks the truth 5 out of 6 times. What is the probability asping that they will contradict each other in stating the fact?

- (a) $\frac{3}{10}$ (b) $\frac{1}{15}$ (c) $\frac{1}{6}$ (d) $\frac{7}{10}$
- **108.** The probability that a student passes Physics test is 2/3 and the probability that he passes both Physics test and English test is 11/15. The probability that he passes at least one test is 4/5. What is the probability that he passes English test?

 - (a) $\frac{11}{15}$ (b) $\frac{13}{15}$ (c) $\frac{14}{15}$ (d) 1
- **109.** An event X can happen with probability p and event Y can happen with probability q. Further, X and Y are independent events. Which of the following statements is/are correct?
 - **I.** The probability that exactly one of the events happens is p + q - pq.
 - II. The probability that at least one of the events happens is p + q - 2pq.

Select the answer using the code given below.

- (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II
- 110. Three faces of a die are black, two faces are white and one face is red. The die is tossed three times. What is the probability that the colours black, white and red appear in the first, second and third tosses respectively?
- (a) $\frac{1}{36}$ (b) $\frac{1}{6}$ (c) $\frac{7}{36}$ (d) $\frac{5}{36}$
- 111. A fair coin is tossed 4 times. What is the probability that two heads do not occur consecutively?
- (a) $\frac{1}{8}$ (b) $\frac{3}{8}$ (c) $\frac{7}{16}$ (d) $\frac{1}{2}$
- 112. In a throw of three dice, what is the probability of getting one prime number, one composite number and one number which is neither prime nor composite?

- (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{1}{6}$

- 113. An integer is chosen at random from the first 50 integers. What is the probability that the integer is neither divisible by 5 nor 9?

- (a) $\frac{7}{10}$ (b) $\frac{18}{25}$ (c) $\frac{37}{50}$ (d) $\frac{19}{25}$
- 114. Out of 50 consecutive natural numbers, two integers are chosen at random. What is the probability that their sum is odd?

- (a) $\frac{1}{2}$ (b) $\frac{24}{49}$ (c) $\frac{1}{4}$ (d) $\frac{25}{49}$
- 115. The standard deviation of 100 observations is 10. If 20 is added to each observation, then what will be the new standard deviation?
 - (a) 10
- (b) 15
- (c) 20
- (d) 25
- 116. Let X be a random variable following binomial distribution with parameters n = 5 and p =k. Further, P(X = 1) = 0.4096 and P(X = 2) = 0.40960.2048. What is the value of *k*?
 - (a) 0.2
- (b) 0.25 (c) 0.3
- (d) 0.35
- 117. The frequency distribution of the marks obtained by students in a Science examination is given below:

Marks	5–15	15–25	25–35	35–45
Number of	20	30	30	20
students	and the same	1000		

What is the arithmetic mean?

- (a) 20
- **(b)** 25
- (c) 30
- (d) 35
- **118.** If P(A) = 0.3, P(B) = 0.4 and P(A|B) 0.5, then what is the value of P(B|A)?
 - (a) 0:325 (b) 0.333 (c) 0.375 (d) 0-667
- **119.** If P(A) = 1/3, P(B) = 1/2 and $P(A \cap B) = 1/4$ then, what is the value of $P(\overline{A} \cup B)$?
 - (a) $\frac{7}{12}$ (b) $\frac{2}{3}$ (c) $\frac{3}{4}$ (d) $\frac{11}{12}$

- **120.** Consider the following statements :
 - I. Mean and variance have the same unit of measurement.
 - II. Mean deviation and standard deviation have the same unit of measurement.

Which of the statements given above is/are correct?

- (a) I only
- (b) II only
- (c) Both I and II
- (d) Neither I nor II

Answer Key

O No	Q. No Answer Key Topic's Name		Chantan's Name	
		•	Chapter's Name	
1	(b)	Geometric Progressions (G.P.)	Sequence and Series Set Theory and Relation	
2	(a)	Relation and Types of Relation	Set Theory and Relation	
3	(a)	Factorial	Permutation and Combination	
4	(c)	Factorial Paris (A. P. 11)	Permutation and Combination	
5	(b)	Basics of Logarithm & Properties of Logarithms	Logarithms and their Applications	
6	(d)	Series of Natural Numbers and other Miscellaneous Series	Sequences and Series	
7	(c)	Arithmetic Progressions (A.P.)	Sequences and Series	
8	(c)	De Moivre's Theorem, Roots of Unity, Geometry of Complex Numbers	Complex Numbers	
9	(c)	Operations on Binary Numbers	Number System	
10	(a)	Inverse of a Matrix	Matrices and Determinants	
11	(b)	Basics of Sets & Algebra of Sets	Set Theory and Relation	
12	(c)	Systems of Linear Equations	Matrices and Determinants	
13	(b)	Basics of Complex Numbers & Algebra of Complex Numbers	Complex Numbers	
14	(b)	Systems of Linear Equations	Matrices and Determinants	
15	(a)	Algebra of Matrices	Matrices and Determinants	
16	(c)	Properties of Determinants	Matrices and Determinants	
17	(a)	De Moivre's Theorem, Roots of Unity, Geometry of Complex Numbers	Complex Numbers	
18	(b)	Combinations	Permutation and Combination	
19	(b)	Relations Between Sides and Angles of a Triangle	Properties of Triangle	
20	(d)	Middle Term and Greatest Term in Binomial Expansion	Binomial Theorem and its Applications	
21	(b)	Relation between Roots and Coefficients	Quadratic Equations	
22	(c)	Relation between Roots and Coefficients	Quadratic Equations	
23	(c)	Basics of Logarithm & Properties of Logarithms	Logarithms and their Applications	
24	(d)	Basics of Logarithm & Properties of Logarithms	Logarithms and their Applications	
25	(c)	Trigonometric Functions, properties and basic trigonometric Identities	Trigonometric Ratios, Functions and Identities	
26	(d)	Trigonometric Functions, properties and basic trigonometric Identities	Trigonometric Ratios, Functions and Identities	
27	(c)	Trigonometric Functions, properties and basic trigonometric Identities	Trigonometric Ratios, Functions and Identities	
28	(b)	Trigonometric Functions, properties and basic trigonometric Identities	Trigonometric Ratios, Functions and Identities	
29	(c)	General Solution of Standard Trigonometric Equations	Trigonometric Equations	
30	(c)	General Solution of Standard Trigonometric Equations	Trigonometric Equations	
31	(d)	Nature of Roots	Quadratic Equations	
32	(c)	Arithmetic Progressions (A.P.)	Sequences and Series	

Q. No	Answer Key	Topic's Name	Chapter's Name	
33	(d)	Series of Natural Numbers and other Miscellaneous Series	Sequences and Series	
34	(c)	Arithmetic Progressions (A.P.) Sequences and Series		
()		Combinations	Permutation and Combination	
36	(c)	Combinations	Permutation and Combination	
37	(c)	Polynomial, Quadratic Equation and its Solution	Quadratic Equations	
38	(c)	Polynomial, Quadratic Equation and its Solution	Quadratic Equations	
39	(b)	Determinant of a Square Matrix	Matrices and Determinants	
40	(c)	Adjoint of a Matrix	Matrices and Determinants	
41	(a)	Operations on Binary Numbers	Number System	
42	(d)	Basics of Sets & Algebra of Sets	Set Theory and Relation	
43	(c)	Relation & Types of Relation	Set Theory and Relation	
44	(a)	Properties of Determinants	Matrices and Determinants	
45	(c)	Inverse of a Matrix	Matrices and Determinants	
46	(a)	Trigonometric Functions, properties and basic trigonometric Identities	Trigonometric Ratios, Functions and Identities	
47	(c)	General Solution of Standard Trigonometric Equations	Trigonometric Equations	
48	(c)	Trigonometric Identities for Multiple and Sub-multiple angles	Trigonometric Ratios, Functions and Identities	
49	(b)	Trigonometric Inequalities	Trigonometric Equations	
50	(a)	Trigonometric Identities for Compound Angles	Trigonometric Ratios, Functions and Identities	
51	(b)	Interaction between a Line and a Plane	Three-Dimensional Geometry	
52	(a)	Plane and a Point	Three-Dimensional Geometry	
53	(b)	Sphere	Three-Dimensional Geometry	
54	(a)	Sphere	Three-Dimensional Geometry	
55	(b)	Basics of 3D Geometry	Three-Dimensional Geometry	
56	(b)	Lines in 3D	Three-Dimensional Geometry	
57	(b)	Straight Line and its Equations	Point and Straight Line	
58	(d)	Straight Line and a Point	Point and Straight Line	
59	(b)	Basics of Parabola	Parabola	
60	(a)	Straight Line and its Equations	Point and Straight Line	
61	(c)	Straight Line and its Equations	Point and Straight Line	
62	(c)	Special Points in Triangles	Point and Straight Line	
63	(d)	Interaction between Two Lines	Point and Straight Line	
64	(a)	Interaction between Circle and a Line	Circle	
65	(b)	Basics of Hyperbola	Hyperbola	
66	(d)	Scalar and Vector Products	Vector Algebra	
67	(d)	Scalar and Vector Products	Vector Algebra	
68	(c)	Scalar and Vector Products	Vector Algebra	
69	(a)	Addition of Vectors	Vector Algebra	
70	(a)	Triple Products	Vector Algebra	
71	(a)	Methods of Evaluation of Limits	Limits	
	ıu,	incarous of Evaluation of Ellitto	LIIII	

Q. No	Answer Key	Topic's Name	Chapter's Name	
73	(a)	Standard Limits in Calculus	Limits	
74	74 (d) Area Bounded by Curves		Area under Curves	
75 (c)		Differentiability of a Function	Continuity and Differentiability	
76	(a)	Composite Functions	Functions	
77	(d)	Composite Functions	Functions	
78 (a) Rules of Differentia		Rules of Differentiation	Differential Coefficient	
79 (c)		Higher Order Derivatives	Differential Coefficient	
80	(c)	Rules of Differentiation	Differential Coefficient	
81	(b)	Domain & Types of Functions	Functions	
82	(d)	Maxima and Minima	Application of Derivatives	
83	(a)	Continuity of a Function	Continuity and Differentiability	
84	(c)	Rules of Differentiation	Differential Coefficient	
85	(d)	Methods of Integration	Indefinite Integration	
86	(d)	Methods of Integration	Indefinite Integration	
87	(a)	Rules of Differentiation	Differential Coefficient	
88	(d)	Differentiability of a Function	Continuity and Differentiability	
89	(a)	Composite Functions	Functions	
90	(d)	Inverse Functions	Functions	
91	(a)	Formation of Differential Equations	Differential Equations	
92	(c)	Properties of Definite Integrals	Definite Integration	
93	(c)	Solution of Differential Equation using	Differential Equations	
		inspection		
94	(b)	Solution of Linear Differential Equations	Differential Equations	
95	(c)	Integration Using Trigonometric Identities	Indefinite Integration	
96	(a)	Maxima and Minima	Application of Derivatives	
97	(a)	Properties of Definite Integrals	Definite Integration	
98	(d)	Area Bounded by Curves	Area under Curves	
99	(c)	Monotonicity	Application of Derivatives	
100	(c)	Maxima and Minima	Application of Derivatives	
101	(a)	Combinations	Permutation and Combination	
102	(c)	Multiplication Theorems of Probability	Probability	
		Addition Theorems of Probability	Probability	
104	(a)	Probability Distribution of a Random	Probability	
	<i></i>	Variate, Bernoulli Trials and Binomial		
		Distribution		
105	(c)	Probability Distribution of a Random	Probability	
		Variate, Bernoulli Trials and Binomial Distribution		
106	(4)	Probability Distribution of a Random	Probability	
100	(d)	Variate, Bernoulli Trials and Binomial	1 1 Tobability	
		Distribution		
107	(a)	Conditional Probability, Bayes' Theorem &	Probability	
	` '	Total Probability Theorem		
108	(b)	Addition Theorems of Probability	Probability	
109	(d)	Conditional Probability, Bayes' Theorem & Total Probability Theorem	Probability	
110	(a)	Multiplication Theorems of Probability	Probability	
	` ′		1	

Q. No	Answer Key	Topic's Name	Chapter's Name
111	(d)	Probability Distribution of a Random Variate, Bernoulli Trials and Binomial Distribution	Probability
112	(d)	Probability Distribution of a Random Variate, Bernoulli Trials and Binomial Distribution	Probability
113	(b)	Basics of Probability	Probability
114	(d)	Basics of Probability	Probability
115	(a)	Measures of Dispersion	Statistics
116	(a)	Probability Distribution of a Random Variate, Bernoulli Trials and Binomial Distribution	Probability
117	(b)	Measures of Central Tendency	Statistics
118	(d)	Conditional Probability, Bayes' Theorem & Total Probability Theorem	Probability
119	(d)	Conditional Probability, Bayes' Theorem & Total Probability Theorem	Probability
120	(b)	Measures of Dispersion	Statistics

Mathematics Solutions

ANSWERS WITH EXPLANATIONS

1. Option (b) is correct.

Explanation:

 \therefore x, y and z are in G.P.

$$\frac{y}{x} = \frac{z}{y} \qquad \dots (i)$$

Now, $p^x = q^y = r^z = k$

$$x = \log_{n} k$$
, $y = \log_{a} k$ and $z = \log_{r} k$

$$\frac{\log_q k}{\log_p k} = \frac{\log_r k}{\log_q k}$$
 [From (i)]

$$\Rightarrow \frac{\ln k}{\ln q} \times \frac{\ln p}{\ln k} = \frac{\ln k}{\ln r} \times \frac{\ln q}{\ln k}$$

$$\Rightarrow \frac{\ln p}{\ln q} = \frac{\ln q}{\ln r}$$

 \therefore ln p, ln q and ln r in G.P

2. Option (a) is correct.

Explanation:

Statement I:

L.H.S. =
$$A - B = A \cap B^c$$

R.H.S. =
$$B^c - A^c = B^c \cap (A^c)^c = B^c \cap A$$

$$\therefore$$
 L.H.S. = R.H.S.

So, statement I is correct

Statement II:

L.H.S. =
$$A - B^c = A \cap (B^c)^c = A \cap B$$

R.H.S. =
$$A^c - B = A^c \cap B^c = \cup -(A \cup B)$$

So, statement II is incorrect

3. Option (a) is correct.

Explanation:

$$\frac{z}{y} = \frac{(2x)!}{x!} = 120$$

$$\Rightarrow \frac{2x(2x-1)....(x+1) \cdot x!}{x!} = 120$$

$$\Rightarrow 2x(2x-1).....(x+1) = 6 \times 5 \times 4$$

$$\therefore 2x = 6 \Rightarrow x = 3$$
Now,
$$(3x)! = 9! = 362880$$

4. Option (c) is correct.

Explanation: The number of consecutive zeros at the end of a number is determined by the number of factor of 10 i.e., number of pairs of 2 and 5. in n!. Since number of factors of 2 is more than number of factors of 5.

So, detrmine the number of factors of 5

Since
$$2 = \left| \frac{n}{5} \right| + \left| \frac{n}{25} + \dots \right|$$

$$\left[\frac{n}{5} \right] = 0, \text{ for } n < 5$$

$$\left[\frac{n}{5} \right] = 1 \text{ for } 5 \le n < 10$$

$$\left[\frac{n}{5} \right] = 2 \text{ for } 10 \le n < 15$$

Hence, n = 10, 11, 12, 13, 14

5. Option (b) is correct.

Explanation:

$$(10 + \log_{10} x)$$
, $(10 + \log_{10} y)$ and $(10 + \log_{10} z)$ are in A.P.

$$\Rightarrow 2(10 + \log_{10} y) = (10 + \log_{10} x) + (10 + \log_{10} z)$$

$$\Rightarrow$$
 20 + 2log₁₀y = 20 + log₁₀x + log₁₀z

$$\Rightarrow 2\log_{10} y = \log_{10} x + \log_{10} z$$

 \therefore The A.M of $\log_{10} x$ and $\log_{10} y$ is $\log_{10} y$

So, statement II is correct

Now,
$$\log_{10} y^2 = \log_{10}(xz)$$

 $\Rightarrow \qquad y^2 = xz$

so, GM of x and z is y

So, statement I is incorrect.

6. Option (d) is correct.

$$S = 1+3+5+7...$$
upto n terms
= $\frac{n}{2}(2+(n-1)2)$

$$12345678987654321 = n^2$$

$$\therefore$$
 $n = 111,111,111$

7. Option (c) is correct.

Explanation: 110th terms of first A.P is

$$T_{110} = 19 + (110 - 1)2 = 237$$

75th terms of second A.P is

$$T_{75} = 19 + \frac{(75 - 1)}{3} = 241$$

Identical terms both A.P

19, 25, 31

∴
$$T_n \le 237$$

 $19 + (n-1)6 \le 237$
⇒ $(n-1) \le 218 \Rightarrow n \le 37.33$
∴ $n = 37$.

8. Option (c) is correct.

Explanation:

$$\alpha = \frac{-1+\sqrt{-3}}{2} = \frac{-1+\sqrt{3}i}{2} = \omega$$

(Cube roots of unit *y*)

We have $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$ Now.

$$\begin{split} &(1+\alpha^{19}-\alpha^{35})^{100}-(1-3\alpha^{25}+\alpha^{38})^{50}\\ &=(1+\omega^{19}-\omega^{35})^{100}-(1-3\omega^{25}+\omega^{38})^{50}\\ &=(1+\omega-\omega^2)^{100}-(1-3\omega+\omega^2)^{50}\\ &=(-2\omega^2)^{100}-(-4\omega)^{50}=2^{100}\omega^{200}-2^{100}\omega^{50}\\ &=2^{100}\omega^2-2^{100}\omega^2=0 \end{split}$$

9. Option (c) is correct.

Explanation:

$$5^{1} = 5 \pmod{13}$$

$$5^{2} = 12 \pmod{13}$$

$$5^{3} = 5 \times 12 = 60 \equiv 8 \pmod{13}$$

$$5^{4} = 5 \times 8 = 40 \equiv 1 \pmod{13}$$
Now,
$$5^{99} = 5^{4 \times 24 + 3} = (5^{4})^{24} \cdot (5)^{3}$$

$$\equiv (1)^{24} \cdot (5)^{3} \pmod{13}$$

$$1^{24} \cdot 5^{3} \equiv 1 \times 8 \pmod{13}$$

$$= 8 \pmod{13}$$

Hence remainder = 8

10. Option (a) is correct.

Explanation:

Let
$$A = \begin{bmatrix} -4 & -5 \\ 2 & 2 \end{bmatrix}$$

$$\Rightarrow |A| = -8 + 10 = 2$$

$$\therefore |A^{-1}| = \frac{1}{|A|} = \frac{1}{2}$$

11. Option (b) is correct.

Explanation:

Here,
$$n(C \cup F) = 45$$
, $n(C) = 34$ and $n(F) = 26$
 $n(C \cap F) = n(C) + n(F) - n(C \cup F)$
 $= 34 + 26 - 45 = 15$
 $n(\text{only } C) + n(\text{only } F) = n(C) + n(F) - 2n(C \cap F)$
 $= 34 + 26 - 30 = 30$

12. Option (c) is correct.

Explanation:

$$\frac{a_1}{a_2} = \frac{2}{-10} = -\frac{1}{5}$$

$$\frac{b_1}{b_2} = \frac{-3}{15} = -\frac{1}{5}$$

$$\frac{c_1}{c_2} = \frac{-5}{50} = -\frac{1}{10}$$

$$\vdots$$

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

... The system of equations is inconsistent.

13. Option (b) is correct.

Explanation:

$$\left(\frac{1-i}{1+i}\right)^{2m} \left(\frac{1+i}{1-i}\right)^{2n} = 1$$

$$\Rightarrow \left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)^{2m} \left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{2n} = 0$$

$$\Rightarrow \left(\frac{1+i^2-2i}{1-i^2}\right)^{2m} \left(\frac{1+i^2+2i}{1-i^2}\right) = 1$$

$$\Rightarrow (-i)^{2m} \cdot (i)^{2n} = 1$$

$$\Rightarrow (-1)^m (-1)^n = 1$$

$$\Rightarrow (-1)^{m+n} = 1$$

So both m and n are even or odd So, possible value of m and n = (3, 1), (4, 2)Smallest positive value of m - n = 2

14. Option (b) is correct.

Explanation:

$$D_2 = \begin{vmatrix} 1 & 7 & 1 \\ 1 & 16 & 3 \\ 1 & 22 & 4 \end{vmatrix} = (64 - 66) - 7(4 - 3) + (21 - 16)$$
$$= -2 - 7 + 6 = -3$$

15. Option (a) is correct.

Explanation:

I: We have

$$(AB)^{-1} = B^{-1}A^{-1}$$

II: We have

$$(AB)(AB)^{-1} = I$$

So, statement II is incorrect

III: We have

$$(AB)^T = B^T A^T$$

So, statement III is incorrect.

16. Option (c) is correct.

Explanation:

$$\begin{vmatrix} a & b & c \\ l & m & n \\ p & q & r \end{vmatrix} = - \begin{vmatrix} a & b & c \\ p & q & r \\ l & m & n \end{vmatrix}$$
 (By $R_2 \Leftrightarrow R_3$)
$$= + \begin{vmatrix} p & q & r \\ a & b & c \\ l & m & n \end{vmatrix}$$
 (By $R_1 \Leftrightarrow R_2$)

17. Option (a) is correct.

Explanation:

We have
$$w^3 = 1$$
 and $1 + w + w^2 = 0$
 $x^2 + y^2 + z^2 = (a + b)^2 + (aw + bw^2)^2 + (aw^2 + bw)^2$
 $= a^2 + b^2 + 2ab + a^2w^2 + b^2w^4$
 $+2abw^3 + a^2w^4 + b^2w^2 + 2abw^3$
 $= a^2(1 + w^2 + w^4) + b^2(1 + w^2 + w^4)$
 $+6ab$
 $= a^2(1 + w^2 + w) + b^2(1 + w^2 + w)$
 $+6ab$
 $= 6ab$.

18. Option (b) is correct.

Explanation: Last two digit of number which is divisible by 4 are 12, 24, 32

No. of number whose last two digits is 12 = 2!No. of number whose last two digits is 24 = 2!No. of number whose last two digits is 32 = 2!Total number = 2! + 2! + 2! = 6

19. Option (b) is correct.

Explanation:

Here
$$p = a+b+c$$

Now, $\begin{vmatrix} p+c & a & b \\ c & p+a & b \\ c & a & p+b \end{vmatrix}$ (By $c_1 \to c_1 + c_2 + c_3$)
$$= \begin{vmatrix} p+a+b+c & a & b \\ p+a+b+c & p+a & b \\ p+a+b+c & a & p+b \end{vmatrix}$$

$$= (p+a+b+c)\begin{vmatrix} 1 & a & b \\ 1 & p+a & b \\ 1 & a & p+b \end{vmatrix}$$
By $R_2 \to R_2 - R_1$ and $R_3 \to R_3 - R_1$

$$= (p+a+b+c)\begin{vmatrix} 1 & a & b \\ 0 & P & 0 \\ 0 & 0 & P \end{vmatrix}$$

$$= (p+p)(p^2-0) = 2p^3$$

20. Option (d) is correct.

Explanation: We have middle has greatest coefficient

So, middle term =
$$\frac{100 + 2}{2} = 51^{th}$$
 term
 $T_{51} = T_{50+1} = {}^{100}C_{50}$

.. Greatest coefficient

= Coefficient of x^{50} .

21. Option (b) is correct.

Explanation:

Let
$$\log_{0.5} a^2 = t$$

 $\therefore x^2 + tx + t^4 = 0$
 $\therefore \alpha + \beta = -t$...(i)
 $\alpha\beta = t^4$...(ii)
 $\beta^2 = \frac{\alpha}{t} \Rightarrow \alpha = \beta^2 t$...(iii)

From (ii) and (iii)

$$\beta^3 t = t^4 \Rightarrow \beta^3 = t^3 (\because \log_{0.5} a^2 > 0)$$

 $\beta = t = \log_{0.5} a^2$

22. Option (c) is correct.

Let
$$\log_{0.5}a^2 = t$$

$$\therefore x^2 + tx + t^4 = 0$$

$$\alpha + \beta = -t \qquad ...(i)$$

$$\alpha\beta = t^4 \qquad ...(ii)$$

$$\beta^2 = \frac{\alpha}{t} \Rightarrow \alpha = \beta^2 t \qquad ...(iii)$$
from (ii) and (iii)
$$\beta^3 t = t^4 \Rightarrow \beta^3 = t^3 \qquad (\because \log_{0.5} a^2 = 0)$$

$$\beta^{3}t = t^{4} \Rightarrow \beta^{3} = t^{3} \qquad (\because \log_{0.5} a^{2} = 0)$$

$$\Rightarrow \qquad \beta = t$$
Putting in (i)
$$\alpha + \beta = -\beta \Rightarrow \alpha = -2\beta.$$

23. Option (c) is correct.

Explanation:

$$p = \sum_{j=1}^{n} \log_{10} 2^{j} = \sum_{j=1}^{n} j \log_{10} 2$$

$$= (1+2+...+n) \log_{10} 2 = \frac{n(n+1)}{2} \log_{10} 2$$

$$q = \sum_{j=1}^{n} \log_{10} 5^{j} = \sum_{j=1}^{n} j \log_{10} 5$$

$$= (1+2+...+n) \log_{10} 5$$

$$\therefore \qquad p+q = 66$$

$$\frac{n(n+1)}{2} \log_{10} 2 + \frac{n(n+1)}{2} \log_{10} 5 = 66$$

$$\Rightarrow \qquad \frac{n(n+1)}{2} \cdot \log_{10} 10 = 66$$

$$\Rightarrow \qquad n(n+1) = 132 = 11 \times 12$$

$$\therefore \qquad n = 11 \in (9,12)$$

24. Option (d) is correct.

Explanation:

$$p = \sum_{j=1}^{n} \log_{10} 2^{j} = \sum_{j=1}^{n} j \log_{10} 2$$

$$= (1+2+...n) \log_{10} 2 = \frac{n(n+1)}{2} \log_{10} 2$$

$$q = \sum_{j=1}^{n} \log_{10} 5^{j} = \sum_{j=1}^{n} j \log_{10} 5$$

$$= (1+2+...+n) \log_{10} 5 = \frac{n(n+1)}{2} \log_{10} 5$$

$$\therefore p+q = 15 \Rightarrow \frac{n(n+1)}{2} \log_{10} 10 = 15$$

$$n(n+1) = 30 = 5 \times 6 \Rightarrow n = 5$$

$$q-p = \frac{n(n+1)}{2} [\log_{10} 5 - \log_{10} 2]$$

$$= \frac{5(5+1)}{2} \log_{10} 2.5 = 15 \log_{10} 2.5$$

25. Option (c) is correct.

Explanation:

$$\frac{p}{q} = \frac{\sin A + \sin B}{\cos A + \cos B} = \frac{2\sin\frac{A+B}{2}\cdot\cos\left(\frac{A-B}{2}\right)}{2\cos\frac{A+B}{2}\cdot\cos\left(\frac{A-B}{2}\right)}$$
$$= \tan\left(\frac{A+B}{2}\right)$$

26. Option (d) is correct.

Explanation:

$$\frac{p^2 + q^2}{p^2 + q^2} = \frac{4\sin^2\frac{A+B}{2} \cdot \cos^2\frac{A-B}{2} - 4\cos^2\frac{A+B}{2} \cdot \cos^2\frac{A-B}{2}}{4\sin^2\frac{A+B}{2} \cdot \cos^2\frac{A-B}{2} + 4\cos^2\frac{A+B}{2} \cdot \cos^2\frac{A-B}{2}}$$

$$= \frac{4\cos\left(\frac{A-B}{2}\right)\left[\sin^{2}\frac{A+B}{2} - \cos^{2}\frac{A+B}{2}\right]}{4\cos^{2}\frac{A-B}{2}\left[\sin^{2}\frac{A+B}{2} + \cos^{2}\frac{A+B}{2}\right]}$$
$$= -\cos(A+B) = \cos(\pi - A - B)$$

29

27. Option (c) is correct.

Explanation:

$$\frac{\sqrt{3}}{4}p - \frac{q}{4} = \frac{\sqrt{3}}{4}\operatorname{cosec} 20^{\circ} - \frac{1}{4}\operatorname{cosec} 70^{\circ}$$

$$= \frac{\sqrt{3}}{4}\operatorname{cosec} 20^{\circ} - \frac{1}{4}\operatorname{sec} 20^{\circ}$$

$$= \frac{1}{2\sin 20^{\circ} \cdot \cos 20^{\circ}} \left(\frac{\sqrt{3}}{2}\cos 20^{\circ} - \frac{1}{2}\sin 20^{\circ}\right)$$

$$= \frac{1}{\sin 40^{\circ}} \left[\cos 30^{\circ} \cdot \cos 20^{\circ} - \sin 30^{\circ} \cdot \sin 20^{\circ}\right]$$

$$= \frac{1}{\sin 40^{\circ}} \times \cos 50^{\circ} = \frac{\cos 50^{\circ}}{\cos (90 - 40)^{\circ}}$$

$$= \frac{\cos 50^{\circ}}{\cos 50^{\circ}} = 1.$$

28. Option (b) is correct.

Explanation:

$$\frac{p^2 + q^2}{p^2 q^2} = \frac{1}{q^2} + \frac{1}{p^2}$$

$$= \sin^2 20^\circ + \sin^2 70^\circ$$

$$= \sin^2 20^\circ + \cos^2 (90 - 70)^\circ$$

$$= \sin^2 20^\circ + \cos^2 20^\circ = 1$$

29. Option (c) is correct.

Explanation:

$$\cos(2x+3y) = \frac{1}{2} = \cos\frac{\pi}{3}$$

$$\therefore 2x+3y = \frac{\pi}{3} \qquad ...(i)$$
or
$$2x+3y = \frac{-\pi}{3} \qquad [\because -\pi < 2x+3y < \pi] ...(ii)$$

$$\cos(3x+2y) = \frac{\sqrt{3}}{2} = \cos\frac{\pi}{6}$$

$$\therefore 3x+2y = \frac{\pi}{6} \qquad ...(iii)$$
or
$$3x+2y = \frac{\pi}{6} \qquad ...(iv)$$
On adding $f(i)$ and $f(i)$ and $f(i)$ and $f(i)$ and $f(i)$ and

On adding [(i) and (iii)], [(i) and (iv)], [(ii) and (iii)] and [(ii) and (iv)] we get four values of x + y.

30. Option (c) is correct.

$$\cos(2x+3y) = \frac{1}{2} = \cos\frac{\pi}{3}$$

$$\therefore 2x + 3y = \frac{\pi}{3} \qquad \dots(i)$$
or
$$2x + 3y = -\frac{\pi}{3} \quad [\because -\pi < 2x + 3y < \pi] \dots(ii)$$

$$\cos(3x + 2y) = \frac{\sqrt{3}}{2} = \cos\frac{\pi}{6}$$

$$\therefore 3x + 2y = \frac{\pi}{6} \qquad \dots(iii)$$
or
$$3x + 2y = -\frac{\pi}{6} \quad [\because -\pi < 3x + 2y < \pi] \dots(iv)$$

On subtraction [(iii) from (i)], [(iii) from (ii)], [(iv) from (i)] and [(iv) from (ii)] we get four vaue of y - x.

31. Option (c) is correct.

Explanation:

$$abx^{2} + bcx + ca = cax^{2} + abx + bc$$

$$\Rightarrow (ab - ca)x^{2} + (bc - ab)x + = 0$$

$$(ca - bc)$$

Since roots are equal

So, a, b and c are in H.P.

32. Option (d) is correct.

Explanation:

 $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. so a, b, c are in H.P.

33. Option (d) is correct.

Explanation:

$$(6 + 10 + 14 \dots \text{ upto } m \text{ terms})$$

$$\frac{m}{2}(12 + (m-1)4) = \frac{n}{2}(2 + (n-1)2)$$
$$2m(m+2) = n^2$$

34. Option (c) is correct.

Explanation:

$$(6 + 10 + 14 \dots upto m terms)$$

$$= (1+3+5+7...\text{upto } n \text{ terms})$$

$$\frac{m}{2}(12+(m-1)4) = \frac{n}{2}(2+(n-1)2)$$

$$2m(m+2) = n^2 \qquad \text{(Perfect square)}$$

So, m = 2 or 16 satisfy the condition.

35. Option (d) is correct.

Explanation:

Number of triangles =
$$8c_3 - 4c_3$$

= $\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} - \frac{4 \cdot 3 \cdot 2}{3 \cdot 2 \cdot 1}$
= $\frac{56 - 4 - 52}{3 \cdot 2 \cdot 1}$

36. Option (c) is correct.

Explanation:

Number of quadrilateral =
$$8c_4 - 4c_3 \times 4c_1 - 4c_4$$

= $\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} - \frac{4 \cdot 3 \cdot 2}{3 \cdot 2}$
 $\times 4 - 1$
= $70 - 16 - 1 = 53$

37. Option (c) is correct.

Explanation:

$$f(1) = 2 \Rightarrow a+b+c=2$$
 ...(i)
 $f(4) = 2 \Rightarrow 16a+4b+c=2$...(ii)
 $f(2) = 4a+2b+c=0$...(iii)

On solving in (i), (ii) and (iii), we get

$$a = 1, b = -5$$
 and $c = 6$

:. Quadratic equation is

$$x^{2}-5x+6 = 0 \Rightarrow (x-2)(x-3) = 0$$

 $n = 2.3$

So, other roots in 3.

38. Option (c) is correct.

Explanation:

$$f(1) = 2 \Rightarrow a+b+c=2$$

39. Option (b) is correct.

Explanation:

$$|A| = \begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1$$

Now, $|A^4| = |A|^4 = (1)^4 = 1$.

40. Option (c) is correct.

$$adj A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$|adj A| = \cos^2 \theta + \sin^2 \theta = 1$$
$$adj(adj A) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
$$\therefore [adj A]^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = A$$

41. Option (a) is correct.

Explanation:

42. Option (d) is correct.

Explanation:

$$n(X) = 3n, n(Y) = 2n$$
and
$$n(X \cap Y) = n$$

$$n(X - Y) = 3n - n = 2n$$

$$n(Y - X) = 2n - n = n$$

$$n[(X - Y) \times (Y - X)] = 2n \times n = 2n^{2}$$

43. Option (c) is correct.

Explanation: Here

$$R = \{(x,y): |x| < y, x \in A \text{ and } y \in B\}$$

$$= \{(0,1), (-3,4), (-2,4), (-1,4), (0,4), (1,4), (2,4), (3,4)(-3,9), (-2,9), (-1,9), (0,9), (1,9), (2,9), (3,9)\}$$

∴ Number of elements in R is 15

44. Option (a) is correct.

Explanation:

We have $|KA| = K^n |A|$ where n is order of A $\therefore |mx| = m^n |x|$, where order of x is nSo, statement I is correct

Let
$$X = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$Y = \begin{bmatrix} ma_{11} & ma_{12} & ma_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$|Y| = \begin{bmatrix} ma_{11} & ma_{22} & ma_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= m \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= m \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

So, statement II is also correct and statement II is correct explanation of statement I.

45. Option (c) is correct.

Explanation:

$$|M| = \begin{vmatrix} 71 & 23 & 48 \\ 57 & 28 & 29 \\ 65 & 17 & 48 \end{vmatrix}$$
$$R_1 \to R_1 - R_3$$

$$\begin{vmatrix} 6 & 6 & 0 \\ 57 & 28 & 29 \\ 65 & 17 & 48 \end{vmatrix}$$
$$= 6(1344 - 493) - 6(2736 - 1885)$$
$$= 5106 - 5106 = 0$$

So, *M* is singular matrix.

Hence inverse of *M* does not exist.

46. Option (a) is correct.

Explanation:

$$\cot^{-1} 9 + \csc^{-1} \left(\frac{\sqrt{41}}{4} \right)$$

$$= \tan^{-1} \left(\frac{\frac{1}{9} + \frac{4}{5}}{1 - \frac{1}{9} \times \frac{4}{5}} \right) = \tan^{-1} \left(\frac{\frac{5 + 36}{45}}{\frac{45 - 4}{45}} \right) = \tan^{-1} 1$$

47. Option (c) is correct.

Explanation:

$$\cot \theta = -\sqrt{3} = -\cot \frac{\pi}{6} = \cot \left(\pi - \frac{\pi}{6}\right) = \cot \frac{5\pi}{6}$$

$$\theta = \frac{5\pi}{6} \text{ or } \frac{-\pi}{6} \qquad ...(i)$$

$$\csc = -2 = -\csc \frac{\pi}{6} = \csc \left(\frac{-\pi}{6}\right)$$

$$\theta = \frac{-\pi}{6} \text{ or } \frac{-5\pi}{6} \qquad ...(ii)$$

$$Common value = \frac{-\pi}{6}$$

48. Option (c) is correct.

Explanation:

$$\left(x + \frac{1}{x}\right)^3 = x^3 + \frac{1}{x^3} + 3 \cdot x \cdot \frac{1}{x} \left(x + \frac{1}{x}\right)$$
$$8\cos^3 \theta = x^3 + \frac{1}{x^3} + 3(2\cos\theta)$$
$$x^3 + \frac{1}{x^3} = 8\cos^3 \theta - 6\cos\theta$$
$$= 2(4\cos^3 \theta - 3\cos\theta)$$
$$= 2\cos 3\theta$$

49. Option (b) is correct.

$$\tan x + \sec x = 2\cos x$$

$$\Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = 2\cos x$$

$$\Rightarrow \sin x + 1 = 2\cos^2 x$$

$$= 2(1 - \sin^2 x)$$

$$\Rightarrow \sin x + 1 = 2 - 2\sin^2 x$$

$$\Rightarrow 2\sin^2 x + \sin x - 1 = 0$$

$$\Rightarrow 2\sin^2 x + 2\sin x - \sin x - 1 = 0$$

$$\Rightarrow 2\sin x(\sin x + 1) - 1(\sin x + 1) = 0$$

$$= (2\sin x - 1)$$

$$(\sin x + 1) = 0$$

$$\sin x + 1 \neq 0 \quad \left(\because 0 \le x \le \frac{\pi}{2}\right)$$

$$\therefore \qquad 2\sin x - 1 = 0$$

$$\Rightarrow \qquad \sin x = \frac{1}{2} = \sin \frac{\pi}{6}$$

$$x = \frac{\pi}{6}$$

50. Option (a) is correct.

Explanation: We know:

$$\left(\frac{\pi}{12}\right) = \tan 15^{\circ}$$

$$\theta = \sec^{-1}\left(\frac{2}{\sqrt{3}}\right) \Rightarrow \cos \theta = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \qquad \theta = \frac{\pi}{6}$$

$$\tan\left(\frac{1}{2}\sec^{-1}\frac{2}{\sqrt{3}}\right) = \tan\left(\frac{1}{2}\times\frac{\pi}{6}\right)$$

$$= \tan\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{\sqrt{3}+1}$$

$$= \frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$$

$$= 2-\sqrt{3}$$

51. Option (b) is correct.

Explanation: For d.r's of intersecting line

$$\vec{b} = \begin{vmatrix} \hat{i} & i & \hat{6} \\ 6 & 4 & -5 \\ 1 & -2 & 3 \end{vmatrix}$$

$$= i(12 - 10) - j(18 + 5) + \hat{k}(-12 - 4)$$

$$= 2\hat{i} - 23\hat{j} - 16\hat{k}$$

D.r's intersecting line are (2, -23, -16)

52. Option (a) is correct.

Explanation: Equation of intersecting plane

$$6x + 4y - 5z + \lambda(x - 2y + 3z) = 2$$

$$(6+\lambda)x + (4-2\lambda) + (-5+3\lambda)z = 2$$

D.r's of plane is $(6 + \lambda)$, $(4 - 2\lambda)$, $(-5 + 3\lambda)$

Since plane parallel to line whose d.r's (1, 3, 2)

$$\therefore (6+\lambda) + 3(4-2\lambda) + 2(-5+3\lambda) = 0$$

$$\Rightarrow$$
 6+ λ +12-6 λ -10+6 λ = 0

$$\Rightarrow$$
 $\lambda = -8$

∴ Equation of plane is

$$-2x + 20y + 29z = 2$$

$$\Rightarrow \qquad 2x - 20y + 29z + 2 = 0$$

53. Option (b) is correct.

Explanation: Let centre of sphere is O(x, y, z)

$$OA = \sqrt{(x-1)^2 + y^2 + z^2}$$

$$OB = \sqrt{x^2 + (y-1)^2 + z^2}$$

$$OC = \sqrt{x^2 + y^2 + (z-1)^2}$$

$$OA = OB \Rightarrow x^2 - 2x + 1 + y^2 + z^2$$
$$= x^2 + y^2 - 2y + 1 + z^2$$

$$\Rightarrow x + y = 2y + 1 + 2$$

$$\Rightarrow x = y$$

$$OB = OC \Rightarrow x^2 - 2y + 1 + y^2 + z^2$$

$$= x^2 + y^2 + z^2 - 2z + 1$$

$$\Rightarrow$$
 $y = z$

$$\therefore \qquad x = y = z$$

For smallest radius $x = y = z = \frac{1}{3}$

:. Radius =
$$\sqrt{\left(1 - \frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2}$$

= $\sqrt{\frac{4}{9} + \frac{1}{3} + \frac{1}{9}} = \sqrt{\frac{2}{3}}$

54. Option (a) is correct.

Explanation: Centre $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ satisfy the equation x + y + z - 1 = 0

55. Option (b) is correct.

Explanation:

Mid-point AC = Mid-point BD

$$\left(\frac{1-1}{2}, \frac{-1+2}{2}, \frac{0+7}{2}\right) = \left(\frac{-2+x}{2}, \frac{1+y}{2}, \frac{8+z}{2}\right)$$

$$\Rightarrow x = 2, y = 0 \text{ and } z = -1$$

$$D(2, 0, -1)$$

56. Option (b) is correct.

Explanation:

$$\overline{BC} = \hat{i} + \hat{j} - \hat{k}$$

$$\overline{CD} = 3\hat{i} - 2\hat{j} - 8\hat{k}$$

$$\cos\theta = \frac{\overline{BC} \cdot \overline{CD}}{|\overline{BC}| |\overline{CD}|} = \left| \frac{3 - 2 + 8}{\sqrt{1 + 1 + 1}\sqrt{9 + 4 + 64}} \right|$$

$$\cos\theta = \frac{9}{\sqrt{3}\sqrt{77}}$$

$$\cos^2\theta = \frac{81}{3 \times 77} = \frac{27}{77}$$

57. Option (b) is correct.

$$4y = mx - m + 2$$
$$4y = m(x-1) + 2$$

$$y-\frac{1}{2}=\frac{m}{4}(x-1)$$

for any values of m the family of lines always posses through $\left(1, \frac{1}{2}\right)$ so, all lines are concurrent.

58. Option (d) is correct.

Explanation: Let lows of point be (x, y)

$$(x-a)^{2} + (y-b)^{2} = (x-c)^{2} + (y-d)^{2}$$

$$x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = x^{2} - 2cx + c^{2} + y^{2}$$

$$-2dy + d^{2}$$

$$2(a-c)x + 2(b-d)y + c^{2} + = 0$$

$$d^{2} - a^{2} - b^{2}$$

$$(a-c)x + (b-d)y + \frac{1}{2} = 0$$

$$(c^{2} + d^{2} - a^{2} - b^{2})$$

$$k = \frac{(c^{2} + d^{2} - a^{2} - b^{2})}{2}$$

59. Option (b) is correct.

Explanation:

$$x^2 + 3y = 0 \implies x^2 = -3y$$

The equation represents the equation of parabola that opens downward The axis of the parabola is x = 0

$$\therefore \qquad a = \frac{-3}{4}$$

: Equation of latus reactum is

$$y = \frac{-3}{4} \Rightarrow 4y + 3 = 0$$

So, only statement II is correct.

60. Option (a) is correct.

Explanation: Put y = 0, we get x intercepts

$$x = \frac{2a^2}{a^2 + b^2}$$

Put x = 0, we get y intercepts.

$$y = \frac{2b^2}{a^2 + b^2}$$

$$Sum = \frac{2a^2}{a^2 + b^2} + \frac{2b^2}{a^2 + b^2} = 2$$

61. Option (c) is correct.

Explanation:

Perpendiclar form of $\sqrt{3}x + 2y = 7$ is

$$\frac{\sqrt{3}x}{\sqrt{(\sqrt{3})^2 + (2)^2}} + \frac{2y}{\sqrt{(\sqrt{3})^2 + (2)^2}} = \frac{7}{\sqrt{(\sqrt{3})^2 + (2)^2}}$$

$$\frac{\sqrt{3}x}{\sqrt{7}} + \frac{2y}{\sqrt{7}} = \frac{7}{\sqrt{7}}$$

$$\frac{\sqrt{3}}{\sqrt{7}}x + \frac{2}{\sqrt{7}}y = \sqrt{7}$$

62. Option (c) is correct.

Explanation:

$$d = BD = \sqrt{(4-2)^2 + (1-3)^2}$$

$$= \sqrt{4+4} = 2\sqrt{2}$$
Area of the square
$$= \frac{1}{2}d^2$$

$$= \frac{1}{2}(2\sqrt{2})^2 = \frac{1}{2} \times 8$$

$$= 4 \text{ square units}$$

63. Option (d) is correct.

Explanation:

$$px + qy = p + q \Rightarrow m_1 = \frac{-p}{q}$$

$$p(x - y) + q(x + y) = 2q$$

$$\Rightarrow x(p + q) - (p - q)y = 2q$$

$$m_2 = \frac{p + q}{p - q}$$

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right| = \left| \frac{\frac{p + q}{p - q} + \frac{p}{q}}{1 - \frac{p}{q} \left(\frac{p + q}{p - q} \right)} \right|$$

$$= \left| \frac{pq + q^2 + p^2 - pq}{pq - q^2 - p^2 - pq} \right| = 1$$

$$\tan \theta = \tan \frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{4}$$

$$\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

64. Option (a) is correct.

Explanation:

$$x^{2} + y^{2} - 2kx - 2ky + k^{2} = 0$$
$$(x - k)^{2} + (y - k)^{2} = k^{2}$$

 \therefore Centre = (k, x) and radius = k

So circle touches the *x*-axis at P(k, 0) and *y*-axis at Q(0, k)

$$\therefore PQ = \sqrt{k^2 + k^2} = \sqrt{2}k$$

65. Option (b) is correct.

$$x^2 - 4y^2 = 1 \Rightarrow \frac{x^2}{1} - \frac{y^2}{\left(\frac{1}{2}\right)^2} = 1$$

$$a = 1 \text{ and } b = \frac{1}{2}$$

$$c = \sqrt{a^2 + b^2} = \sqrt{1 + \frac{1}{4}} = \frac{\sqrt{5}}{2}$$

Distance between the foci = $2C = \sqrt{5}$

66. Option (d) is correct.

Explanation:

$$\begin{aligned} |\vec{p}|^2 &= |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} = 4 + 4 - 4 = 4 \\ \Rightarrow & |\vec{p}| = 2 \\ |\vec{q}| &= |\vec{a}|^2 + |\vec{b}| + 2\vec{a} \cdot \vec{b} = 4 + 4 + 4 = 12 \\ |\vec{q}| &= 2\sqrt{3} \\ \vec{p} \cdot \vec{q} &= |\vec{a}|^2 - |\vec{b}|^2 = 4 - 4 = 0 \\ \therefore & \vec{p} \perp \vec{q} \Rightarrow \theta = 90^{\circ} \\ \text{Now,} & |\vec{p} \times \vec{q}| &= |\vec{p}| |\vec{q}| \sin 90^{\circ} \\ &= 2 \times 2\sqrt{3} = 4\sqrt{3} \end{aligned}$$

67. Option (d) is correct.

Explanation: Vector perpendicular to both given vectors.

$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 1 & 3 \end{vmatrix} = \hat{i}(-3-1) - \hat{j}(6-1) + \hat{k}(2+1)$$

$$= -4\hat{i} - 5\hat{j} + 3\hat{k} = -(4\hat{i} + 5\hat{j} - 3\hat{k})$$

$$2\vec{n} = -8\hat{i} - 10\hat{j} + 6\hat{k}$$

$$\frac{1}{50}\vec{n} = \frac{1}{50}(-4\hat{i} - 5\hat{j} + 3\hat{k})$$

Given all three vectors perpendicualr two given vectors.

68. Option (c) is correct.

Explanation:

$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 2 & 1 & 2 \end{vmatrix}$$

$$= \hat{i}(4-3) - \hat{j}(2-6) + \hat{k}(1-4)$$

$$= \hat{i} + 4\hat{j} - 3\hat{k}$$

$$|\vec{b}_1 \times \vec{b}_2| = \sqrt{1^2 + 4^2 + (-3)^2}$$

$$= \sqrt{1 + 16 + 9} = \sqrt{26}$$

Area of parallelogram = $|\vec{b}_1 \times \vec{b}_2| = \sqrt{26}$

69. Option (a) is correct.

Explanation:

$$\overline{AC} = (2\hat{i} - 3\hat{j} + 2\hat{k}) - (3\hat{i} + 4\hat{j} - 2\hat{k})$$

= $-i - 7\hat{j} + 4\hat{k}$

$$|\overrightarrow{AC}| = \sqrt{(-1)^2 + (-7)^2 + 4^2} = \sqrt{1 + 49 + 16}$$

$$= \sqrt{66}$$

$$|\overrightarrow{BD}| = (6\hat{i} - 2\hat{j} + \hat{k}) - (4\hat{i} - 4\hat{j} - 3\hat{k})$$

$$= 2\hat{i} + 2\hat{j} + 4\hat{k}$$

$$|\overrightarrow{BD}| = \sqrt{(2)^2 + (2)^2 + 4^2} = \sqrt{4 + 4 + 16} = \sqrt{24}$$

$$\overrightarrow{AC} \cdot \overrightarrow{BD} = -2 - 14 + 16 = 0$$

$$\cos \theta = \frac{|\overrightarrow{AC} \cdot \overrightarrow{BD}|}{|\overrightarrow{AC}| |\overrightarrow{BD}|} = 0 \implies \theta = 90^{\circ}$$

70. Option (a) is correct.

Explanation: The position vector \vec{r} from B to A is

$$\vec{r} = \vec{A} - \vec{B}$$
= $(1+1)\hat{i} + (2+2)\hat{j} + \hat{k}(5-3)$
= $2\hat{i} + 4\hat{j} + 2\hat{k}$

Moment
$$\vec{M} = \vec{r} \times \vec{F}$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & 2 \\ 2 & -\lambda & 5 \end{vmatrix}$$

$$= \hat{i}(20 + 2\lambda) - \hat{j}(10 - 4) + \hat{k}(-2\lambda - 8)$$

$$\therefore 16\hat{i} - 6\hat{j} + 2\lambda\hat{k} = (20 + 2\lambda)\hat{i} - \hat{j}(6) + \hat{k}(-2\lambda - 8)$$

$$\Rightarrow 16 = 20 + 2\lambda \Rightarrow \lambda = -2$$

$$\Rightarrow 2\lambda = -2\lambda - 8 \Rightarrow \lambda = -2$$

71. Option (a) is correct.

Explanation:

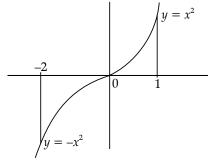
$$f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2} &, & x < 0 \\ 9 &, & x = 0 \end{cases}$$
$$\frac{\sqrt{x}}{\sqrt{(16 + \sqrt{-4})}} &, & x > 0$$
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0^-} \frac{2\sin^2 x}{x^2} = 2$$

72. Option (c) is correct.

$$\lim_{n \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x}}{\sqrt{(16 + \sqrt{x}) - 4}}$$

$$= \lim_{x \to 0^+} \frac{\sqrt{x}(\sqrt{(16 + \sqrt{x})} + 4)}{16 + \sqrt{x} - 16}$$

$$= \lim_{x \to 0^+} \sqrt{(16 + \sqrt{x})} + 4 = 4 + 4 = 8$$


73. Option (a) is correct.

Explanation:

$$f(x) = x|_{x}| = \begin{cases} x^{2} & , & x \ge 0 \\ -x^{2} & , & x < 0 \end{cases}$$
$$\lim_{x \to -1} f(x) = \lim_{x \to -1} -x^{2} = -1$$

74. Option (d) is correct.

Explanation:

Required area =
$$\left| -\int_{-2}^{0} x^2 dx \right| + \int_{0}^{1} x^2 dx$$

= $-\left[\frac{x^3}{3} \right]_{-2}^{0} + \left[\frac{x^3}{3} \right]_{0}^{1}$
= $\left[0 + \frac{8}{3} \right] + \frac{1}{3} = \frac{8}{3} + \frac{1}{3} = \frac{9}{3} = 3$

75. Option (c) is correct.

Explanation:

$$f(x) = \begin{cases} x^2 & , & x \ge 0 \\ -x^2 & , & x < 0 \end{cases}$$

$$y = x^2$$

$$y = -x^2$$

It is clear from graph f(x) is increasing in the interval $(-\infty, \infty)$

$$\therefore$$
 L.H.D. = 0 = R.H.D.

So, f(x) is differentiable at x = 0

Hence both I and II are correct.

76. Option (a) is correct.

Explanation:

$$f(x) = \frac{x}{1-x} \Rightarrow f(x+1) = \frac{x+1}{1-x-1} = \frac{x+1}{-x}$$
$$\frac{f(x)}{f(x+1)} = \frac{\frac{x}{1-x}}{\frac{x+1}{-x}} = \frac{x^2}{x^2-1} = -f(x^2)$$

77. Option (d) is correct.

Explanation:

$$f(x) = \frac{x}{1-x} \Rightarrow f(\sqrt{x}) = \frac{\sqrt{x}}{1-\sqrt{x}}$$

$$f(\sqrt{x}+1) = \frac{\sqrt{x}+1}{1-\sqrt{x}-1} = \frac{\sqrt{x}+1}{-\sqrt{x}}$$
Now,
$$(1-x)\frac{\sqrt{x}}{1-\sqrt{x}} - \frac{x(\sqrt{x}+1)}{\sqrt{x}}$$

$$\Rightarrow \frac{(1-x)x - x(1-x)}{\sqrt{x}(1-\sqrt{x})} = \frac{x-x^2-x+x^2}{\sqrt{x}(1-\sqrt{x})} = 0$$

78. Option (a) is correct.

Explanation:

$$y = f(x) = \frac{x \sin^{-1} x}{\sqrt{1 - x^{2}}} + \ln \sqrt{1 - x^{2}}$$

$$\left(\sin^{-1} x + \frac{x}{\sqrt{1 - x^{2}}}\right) \sqrt{1 - x^{2}}$$

$$+ x \sin^{-1} x \frac{2x}{2\sqrt{1 - x^{2}}}$$

$$+ \frac{1}{\sqrt{1 - x^{2}}} \times \frac{1}{2\sqrt{1 - x^{2}}} \times -2x$$

$$f'(x) = \frac{\sqrt{1 - x^{2}} \sin^{-1} x + x + \frac{x^{2} \sin^{-1} x}{\sqrt{1 - x^{2}}}}{(1 - x^{2})}$$

$$(1 - x^{2}) \sin^{-1} x + x \sqrt{1 - x^{2}} + x^{2} \sin^{-1} x$$

$$= \frac{-x \sqrt{1 - x^{2}}}{(1 - x^{2}) \sqrt{1 - x^{2}}}$$

$$= \frac{\sin^{-1} x}{(1 - x^{2}) \sqrt{1 - x^{2}}}$$

$$f'(0.5) = \frac{\sin^{-1} \frac{1}{2}}{\left(1 - \frac{1}{4}\right) \left(\sqrt{1 - \frac{1}{4}}\right)} = \frac{\frac{\pi}{6}}{\frac{3}{4} \times \frac{\sqrt{3}}{2}} = \frac{\pi}{6} \times \frac{8}{3\sqrt{3}}$$

$$= \frac{4\pi\sqrt{3}}{9\sqrt{3} \times \sqrt{3}} = \frac{4\pi\sqrt{3}}{27}$$

Slope of y

$$= f(x) = \frac{4\pi\sqrt{3}}{27}$$

79. Option (c) is correct.

$$\frac{dy}{dx} = \frac{\sin^{-1} x}{(1 - x^2)^{3/2}}$$

$$\frac{dy}{dx^2} = \frac{\frac{1}{\sqrt{1 - x^2}} (1 - x^2)^{3/2} - \sin^{-1} x \cdot \frac{3}{2} (1 - x^2)^{\frac{1}{2}} (-2x)}{(1 - x^2)^3}$$

$$= \frac{\sqrt{1 - x^2} + 3x\sqrt{1 - x^2}\sin^{-1}x}{(1 - x^2)^3}$$
$$\left(\frac{d^2y}{dx^2}\right)_{x=0} = \frac{1 + 0}{(1 - 0)^3} = 1$$

80. Option (c) is correct.

Explanation:

$$\frac{dy}{dx} = \frac{\sin^{-1} x}{(1 - x^2)^{3/2}}$$
$$\left(\frac{dy}{dx}\right) = \sin \theta = \frac{\sin^{-1}(\sin \theta)}{(1 - \sin^2 \theta)^{3/2}}$$
$$= \frac{\theta}{\cos^3 \theta} = \theta.\sec^3 \theta$$

81. Option (b) is correct.

Explanation:

$$f(x) = 1 - \sqrt[3]{(x-1)^2}$$

 $(x-1)^2 \ge 0 \implies (x-1)^2$ is real number

Since, cube root of any real number is a real number. So, there are no restriction on the values of x.

$$\therefore$$
 Domain = $(-\infty, \infty)$

82. Option (d) is correct.

Explanation:

$$f'(x) = -\frac{2}{3}(x-1)^{\frac{-1}{3}} \neq 0, x \in \mathbb{R}$$

So no critical point. Hence no extremum.

83. Option (a) is correct.

Explanation:

$$f(x) = \begin{cases} 4(5^{x}) & , & x < 0 \\ 8k + x & , & x \ge 0 \end{cases}$$
L.H.L. = $\lim_{x \to 0^{-}} 4(5^{x}) = 4(5^{0}) = 4$
R.H.L. = $\lim_{x \to 0^{+}} 8k + x = 8k$

 $\therefore f(x)$ is continuous.

$$\therefore \qquad 8k = 4 \Rightarrow k = \frac{1}{2} = 0.5$$

84. Option (c) is correct.

Explanation:

$$f'(x) = \begin{cases} 4(5^{x}) \cdot \log 5 & , & x < 0 \\ 1 & x \ge 0 \end{cases}$$
$$f'(-1) = 4(5^{-1})\log 5 = \frac{4}{5}\log 5$$

85. Option (d) is correct.

Explanation:

$$u + v = \int e^x \cos x dx + \int e^x \sin x dx$$

$$= \int e^{x} (\cos x + \sin x) dx$$

$$= e^{x} \sin x \qquad \left[\because \frac{d \sin x}{dx} = \cos x \right]$$

$$= \frac{dv}{dx}$$

86. Option (d) is correct.

Explanation:

$$u = \int e^x \cos x dx$$

$$\frac{du}{dx} = e^x \cos x \neq -v$$

$$v = \int e^x \sin x dx$$

$$\frac{dv}{dx} = e^x \sin x \neq -u$$

So, both $e^x \sin x \neq -u$

87. Option (a) is correct.

Explanation:

$$f(x) = |x-3| + |x-4| = \begin{cases} -2x+7 & , & x < 3\\ 1 & , & 3 \le x < 4\\ 2x-7 & , & x \ge 4 \end{cases}$$
 for $x = 3.5$

$$y = f(x) = 1$$

$$\frac{dy}{dx} = \frac{d(1)}{dx} = 0$$

88. Option (d) is correct.

Explanation:

at
$$x = 3$$

L.H.D. = -2 and R.H.D. = 0
 \therefore L.H.D. \neq R.H.D.
So, $f(x)$ is not differentiable at $x = 3$
at $x = 4$
L.H.D. = 0 and R.H.D. = 2
 \therefore L.H.D. \neq R.H.D.

So, f(x) is not differentiable at x = 4.

89. Option (a) is correct.

Explanation:

$$f(0) = \frac{10^0 - 10^0}{10^0 + 10^0} = 0$$

$$\therefore f \circ f \circ f \circ f \circ f(0) = 0$$

90. Option (d) is correct.

$$\frac{y}{1} = \frac{10^{x} - 10^{-x}}{10^{x} + 10^{-x}} = \frac{10^{2x} - 1}{10^{2x} + 1}$$
$$\frac{y + 1}{y - 1} = \frac{10^{2x} - 1 + 10^{2x} + 1}{10^{2x} - 1 - 10^{2x} - 1} = \frac{10^{2x}}{-1}$$

$$\frac{1+y}{1-y} = 10^{2x} \Rightarrow 2x = \log_{10}\left(\frac{1+y}{1-y}\right)$$
$$x = \frac{1}{2}\log_{10}\left(\frac{1+y}{1-y}\right)$$
$$f^{-1}(x) = \frac{1}{2}\log_{10}\left(\frac{1+x}{1-x}\right)$$

91. Option (a) is correct.

Explanation:

$$\left(\frac{d^2y}{dx^2}\right)^{3/2} = \left(\frac{dy}{dx}\right)^{5/2}$$

Squaring both sides

$$\left(\frac{d^2y}{dx^2}\right)^3 = \left(\frac{dy}{dx}\right)^5$$
Degree = 3.

92. Option (c) is correct.

Explanation:

$$\int_{n}^{n+1} (x - [x]) dx = \int_{n}^{n+1} (x - n) dx$$

$$= \left[\frac{x^{2}}{2} - nx \right]_{n}^{n+1}$$

$$= \frac{(n+1)^{2}}{2} - n(n+1) - \frac{n^{2}}{2} + n^{2}$$

$$= \frac{1 - n^{2}}{2} + \frac{n^{2}}{2} = \frac{1}{2}$$

93. Option (c) is correct.

Explanation:

$$y = xe^{2x} \Rightarrow \frac{dy}{dx} = e^{2x} + 2xe^{2x}$$
$$\frac{dy}{dx} = \frac{y}{x} + 2y = y\left(2 + \frac{1}{x}\right)$$

So, statement I is correct

$$\frac{dy}{dx} = \frac{x+y}{x} = 1 + \frac{y}{x}$$

$$\Rightarrow \frac{dy}{dx} - \frac{1}{x} \cdot y = 1$$

$$I.F = e^{\int -\frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$$

$$\therefore \qquad y \cdot \frac{1}{x} = \int \frac{1}{x} dx$$

$$\frac{y}{x} = \ln|x| + c$$

$$y = x \ln|x| + cx$$

So, statement II is correct.

94. Option (b) is correct.

Explanation:

$$\frac{dy}{dx} = \frac{k^2}{(x+y)^2}$$
Let
$$x+y=t \Rightarrow 1+\frac{dy}{dx} = \frac{dt}{dx}$$

$$\frac{dt}{dx} - 1 = \frac{k^2}{t^2}$$

$$\Rightarrow \frac{dt}{dx} = \frac{k^2}{t^2} + 1 = \frac{k^2 + t^2}{t^2}$$

$$\int \frac{t^2}{k^2 + t^2} dt = \int dx$$

$$\int \left(1 - \frac{k^2}{t^2 + k^2}\right) dt = x$$

$$\Rightarrow t - k^2 \cdot \frac{1}{k} \tan^{-1} \frac{t}{k} = x + c$$

$$\Rightarrow x + y - k \tan^{-1} \left(\frac{x+y}{k}\right) = x + c$$

$$\Rightarrow \frac{y-c}{k} = \tan^{-1} \left(\frac{x+y}{k}\right)$$

$$\Rightarrow \frac{x+y}{k} = \tan\left(\frac{y-c}{k}\right)$$

$$\Rightarrow x+y = k \tan\left(\frac{y-c}{k}\right)$$

95. Option (c) is correct.

Explanation:

$$\int \frac{dx}{10^{x} + 10^{-x}} = \int \frac{10^{x}}{(10^{x})^{2} + 1} dx$$
Let
$$10^{x} = t \Rightarrow 10^{x} \cdot \log_{e} 10 dx = dt$$

$$= \int \frac{1}{1 + t^{2}} \times \log_{10} e dt$$

$$= \log_{10} e \tan^{-1} t + c$$

$$= \log_{10} e \tan^{-1} (10^{x}) + c$$

$$= \frac{1}{\log_{e} 10} \tan^{-1} (10^{x}) + c$$

96. Option (a) is correct.

Perimeter of rectangle =
$$2(x + y) = 20$$

 $x + y = 10 \Rightarrow y = 10 - x$
Area = $xy = x(10 - x)$
 $A = 10x - x^2$
 $\frac{dA}{dx} = 10 - 2x = 0 \Rightarrow x = 5$
 $\frac{d^2A}{dx} = -2 < 0$

 \therefore Area of maximum at x = 5

$$y = 10 - 5 = 5 = x$$

So, square has maximum area statement I is correct

Let

$$10x - x^{2} = 27 \Rightarrow x^{2} - 10x + 27$$

$$D = (-10)^{2} - 4 \times 27$$

$$= 100 - 108$$

$$= -8 < 0$$

∴ Area 27 cm² is not possible So, statement II is not correct.

97. Option (a) is correct.

Explanation:

$$I_1 = \int_e^{e^2} \frac{dx}{\ln x}$$
Let
$$\ln x = t \Rightarrow x = e^t$$

$$dx = e^y dt$$
When
$$x = e \Rightarrow t = 1$$
When
$$x = e^2 \Rightarrow t = 2$$

$$= \int_1^2 \frac{e^t}{t} dt = I_2$$

$$\vdots \qquad I_1 - I_2 = 0$$

98. Option (d) is correct.

Explanation:

$$|x| \le 2k \implies -2k \le x \le 2x$$

$$|y| \le k \implies -k \le y \le k$$

$$A \qquad \qquad |k \qquad |B \qquad \qquad |B$$

Area of rectangle = $4k \times 2k = 8k^2$

99. Option (c) is correct.

Explanation:

$$f(x) = \frac{1}{x-5}$$
$$f'(x) = \frac{-1}{(x-5)^2} < 0 \text{ for } x \neq 5$$

 \therefore f(x) is decreasing on the intervals x < 5 and x > 5.

So, only statement I is correct.

100. Option (c) is correct.

Explanation:

$$f(x) = \frac{x^3 + 128}{x}$$

$$f'(x) = \frac{3x^2 \cdot x - (x^3 + 128)}{x^2}$$

$$= \frac{2x^3 - 128}{x^2} = 0$$

$$\Rightarrow \qquad x = 4$$

$$f''(x) = \frac{6x^2 \cdot x^2 - (2x^3 - 128)(2x)}{x^4}$$

$$f''(x) = \frac{6 \times 16 \times 16 - 0}{16 \times 16} = 6 > 0$$

$$\therefore \qquad f(x) \text{ is } = 4$$
minimum at x

Minimum value =
$$f(4) = \frac{64 + 128}{4}$$

= 48

So, statement I is correct

 $\therefore f(x)$ is minimum, at x = 4

So, f(x) is decrease in x < 4

f(x) is increase in x > 4

So, sign of f'(n) is changes from –ve to +ve when x increase through y.

101. Option (a) is correct.

Explanation:

$$10C_3 = \frac{10!}{7!3!} = 120$$

$$10C_4 = \frac{10!}{6!4!} = 210$$

$$10C_5 = \frac{10!}{5!5!} = 252$$

$$10C_6 = \frac{10!}{6!4!} = 210$$

$$10C_7 = \frac{10!}{7!3!} = 120$$

Sum of reciprocal

$$= \frac{1}{120} + \frac{1}{210} + \frac{1}{252} + \frac{1}{210} + \frac{1}{120}$$

$$= 2\left(\frac{1}{120} + \frac{1}{210}\right) + \frac{1}{252}$$

$$= 2\left(\frac{7+4}{840}\right) + \frac{1}{252} = \frac{11}{420} + \frac{1}{252}$$

$$= \frac{33+5}{1260} = \frac{19}{630}$$
H.M.
$$= \frac{n}{\sum \frac{1}{n_i}} = \frac{5}{\frac{19}{630}} = \frac{3150}{19}$$

102. Option (c) is correct.

Explanation:

$$P(3 \text{ debt}) = 0.6 \times 0.6 \times 0.6$$

= 0.216

103. Option (b) is correct.

Explanation:

$$P(L) = 0.68, P(D) = 0.56$$

and $P(L \cap D) = 0.48$
 $\therefore P(L \cup D) = P(L) + P(D) - P(L \cap D)$
 $= 0.68 + 0.56 - 0.48$
 $= 0.76$

104. Option (a) is correct.

Explanation:

$$P(\text{Two red balls}) = \frac{5}{15} \times \frac{4}{14} = \frac{2}{21}$$

105. Option (c) is correct.

Explanation: P(One white, one red one blue)

$$= \frac{5c_1 \times 6c_1 \times 4c_1}{15c_3}$$
$$= \frac{5 \times 6 \times 4 \times 3 \times 2 \times 1}{15 \times 14 \times 13} = \frac{24}{91}$$

106. Option (d) is correct.

Explanation: In binomial distribution number trial is finite and fixed and independent. Each trial has two possible outcomes (success and failure).

So, statement II and III are correct.

107. Option (a) is correct.

Explanation:

$$P(X \cap Y') + P(X' \cap Y)$$

$$= P(X) \cdot [1 - P(Y)] + [1 - P(X)]P(Y)$$

$$= \frac{4}{5} \left[1 - \frac{5}{6} \right] + \left[1 - \frac{4}{5} \right] \times \frac{5}{6}$$

$$= \frac{4}{5} \times \frac{1}{6} + \frac{1}{5} \times \frac{5}{6} = \frac{9}{30} = \frac{3}{10}$$

108. Option (b) is correct.

Explanation:

$$P(P) = \frac{2}{3}, P(P \cap E) = \frac{11}{15}$$
and
$$P(P \cup E) = \frac{4}{5}$$

$$P(P \cup E) = P(P) + P(E) - P(P \cap E)$$

$$\frac{4}{5} = \frac{2}{3} + P(E) - \frac{11}{15}$$

$$\frac{4}{5} - \frac{2}{3} + \frac{11}{15} = P(E)$$

$$\Rightarrow P(E) = \frac{12 - 10 + 11}{15} = \frac{13}{15}$$

109. Option (d) is correct.

Explanation:

Here
$$P(X) = p$$
 and $P(Y) = q$

Also *X* and *Y* are independent

P(exactly one happens)

$$= P(X) + P(Y) - 2P(X \cap Y)$$

= P + q - 2pq

So statement I is incorrect

$$P(\text{at least one}) = P(X \cup Y)$$

$$= P(X) + P(Y) - P(X \cap Y)$$

$$= p + q - Pq$$

So, statement II is incorrect.

110. Option (a) is correct.

Explanation:

No. of black faces = 3

No. of white faces = 2

No. of red faces = 1

P(black, white and red appear in first, second and third resp.)

$$=\frac{3}{6}\times\frac{2}{6}\times\frac{1}{6}=\frac{1}{36}$$

111. Option (d) is correct.

Explanation:

$$n(S) = 2^4 = 16$$

Two heads consecutive (E)

$$n(E) = 8$$

So
$$n(E') = 16 - 8 = 8$$

$$P(E') = \frac{8}{16} = \frac{1}{2}$$

112. Option (d) is correct.

Explanation:

Prime number = $\{2,3,5\}$

Composite number = $\{4,6\}$

Neither prime nor composite $= \{1\}$

P(One prime, one composite and one neither prime nor composite)

$$= \frac{3}{6} \times \frac{2}{6} \times \frac{1}{6} \times 3!$$
$$= \frac{1}{36} \times 6 = \frac{1}{6}$$

113. Option (b) is correct.

Explanation:

No. of number divisible by 5 = 10

No. number divisible by 9 = 5

No. of number divisible by

$$5$$
 and $9 = 1$

So number of number divisble

by
$$5 \text{ or } 9 = 10 + 5 - 1 = 14$$

∴ No. of number neither divisible by

$$5 \text{ nor } 9 = 50 - 14 = 36$$

114. Option (d) is correct.

Explanation: Out of 50 consecutive natural nubmer there are 25 even and 25 odd number. We have sum of even and odd is odd.

$$P(\text{Sum odd}) = \frac{{}^{25}C_1 \times {}^{25}C_1}{{}^{50}C_2}$$
$$= \frac{25 \times 25 \times 2}{50 \times 49} = \frac{25}{49}$$

115. Option (a) is correct.

Explanation: 20 is added to each observation then standard diviation is not effected.

So new S.D is not change.

$$\therefore$$
 New S.D. = 10

116. Option (a) is correct.

Explanation:

Here
$$n = 5$$
, $p = k$ and $q = 1 - K$
 $P(X = 1) = 5c_1 K^1 (1 - K)^4 = 0.4096$
 $P(X = 2) = 5c_2 K^2 (1 - K)^3 = 0.2048$
 $\frac{{}^5C_2K^2(1 - k)^3}{{}^5C_1K(1 - k)^4} = \frac{0.2048}{0.4096}$
 $\frac{10.K}{5(1 - K)} = \frac{1}{2}$
 $4K = 1 - K \Rightarrow 5K = 1 \Rightarrow K = \frac{1}{5} = 0.2$

117. Option (b) is correct.

Explanation:

C-I	f_1	x_{i}	$x_i f_i$
5 – 15	20	10	200
15 – 25	30	20	600
25 – 35	30	30	900
35 – 45	20	40	800
Total	$\Sigma f_i = 100$		2500

Mean =
$$\frac{\sum x_i f_i}{\sum f_i} = \frac{2500}{100} = 25$$

118. Option (d) is correct.

Explanation:

Here,
$$P(A) = 0.3$$
, $P(B) = 0.4$ and $P\left(\frac{A}{B}\right) = 0.5$

$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}$$

$$\Rightarrow 0.5 = \frac{P(A \cap B)}{0.4} \Rightarrow P(A \cap B) = 0.2$$

$$\therefore P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{0.2}{0.3} = \frac{2}{3}$$

$$= 0.667$$

119. Option (d) is correct.

Explanation:

Here
$$P(A) = \frac{1}{3}$$
, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{4}$
 $P(\overline{A} \cup B) = P(\overline{A}) + P(B) - P(\overline{A} \cap B)$
 $= 1 - P(A) + P(B) - [P(B) - P(A \cap B)]$
 $= 1 - \frac{1}{3} + \frac{1}{2} - (\frac{1}{2} - \frac{1}{4})$
 $= \frac{2}{3} + \frac{1}{2} - \frac{1}{4} = \frac{8 + 6 - 3}{12} = \frac{11}{12}$

120. Option (b) is correct.

Explanation: Mean and variance do not have the same unit of measurement. e.g. if data is in meters then mean is in meters but the variance is in square meters.

So statement I is incorrect.

Both mean deriation and standard deviation are measures of dispresion they are calculated in the same units as the original data.

So, statement II is correct.